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Abstract 
The paper presents the results of research on adaptive algorithms for detecting radar signals against the 
background of broadband interference. Since modern radar systems operate in an intense electromagnetic 
environment, which includes dynamically changing and complex interference, the use of classical 
detection algorithms often turns out to be insufficiently effective. This necessitates the introduction of 
adaptive approaches to increase the reliability and accuracy of signal detection. The paper analyzes 
adaptive detection algorithms synthesized based on the Neyman-Pearson criterion with maximization of 
the likelihood function and also considers adaptive filtering algorithms, which are key elements of the 
structure of these algorithms. The conducted modeling demonstrates that adaptive algorithms 
significantly increase the effectiveness of radar signal detection in complex conditions of broadband 
interference, which confirms their promising application in solving the problem of detection. 
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1. Introduction 

In modern radar systems, the task of detecting signals against the background of complex obstacles 
remains relevant to this day. Radar systems, especially those focused on moving target detection 
(MTD), often encounter various types of interference, which degrades their performance. These 
sources can include both Gaussian and non-Gaussian interference, such as Laplace-distributed or 
K-distributed interference, which is often seen in dynamic environments or the presence of 
electronic warfare (EW) countermeasures. Such disturbances are usually broadband and have 
complex statistical properties that complicate the task of detecting useful signals. In these 
conditions, traditional detection methods based on periodic compensation and classical filtering 
algorithms demonstrate limited effectiveness due to their inability to adapt to the changing 
conditions of the interfering environment [1]. In turn, this requires the development of more 
flexible approaches to signal detection [2]. 

In this case, the use of adaptive detection algorithms capable of adjusting their parameters 
according to the characteristics of interferences is of particular interest [3, 4, 5]. The basis of these 
algorithms is statistical optimization criteria, such as the Neyman-Pearson criterion and the 
maximum likelihood method, which allow the synthesis of interference-resistant detection 
algorithms [6, 7, 8, 9]. Thus, the work [10] analyzes various approaches to solving the detection 
problem, in particular methods of maximum likelihood which provide optimal results in situations 
with unknown signal and interference parameters. According to this, adaptive algorithms can 
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increase the accuracy of signal detection even in complex conditions, using information about the 
distributions of the interference and the useful signal. 

In turn, the adaptability of these algorithms is provided by the use of adaptive filters in their 
structure, which, based on current estimates of interference parameters, adjust their coefficients to 
minimize their impact on the process of detecting a useful signal [11]. In particular, it is worth 
noting that the estimation of the parameters of random processes is an important problem in many 
applied problems of radio electronics [12]. 

The practical value of adaptive signal processing algorithms is highlighted in [13, 14], where 
their ability to reduce interference and improve the signal-to-interference ratio (SIR) is 
demonstrated. This improvement is a critical factor in ensuring accurate signal detection against a 
backdrop of broadband interference. The researchers also emphasize that properly tuning the 
parameters of adaptive filters can significantly enhance system efficiency, which is crucial for their 
performance in dynamically changing environments. In this way, a related problem is formed, 
which is based on the synthesis of the optimal algorithm for estimating the parameters of adaptive 
filters. One of the fundamental works in this field is [15], which outlines the basics of the theory of 
adaptive filtering, including various algorithms for evaluating filter parameters. Especially 
important is the fact that the parameter estimation algorithm must be not only accurate but also 
integrated into the general structure of the detection algorithm. 

Considering the above, the purpose of this paper is to review and analyze the effectiveness of 
synthesized adaptive algorithms [16, 17, 18, 19] for detecting radar signals against the background 
of broadband interference to increase the accuracy of signal detection and reduce the level of false 
alarms. 

2. Adaptive detection algorithms 

2.1. Theoretical background 

Since the signal-interference mixture at the input of the receiver is an implementation of a 

random process, statistical methods are key tools for solving the problem of detecting moving 

targets against the background of passive interference. 

