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Abstract 
This paper explores the study of combined measuring instruments that utilize gyroscopic devices. It 
provides a comprehensive analysis of the characteristics of both the measurement and computational 
components involved in these instruments. The focus is on a non-orthogonal configuration of the combined 
measuring instrument, which is built around the MEMS gyroscope MPU-6050. This specific gyroscope is 
known for its precision and compactness, making it an ideal choice for modern applications. The mounting 
structure is designed in the shape of a pyramid, which contributes to the overall stability and performance 
of the instrument, allowing for enhanced measurement accuracy. Additionally, the paper details the 
algorithm used for processing the measured data. This algorithm integrates a moving average technique, 
which helps smooth out fluctuations in the data, thereby providing more reliable readings. Furthermore, it 
incorporates a time delay neural network, a sophisticated method that allows for the analysis of temporal 
patterns in the data, enhancing the instrument's ability to interpret complex motion dynamics. Overall, the 
research presented in this paper aims to advance the understanding and functionality of combined 
measuring instruments, highlighting the innovative integration of gyroscopic technology and advanced 
data processing algorithms. 
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1. Introduction 

Nowadays Unmanned aerial vehicles (UAV) are integrated into different sides of human activity. 
Based on UAV design and main functions it could be equipped with different avionics. The main 
equipment list of UAV is still constant for different types. Electric engines, autopilot module, sensors, 
and actuators require a precise electrical distribution network on-board [1]. Also, a specific 
requirement is set to provide payload normal operation. Digital data link with ground control station 
is provided with specific trucking antenna system on both sides UAV and ground station. Different 
channels could be used for UAV control and video streaming. Also, many UAVs are capable of 
tracking functions that allow UAV to follow a predefined object in a dynamically changed 
environment [2, 3]. Performance of automatic tracking function depends on the quality of on-board 
camera stabilization. Level of video data stabilization is also important for a visual navigation system 
and has an impact on the accuracy of positioning [4, 5].    

To ensure the high quality of transmission of video signals, it is necessary to use stabilization. 
The most efficient approach to stabilization is based on using triaxial mechanical gimbals and control 
signals [6, 7]. These signals are formed on information about the location of the UAV. Such data is 
entered from gyroscopic devices [8, 9]. Therefore, the accuracy of stabilization depends on the 
accuracy of information measured by gyroscopic devices [10, 11]. 
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The paper studies data processing of multiple gyroscopic devices to improve performance of 
provided data. Modern gyroscopic instruments (MEMS rate gyroscopes are usually used in the UAV
stabilization and motion control) use digital outputs. Measuring transducers are integrated with 
computing elements of information processing. The computing part of modern measuring 
instruments can carry out the following functions: 

1. Transformation of analog signals into a discrete form. 
2. Processing multi-dimensional information in a discrete form. 
3. Exchange of multi-dimensional information in a discrete form between different channels of 

information processing. 
4. Storage of multi-dimensional information. 
5. Forming output information by requests. 
6. Reverse digit-analog transformation of signals for carrying out functions of indication, 

control, and registration. 

Therefore, developing appropriate algorithms for redundant information processing in inertial 
navigation system is very important. The algorithm of data processing is represented in Figure 1. 
The physical value which includes useful information can be directly measured in some physical 
form. Usually, it represents some component of another physical value, which can be measured 
directly. The connection between these two values can be defined as the primary conversion. Usually, 
this conversion is implemented by some known law. Otherwise, it will be impossible to restore the 
necessary information. The primary converter forms the output signal, which includes useful 
measuring information and noise of the primary information.  

 

Figure 1: Block diagram of the digital processing of signals. 

Further, the obtained signal is measured by some measuring instrument. In this case, distortion 
of the measured information due to measuring noise is added. To implement digital processing, the 
measured value must be converted into a discrete form using a special device containing an 
extrapolator and an analog-digital converter. The first transducer produces the fixed current 
measured value at discrete points in definite time intervals. The second transducer converts values 
into a digital form, allowing us to process information in digital computers. During this conversion, 
the noise of discretization arises. To obtain the desired information based on the discrete signals, it 



is necessary to calculate and create a device or computer program, which will minimize the above-
mentioned distortions. 

In general, filter design is an important problem that can be concretized only based on preexisting 
knowledge about the characteristics of measured values. Finally, the designed filter must eliminate 
as much as possible all the above-mentioned distortions of useful information. 

During the usage of the moving average algorithm, it is possible to exclude trend and random 
noise [12, 13]. All the known approaches have essential disadvantages, which lead to a decrease in 
the quality of the obtained measuring information. The technique proposed in this paper eliminates 
the disadvantages of classical approaches. Therefore, the developed combined algorithm matters 
both in applied and theoretical aspects. Also, most algorithms of moving average algorithm represent 
low-frequency filters from the point of view of digital filtering.  