Accordingly, the formulation of the detection problem is formulated as a statistical problem, 

within which two hypotheses are put forward for the input realization of the signal. Hypothesis 

𝐻0 assumes that the input realization contains only interference, while the alternative 

hypothesis 𝐻1 states that the sample contains both interference and signal [20]. Formed 

hypotheses are the basis for the synthesis of the detection algorithm because they contain 

information about the influence of the presence of a signal on a sample of a random 

implementation, which is presented in the form of the density of probability distributions, 

which, with a fixed implementation of the sample, represent a likelihood function. At the same 

time, taking into account the condition of insufficient a priori data, when solving the problem of 

synthesizing the optimal structure of detection algorithms, it is advisable to use the Neyman-

Pearson criterion [21], according to which it is necessary to describe the density of the mixture 

of signal and interference for the cases of the presence and absence of the signal and calculate 

likelihood ratio: 

𝐿(𝑥,̅ 𝜗̅) =
𝑓1(𝑥̅, 𝜗̅|𝐻1)

𝑓0(𝑥̅, 𝜗̅̅̅|𝐻0)
, (1) 

where 𝑓0(𝑥̅, 𝜗̅, 𝐻0), 𝑓1(𝑥̅, 𝜗̅, 𝐻1) are the probability density functions of the statistical hypotheses 

𝐻0 and 𝐻1 in the presence and absence of the signal, respectively, 𝜗̅ is the vector of parameters 

of the mixture of signal and interference. 

Since it is necessary to ensure compliance with the condition of providing the minimization 

of the probability of errors of the second type at a fixed level of the probability of errors of the 

first type, which corresponds to the criterion of efficiency in the conditions of limited a priori 



information, when forming the detection algorithm, it is advisable to use the maximum 

likelihood method (MLM). This method consists of choosing a hypothesis that maximizes the 

likelihood ratio (1), that is, in finding the maximum of the derivative (1) according to the signal 

parameter and the vector of interference parameters: 

 𝐿(𝑥,̅ 𝜗̅) =

𝑚𝑎𝑥
𝜗̅

𝑓1(𝑥̅, 𝜗̅|𝐻1)
𝑚𝑎𝑥

𝜗̅
𝑓0(𝑥̅, 𝜗̅̅̅|𝐻0)

. (2) 

Taking into account the insufficiency of a priori data, there is a related problem of 

estimating the vector of unknown parameters of obstacles. For the further synthesis of 

adaptive detection algorithms, an empirical Bayesian approach is used, which allows refining 

parameter estimates based on a posteriori information. 

Based on the formed likelihood ratio (2), a statistic of random values is obtained, which is 

compared with the decision-making threshold 𝑉𝑡ℎ, according to which a decision is made about 

the presence or absence of a signal: 

𝐿(𝑥,̅ 𝜗̅) > 𝑉𝑡ℎ  |
1,   𝑖𝑓 𝐿(𝑥̅)  ≥  𝑉𝑡ℎ,

 0,   𝑖𝑓 𝐿(𝑥̅)  <  𝑉𝑡ℎ.
 (3) 

The procedure described above is the basis of synthesized adaptive detection algorithms. 

However, depending on the specifics of a particular task, the structure of algorithms may 

undergo certain modifications. For example, the nature of the signal or interference, and the 

level of available a priori information can affect the choice of optimization criteria, the method 

of evaluating the parameters of adaptive filters. 

2.2. An adaptive signal detection algorithm against the background of the 
Gaussian autoregressive interference model 

One of the important stages in synthesizing algorithms is the mathematical modeling of the signal 
and interference. In the context of radar detection tasks, the harmonic signal is one of the most 
common models [19]: 

𝑆 = 𝑈 𝑐𝑜𝑠(𝜔0𝑡 + 𝜑).  (4) 

In turn, for mathematical modeling of interference, it is advisable to use autoregressive (AR) 
models, which represent a signal as a linear combination of its past values, i.e. in such a way that 
the current value of the signal is the sum of its previous values with a given random generation 
process [22]. AR models provide a flexible tool for describing various types of interference, 
particularly correlated interference, and interference with a complex statistical structure, making 
them suitable for radar detection and analysis of broadband interference [23]. Mathematically, the 

AR model of order 𝑘 can be described by the following equation: 

𝑦𝑖 = ∑ 𝑎𝑗

𝑘

𝑗=1

𝑦𝑖−𝑗 + 𝜀𝑖 , (5) 

where 𝑦𝑖  are signal counts at the current time 𝑖, 𝑎𝑗 are the autoregressive coefficients, 𝜀𝑖 is 
generating random process. 

Given that the signal obtained as a result of reflection is a mixture of useful signal and 
interference, the additive model of the mixture of signal and interference (6) is taken into account 
when synthesizing algorithms, which allows mathematical formalization of the signal reception 
process, in which interference is superimposed on the signal: 

𝑥𝑖 = 𝑏𝑆𝑖 + 𝑦𝑖 , (6) 

where 𝑏 is signal parameter that determines the amplitude of the received signal. 
Thus, based on the generalized detection algorithm described above (3), the structure of the 

local-optimal adaptive signal detection algorithm against the background of the Gaussian 
autoregressive interference model is formed as described in [16], and which can be mathematically 
formalized by the expression: 



𝜕

𝜕𝑏
ln(𝐿(𝑥1, … , 𝑥𝑛, 𝑏))

|𝑏=0
= 

= ∑ ((𝑥𝑖 − ∑ 𝑎𝑗
∗𝑥𝑖−𝑗

𝑘

𝑗=1

) ∙ (𝑆𝑖 − ∑ 𝑎𝑗
∗𝑆𝑖−𝑗

𝑘

𝑗=1

))

𝑛

𝑖=𝑘+1

> 𝑉𝑡ℎ(𝑆,̅ 𝑎∗̅̅ ̅, 𝜎), 
(7) 

where 𝑎𝑗
∗ are the estimated autoregressive coefficients, 𝜎 is the variance of a random process. 

The synthesized algorithm can be presented in the form of a scheme adaptive detector (Figure 
1), where the key elements are the unit for evaluating the interference parameters, adaptive 
rejection filters, and the decision-making system. 

 

Figure 2: Block scheme of a deterministic signal adaptive detector. 

2.3. An adaptive algorithm for detecting a harmonic signal with an unknown 
phase against a background of Gaussian correlated interference in the 
presence of impulse interference 

To address the task of detecting a harmonic signal with a known frequency but unknown phase, 
the detection algorithm must exhibit phase invariance. To achieve this, the likelihood ratio is 
reformulated by decomposing the signal into its quadrature components, enabling the algorithm to 
be expressed in terms of amplitude and phase, as outlined in [17]. This method ensures phase 
invariance, allowing for the synthesis of a detection algorithm that remains effective regardless of 
phase variations, thereby enhancing the algorithm's robustness in practical applications. 

Thus, the detection algorithm is reduced to the form: 

ln (𝐿(𝑥1, … , 𝑥𝑛, 𝜗̅)) = 𝑅(𝑥̅, 𝜔) > 𝑉𝑡ℎ(𝑝, 𝑎∗̅̅ ̅), (8) 

where 𝑝 is the probability of pulse clutter action, 𝑅(𝑥̅, 𝜔) = √𝐴(𝑥̅, 𝜔)2 + 𝐶(𝑥̅, 𝜔)2, 𝐴(𝑥̅, 𝜔) =

∑ ((𝑥𝑖 − ∑ 𝑎𝑗𝑥𝑖−𝑗
𝑘
𝑗=1 )(𝑐𝑜𝑠(𝜔𝑡𝑖) − ∑ 𝑎𝑗 𝑐𝑜𝑠(𝜔𝑡𝑖−𝑗)𝑘

𝑗=1 ))𝑛
𝑖=𝑘+1 ,  𝐶(𝑥̅, 𝜔) = ∑ ((𝑥𝑖 −𝑛

𝑖=𝑘+1

∑ 𝑎𝑗𝑥𝑖−𝑗
𝑘
𝑗=1 )(𝑠𝑖𝑛(𝜔𝑡𝑖) − ∑ 𝑎𝑗 𝑠𝑖𝑛(𝜔𝑡𝑖−𝑗)𝑘

𝑗=1 )) , 𝑎∗̅̅ ̅ is vector of estimated autoregressive 

coefficients. 
As a result, the structure of the adaptive detector, the scheme of which is shown in Figure 2, is 

formed [17]. 



 

Figure 2: Structural diagram of an adaptive phase-invariant detector.  