The most widespread algorithms of the studied type are moving average, weighting moving 
average, and exponential moving average [14, 15].  

Rapid development of artificial intelligence technologies has led to the arising of a large number 
of neural networks with various structures that have different ranges of computational burden and 
wide applicability [16, 17]. The impossibility of solving a definite problem or the possibility of 
obtaining results that are less accurate when using a traditional mathematical apparatus can indicate 
an incorrect selection of the network type. The neural network technique applied to solving some 
problems can noticeably shorten the computing process itself, as it allows us to avoid intricate 
computing conversions connected with the search for regularities of input and output data [18, 19]. 

The stability of the solution provided by a neural network in the presence of a noise component 
in the source data makes neural networks a fairly effective tool for solving complex technical 
problems [20]. 

Modern algorithms of filtering, smoothing, and prediction are widely used for increasing the 
accuracy and reliability of measuring information [21 23]. A new approach based on a combination 
of a moving average algorithm and a time delay neural network is proposed in this paper. Finally, 
we can obtain estimates taking into consideration both smoothing and prediction. 

2. Features of redundant measuring instruments 

Redundant data could improve characteristics of measuring instruments such as accuracy, reliability, 
durability, ability to check, resistance to faults, and survivability. Redundant measuring information 
could be obtained at different levels: structural, functional, code, and algorithmic. The structural 
redundancy foresees scheme-technical decisions, which ensure increase number of hardware used. 
Algorithmic redundancy is implemented at the information level. It is characterized as functional 
redundancy of information. Algorithmic redundancy is grounded on forming an array of redundant 
information. Some instruments could measure vector parameters (for example vectors of angular 
rate, accelerations, and strength of the magnetic field) [24, 25]. 

Functional redundancy can be achieved in two ways. The first one combines vectors of measuring 
instruments (triaxial MEMS gyroscope) in a non-orthogonal configuration. The main feature of non-
orthogonal configuration is that the axes of sensitivity of the measuring instrument do not coincide 
with the axes of the basic reference frame, which is connected with a moving object. The second way 
uses a combined integration, where a set of vector measuring instruments oriented by orthogonal or 
non-orthogonal configurations ensures the measurement of vector parameters based on the principle 
of multi-dimensional measurements [26, 27]. 

Three-rate gyroscopes with non-collinear and non-coplanar axes of sensitivity form a combined 
non-orthogonal configuration. Any measuring system with redundant information based on 
principles of reservation, integration, and combination, in the general case, represents a 
multidimensional multiply-connected system [28]. In any case, a measuring system with redundant 
information includes both measuring and computing constituents [29, 30]. 

The combined measuring instrument based on MEMS rate gyroscope and non-orthogonal 
configuration is shown in Figure 2. 



 

Figure 2: The combined measuring instrument based on rate gyroscopes. 

Non-orthogonality of the measuring instrument is implemented by using the tetragonal pyramid 
as mounting blocks. Rate gyroscopes are located on the faces of the above-mentioned pyramid. The 
triaxial sensor MPU-6050 (Figure 3) has been chosen as a rate gyroscope for the considered 
configuration. 

 

Figure 3: The triaxial M45EMS gyroscope MPU-6050. 

Hence, the measuring part of the considered instrument is implemented by the rate gyroscope 
MPU-6050. The computing part is implemented by the microcontroller ATMEGA168. The structural 
diagram of the computing part is represented in Figure 4. 

The application of combination in redundant measuring instruments has the following 
advantages: 

1. Increasing the reliability of the measuring instrument in 1 − (1 − 𝑒−𝜆𝑡)𝑚−1 , where 𝜆 is the 
intensity of failures; 𝑚 is the multiplicity of reservation. 

2. Decreasing the probability of a sudden failure. 
3. Increasing the reliability of the measuring instrument. 

The schematic location of the sensitivity axes of the combined measuring instrument is 
represented in Figure 5. 



 

Figure 4: The structural diagram of the measuring instrument. 
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Figure 5: The location of sensitivity axes in the combined measuring instrument. 

Checking of properties of the combined bench has been carried out using the triaxial tested bench. 
Triaxial tested bench helps to study the dynamic characteristics of the combined measuring 
instrument. 

3. Developing of neural network for adaptation filtration  

A Finite Impulse Response (FIR) filter is a kind of discrete filter that is commonly used in signal 
processing to manipulate or extract features from a signal. It operates by convolving the input signal 
with a set of filter coefficients, which are typically time-domain impulse response samples.  