2.4. An adaptive signal detection algorithm against the background of the non-
Gaussian autoregressive interference model 

The relevance of synthesizing detection algorithms based on non-Gaussian models is that real 
obstacles often have more complex statistical properties than the Gaussian model predicts. In this 
regard, when solving this problem, the process described by the Laplace distribution was used as a 
mathematical model of disturbances. This approach allows for more accurate modeling of samples 
of the generating random process, considering the influence of deviations characteristic of real 
obstacles, as described in the paper [18]. 

According to the method of maximum likelihood, the synthesis of a decisive rule for detecting a 
signal of a known form against the background of a non-Gaussian autoregressive disturbance with 
unknown coefficients consists of finding the maximum of the derivative according to the signal 
parameter 𝑏 and the vector of disturbance parameters 𝑎∗̅̅ ̅̅ . As a result, a test statistic is formed, 
which, when compared with the decision-making threshold, is a detection algorithm, which for the 
given task can be represented by the expression: 

𝜕

𝜕𝑏
ln(𝐿(𝑥1, … , 𝑥𝑛, 𝑏))

|𝑏=0
= 

= ∑ (𝑠𝑔𝑛(𝑥𝑖 − ∑ 𝑎𝑗
∗𝑥𝑖−𝑗

𝑘

𝑗=1

) ∙ (𝑆𝑖 − ∑ 𝑎𝑗
∗𝑆𝑖−𝑗

𝑘

𝑗=1

))

𝑛

𝑖=𝑘+1

> 𝑉𝑡ℎ(𝑆,̅ 𝑎∗̅̅ ̅, 𝜆), 
(9) 

where 𝑠𝑔𝑛 is signum function, 𝜆 is scale parameter of Laplace distribution that depends on the 
autoregressive coefficients. 

The described detection algorithm is the basis for forming the structure of the adaptive detector 
(Figure 3) [18]. 

2.5. An adaptive algorithm for detecting a harmonic signal with an unknown 
phase against the background of non-Gaussian impulse interference 

When synthesizing the detection algorithm, following the formulated problem, it was taken into 
account that the samples of the generating random process are formed as a mixture of an 
uncorrelated Gaussian process and a Laplace impulse process. Based on this, the corresponding 
likelihood functions used in the formation of the likelihood ratio (3) were formed and described. At 
the same time, similar to the problem that was considered above when detecting a harmonic signal 
characterized by a known frequency but an unknown phase it is advisable to rewrite the likelihood 



ratio by decomposing the signal into quadrature components. This approach is discussed in detail 
in the article [19]. 

 

Figure 3: Structural diagram of a deterministic signal detector against the background of a non-
Gaussian autoregressive interference model. 

Thus, as it was described in [19], taking the derivative of the formed likelihood ratio by the 
signal parameter at the point 𝑏 = 0, a local optimal solution is obtained, which can be described by 
expression: 

𝜕

𝜕𝑏
𝑙𝑛(𝐿(𝑥1, . . , 𝑥𝑛)) = ∑  

𝑑

𝑑𝑏
𝑙𝑛 (

𝑏𝑅(𝑥𝑖) + 𝑄𝑖

1 + 𝑄𝑖
)

𝑛

𝑖=1

|𝑏=0 = 

= ∑
𝑅(𝑥𝑖)

𝑄𝑖

𝑛

𝑖=1

= ∑ Ф(𝑅𝑖, 𝑄𝑖)

𝑛

𝑖=1

> 𝑉(𝑝, 𝛼). 

(10) 

As a result, the structure of the scheme of the locally optimal algorithm (10) is formed, which is 
shown in Figure 4 [19]. 

 

Figure 4: Structural diagram of an adaptive detector of a harmonic signal with an unknown phase 
against the background of a non-Gaussian autoregressive impulse interference model. 



3. Algorithms for estimating the parameters of the autoregressive 
model of interference 

A common feature of the synthesized algorithms [16, 17, 18, 19] is the presence of a stage of 
estimating autoregressive coefficients, which ensures their adaptability. In this connection, a 
related task arises; the synthesis of an optimal algorithm for estimating the parameters of the 
autoregressive model of interferences, according to the algorithms described above. 

The estimation of parameters, which ensures the adaptability of the algorithm, is based on the 
use of a sample containing only the disturbance (5). 

Since the parameters are random variables, the algorithm is formed based on the empirical 
Bayesian method, which involves estimating the unknown parameters of the interference by the 
method of the maximum posterior probability density, according to which it is possible to form a 
general equation for obtaining an estimate of the parameters: 

𝜕

𝜕𝑎𝑗

ln 𝐿(𝑦𝑘+1, . . . , 𝑦𝑚|𝑦, . . . , 𝑦𝑘 , 𝑎̅) = 0, 𝑗 = 1, 𝑘̅̅ ̅̅̅. (11) 

Since in [16, 17] the disturbances are described by an autoregressive Gaussian process, the 

parameters can be estimated using the method of least squares. This is explained by the fact 

that for Gaussian processes the likelihood function is quadratic concerning the parameters, that 

is, the maximization of this function by the MMP leads to the minimization of the sum of the 

squares of the deviations, which is the basis of the least squares method: 

𝑙𝑛𝐿 = ∑ (𝑦𝑖 − ∑ 𝑎𝑗𝑦𝑖−𝑗

𝑘

𝑗=1

)

2

→ 𝑚𝑖𝑛

𝑛

𝑖=1

. (12) 

To find the minimum of the function (12), the partial derivatives are calculated according to the 
autoregression parameters (13), and a system of equations is formed that is solved according to the 
chosen method of solving linear algebraic equations and is obtained 𝑎𝑗

∗, which is a solution of the 
set of probability equations: 

 ∑ (𝑦𝑖 − ∑ 𝑎𝑗𝑦𝑖−𝑗

𝑘

𝑗=1

)

𝑛

𝑖=𝑘+1

𝑦𝑖−𝑙 = 0, 𝑙 = 1, 𝑘̅̅ ̅̅̅. (13) 

In turn, for the algorithms described in [18, 19], given the non-Gaussian distribution of 

disturbances, the procedure for estimating the unknown parameters of the autoregressive 

process requires the introduction of special functions.  

Based on equation (11), taking into account the peculiarities of the Laplace probability 

distribution, it is possible to use the method of the least absolute deviation:  

𝑙𝑛𝐿 = ∑ |𝑦𝑖 − ∑ 𝑎𝑗𝑦𝑖−𝑗

𝑘

𝑗=1

|

2

→ 𝑚𝑖𝑛

𝑛

𝑖=1

. (14) 

Similarly to (13), to find the minimum of (14), it is necessary to calculate the partial 

derivatives for the unknown parameters, according to which we obtain:  

∑ 𝑠𝑔𝑛 (𝑦𝑖 − ∑ 𝑎𝑗𝑦𝑖−𝑗

𝑘

𝑗=1

)

𝑛

𝑖=𝑘+1

𝑦𝑖−𝑙 = 0, 𝑙 = 1, 𝑘̅̅ ̅̅̅. (15) 

According to the expression (15) for estimating the unknown parameters, when using (14), 

a system of nonlinear equations is formed, for the solution of which the Newton-Raphson 

method is used, as described in [19]. 

4. Computer simulation 

The effectiveness of the synthesized algorithms is investigated using computer simulation, 

which allows for a detailed assessment of their performance. 



The results of computer modeling of the adaptive algorithm [16] are shown in Figure 5, 6, 7 

where the spectra of the signal and interference mixture before filtering (Figure 5) and after 

filtering (Figure 6) and the detection characteristics (Figure 7) of the proposed algorithm are 

presented.  

  

Figure 5: Input time and spectrum plots of the mixture of signal and interference before filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 

  

Figure 6: Output time and spectrum plots of the mixture of signal and interference after filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 



 

Figure 7: Detection characteristics of algorithm (7) at different sample size 𝑁 =

 [16;  32;  64;  128], 𝐹 = 0.01. 

The results of computer simulations for the adaptive detection algorithm [17] are presented 

in Figures 8, 9, and 10, illustrating the signal and interference mixture spectra before filtering 

(Figure 8), after filtering (Figure 9), as well as the detection characteristics of the proposed 

algorithm (Figure 10). 

  

Figure 8: Input time and spectrum plots of the mixture of signal and interference before filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 

  

Figure 9: Output time and spectrum plots of the mixture of signal and interference after filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 



 

Figure 10: Detection characteristics of algorithm (8) at different sample size 𝑁 =

 [16;  32;  64;  128], 𝐹 = 0.01. 