When designing an FIR filter using a neural network, the goal is to train the network to learn the 
optimal set of filter coefficients that can effectively process the input signal. The neural network is 
trained based on a set of input-output data pairs, where the input is the original signal, and the output 
is the filtered version of that signal. 

The architecture of the neural network for FIR filter design can vary depending on the specific 
requirements and complexity of the filtering task. Typically, it consists of one or more layers of 
neurons, with each neuron representing a filter coefficient. The input to the network is the reference 
signal, and the output is the filtered signal. 

During the training process, the network learns to adjust the weights (filter coefficients) of each 
neuron to minimize the difference between the filtered output and the desired output.  

This is achieved through an optimization algorithm, such as gradient descent, which iteratively 
updates the weights based on the error defined as a difference between the predicted output and the 
desired output. 

The training dataset for the neural network can be generated by applying known filter coefficients 
to a set of input signals, resulting in the corresponding filtered output signals. The network learns 
to approximate the correlation between the output and input signals, ultimately finding the optimal 
filter coefficients that produce the desired filtering effect. 

Once the neural network is trained, it can be used to filter new input signals by applying the 
learned filter coefficients to the signal. This allows for real-time filtering or processing of signals 
using the optimized FIR filter. 



Using a neural network for FIR filter design offers advantages such as flexibility in choosing the 
filter characteristics, adaptability to different filtering tasks, and the ability to learn complex 
connections between the output and input signals. 

One of the widely used methods in digital signal processing is the implementation of Finite 
Impulse Response (FIR) filters. These filters apply a cumulative window function to a fragment of 
data, allowing for various processing operations such as smoothing, noise reduction, and signal 
prediction. 

There are three types of FIR filters: causal, non-causal, and anti-causal. Causal filters only process 
previous samples of the input data stream and are suitable for real-time systems. For example, a 
causal FIR filter can be used to remove unwanted noise from an audio signal, preserving the integrity 
of the original sound. 

Non-causal and anti-causal filters, on the other hand, utilize future samples and are considered 
physically unrealizable systems. They are commonly used in post-processing applications, such as 
analyzing recorded data or predicting future trends based on historical data. For instance, an anti-
causal FIR filter can be employed to predict stock market trends based on historical price data. 

Neural networks can be implemented as FIR filters to perform functions such as prediction and 
data smoothing. By training the network with appropriate weight coefficients, it can learn to make 
accurate predictions based on input data patterns. For example, a neural network-based FIR filter can 
be trained to predict future temperature fluctuations based on historical weather data, enabling more 
accurate weather forecasting. 

Time delay neural networks allow us to learn the behavior of the dynamic systems. The structure 
of the time delay neural network is represented in Figure 6. 

 

Figure 6: The structure of the time delay neural network. 

The input of the considered neural network is a time series. For obtaining control signals, signals 
about projections of the angular rate in time 𝑥(𝑡),  𝑥(𝑡 − 𝜏), . . . ,  𝑥(𝑡 − (𝑁 − 1)𝜏) are used. Here 𝑁 
is the quantity of previous results of measurements. The output signal 𝑦(𝑡) represents the vector of 
angular rates of a moving object. The inputs of the time delay neural network enter the output 
through the delay unit forming feedbacks [31]. In such a way, the non-linear autoregressive 
prediction model is formed. In this case, the new vector of angular rate is predicted based on the 
input. 

The time delay neural network allows us to create any finite time dependence as follows:  

𝑦(𝑡) = 𝐹(𝑥(𝑡),  𝑥(𝑡 − 1), . . . ,  𝑥(𝑡 − 𝑘)]. (1) 

As recurrent connections in such a representation of a neural network are absent, the above-
mentioned neural network can use the algorithm of backward propagation of an error as a learning 
algorithm. 



The use of neural networks requires some preparatory stages, one of which is data preprocessing 
and filtering. To perform filtering, it is possible to use neural networks of various types: linear neural 
filters, networks with backpropagation of errors, dynamic networks, and networks based on radial 
basis functions. One of the neural networks used for filtering and noise suppression is a generalized 
adaptive neural filter, which is a set of neurons built based on functions that implement the Wiener 
filter. Also, a hybrid system consisting of a filter that uses a statistical approach for noise filtering, 
and a Hopfield network, is commonly used to eliminate the negative consequences of the filter [32, 
33]. Different data processing technologies complement each other. Also, a filtering system could be 
presented in a set of sub-modules each of which is a separate neural network with backpropagation 
of errors. 

At the stage of analysis and data processing. At this stage, the main solution to the problem is 
performed, the definition of a model that describes the observed processes. Accordingly, depending 
on the task at hand, it is possible to use a certain neural network structure. The most universal 
network architectures are multilayer networks with backpropagation of errors. The proposed 
configuration of the time delay neural network is represented in Figure 7. 

Neural networks can be implemented as FIR filters to perform functions such as prediction and 
data smoothing. By training the network with appropriate weight coefficients, it can learn to make 
accurate predictions based on input data patterns. For example, a neural network-based FIR filter can 
be trained to predict future temperature fluctuations based on historical weather data, enabling more 
accurate weather forecasting.  

 

Figure 7: Configuration of the new time-delay neural network. 

To evaluate the quality of prediction and smoothing, a non-causal FIR filter can be used as a 
reference. This reference filter is implemented by shifting the sample values in time, making it 
physically realizable. The response of the neural network is then compared to the response of the 
reference filter. If there are significant differences, an error signal is generated, which is used to 
update the network's weights through a modified backpropagation algorithm. This iterative training 
process allows the neural network to improve its predictive and smoothing capabilities over time. 

Whether it is for noise reduction, signal prediction, or smoothing, these filters offer versatile 
solutions for a wide range of applications across various industries. An example of a non-causal filter 
is the Savitzky-Golay filter.  



This filter is commonly used for smoothing and noise reduction in signal processing applications. 
It operates by fitting a polynomial function to a sliding window of data points and using the 
coefficients of the polynomial to perform the filtering operation.  

Unlike causal filters that only use past samples, the Savitzky-Golay filter incorporates future 
samples in its calculations, making it a non-causal filter. This allows it to have a better smoothing 
performance by considering the overall trend and shape of the signal. 

For example, let us say we have a noisy signal that represents temperature readings over time. 
We want to smooth out the noise and obtain a cleaner representation of the underlying temperature 
trend. We can apply a non-causal Savitzky-Golay filter to achieve this goal. By choosing an 
appropriate window size and polynomial order, we can adjust the level of smoothing and preserve 
important features of the signal. The filter will consider future samples to estimate the smoothed 
value at each point, resulting in a more accurate representation of the temperature trend. It's 
important to note that non-causal filters like the Savitzky-Golay filter are typically used when 
working with recorded data or analyzing time series, where future information is available. In real-
time applications, causal filters are usually preferred due to their ability to process only past samples 
and provide immediate results. The simulation results are represented in Figures 8-9. 

 

Figure 8: The illustration of learning the developed neural network. 

The backward difference filter is commonly used in signal processing and numerical analysis to 
estimate the derivative of a signal or to perform edge detection. It calculates the difference between 
a sample and its previous sample to approximate the rate of change or gradient at that point. Unlike 
causal filters that only use past samples, the backward difference filter incorporates future samples 
in its calculations, making it an anti-causal filter. This means that it predicts the value at a given 
point based on future samples. For example, we have a discrete signal representing the position of 
an object over time. We want to estimate the velocity of the object at each time point. We can use 
an anti-causal backward difference filter to achieve this. 



  
a) 

 
b) 

 
c) 

Figure 9: Determination of projections of the angle rate onto axes of the navigation coordinate 
system x (a), y (b), z (c). 

Figure 8 characterizes the process of learning the developed neural network. In Figure 8, the 
following meanings are given: Ref denotes an initial signal at the neural circuit output; Out denotes 
the output signal changing during the learning; Err is a loss of the output signal. The results of 
processing information about the angular rate of the moving object obtained using the developed 
angular rate are shown in Figure 9. 

By taking the difference between the current sample and its future sample, we can approximate 
the rate of change of the position, which gives us an estimate of the velocity.  

This filter uses future samples to predict the value at each point, allowing us to estimate the 
velocity even before we have collected all the data. It's important to note that anti-causal filters like 
the backward difference filter are typically used in scenarios where future information is available 
or when analyzing recorded data. In real-time applications, causal filters are usually preferred as 
they only rely on past samples and provide immediate results. 

4. Conclusions 

The features of the combined instrument assigned for the measurement of angle rate are described. 
The characteristics of measuring and computing parts of the combined measuring instrument are 
characterized. The procedure of data processing based on a moving average algorithm and time delay 
neural network has been developed. Such an algorithm combines the advantages of smoothing and 
prediction estimates. In practice, the choice of the reference filter can vary depending on the 



application. For example, using a centered moving average filter with symmetrically distributed 
weights as a reference allows compensating for the phase shifts typically associated with classical 
causal moving average filters. This can be beneficial in applications such as audio processing, where 
maintaining the phase coherence of the signal is crucial. However, it is significantly to mark that 
since the filter implemented by the neural network operates on past samples and is only an 
approximation of a symmetric non-causal filter, there may still be some residual phase distortions. 
These distortions, however, are typically less pronounced compared to those observed in classical 
causal filters. In conclusion, the use of FIR filters, particularly implemented through neural networks, 
provides powerful tools for processing and analyzing data. 
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