The results of computer simulations for the adaptive detection algorithm [18] are shown in 
Figures 11, 12, and 13, where Figure 11 presents the spectra of the signal and interference mixture 
before filtering, Figure 12 shows the spectra after filtering, and Figure 13 illustrates the detection 
characteristics of the proposed algorithm. 

  

Figure 11: Input time and spectrum plots of the mixture of signal and interference before filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 

  

Figure 12: Output time and spectrum plots of the mixture of signal and interference after filtering. 
𝑁 = 128;  𝑎 = [1.9; −0.99]. 



 

Figure 13: Detection characteristics of algorithm (9) at different sample size 𝑁 =

 [16;  32;  64;  128], 𝐹 = 0.01. 

The results of computer modeling for the adaptive algorithm (10) are illustrated in detail in the 
article [19]. In this work, we will only give the characteristics of the detection of the synthesized 
algorithm, which is demonstrated in Figure 14 [19]. 

  

Figure 14: Detection characteristics of algorithm (10). 

The effectiveness and expediency of using the maximum likelihood method (MLM)  for 
estimating the parameters of autoregressive models of interferences were evaluated by comparing 
it with the traditional Yule-Walker and Levinson-Durbin methods using computer simulations. As 
shown in [17], research results confirm that the estimates obtained by the MLM method are 
statistically sound, asymptotically unbiased, and have better convergence compared to classical 
methods, especially when working with small samples, which positively affects the overall 
performance of the adaptive algorithm. The accuracy of the estimations is directly correlated with 
the performance of the detection algorithm, which is confirmed by the results shown in the Figure 
15, which demonstrate the detection characteristics of (9) for different approaches to the estimation 
of interferences. 



  

a)                                                                                             b) 

Figure 15: Detection characteristics of the adaptive detector, using different methods of estimating 
parameters (MLM (LMS), Yule-Walker, Levinson-Durbin), and sample sizes: a) 𝑁 = 64; b) 𝑁 =

128. 𝐹 = 0.01. 

According to the results of the detection characteristics (Figure 15), it can be stated that with the 
increase in the sample size, the detection efficiency for different evaluation algorithms tends to 
coincide. However, for practically significant sample sizes 𝑁 =  64, 128, the maximum likelihood 
method (MLM) demonstrates higher estimation accuracy compared to the classic Yule-Walker and 
Levinson-Durbin procedures. This is because MLM provides a more efficient use of sample 
information, especially in the case of a small amount of data, which is confirmed by faster 
convergence and lower systematic error compared to classical methods. 

5. Conclusions 

In this work, an analysis of the effectiveness of synthesized adaptive algorithms for the detection of 
radar signals against the background of broadband interference was carried out. 

Algorithms (7, 8, 9, 10) are synthesized using a statistical approach that includes a statistical 
model of interference and takes into account the a priori uncertainty in the parameters of both the 
interference model and the signal. An important feature of such algorithms is the structure of the 
evaluation of interference parameters, which characterizes their ability to dynamically adapt to 
changes in the statistical properties of interference, which allows them to reduce the level of false 
alarms and increase the accuracy of detecting target signals in complex interference conditions. 

The simulation results show (Figure 7, 10, 13 and 14) that the synthesized algorithms 
demonstrate the effectiveness of signal detection in complex broadband interference conditions, 
which is ensured by evaluating and adjusting filters to the interference parameters. The obtained 
results of computer simulation confirmed that the MLM method provides more accurate parameter 
estimates, especially for small samples, which is critically important for real radar systems. This 
makes it possible to increase the accuracy and reliability of adaptive algorithms in conditions of 
intense and dynamic disturbances. 

It should be noted that an increase in the sample size has a positive effect on the overall 
detection efficiency, however, for practically significant sample values (𝑁 = 16;  32;  64;  128), 
adaptive algorithms using the MLM method demonstrate significantly higher signal detection 
accuracy, which is confirmed by the results of computer modeling. 

Thus, the conducted study demonstrates that the proposed adaptive detection algorithms based 
on autoregressive models can be effectively applied to increase the accuracy of signal detection in 
complex conditions, especially in conditions of dynamically changing obstacles. 
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