
Applications of Dempster-Shafer evidence theory to data 
processing in remote sensing 

Igor Prokopenko , Sofiia Alpert1,2,*,  and Yuliia Petrova  

1 National Aviation University, Liubomyra Huzara Ave., 1, Kyiv, 03058, Ukraine 
2 Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of 
Sciences of Ukraine, Olesia Honchara Str., 55-b, Kyiv, 01054, Ukraine 

Abstract 
Nowadays various modern techniques and methods of remote sensing allow to identify, distinguish and 
investigate various objects, their main properties and connections. Remote-sensing techniques always 
require data processing. One of the most essential data processing procedures is the hyperspectral satellite 
image classification. It was noted that large volume of information causes a problem with the image 
classification procedure. Various spectral bands can give different probabilities of the same object belonging 
to a certain class. A lot number of spectral bands generates a multi-alternative classification problem. This 
problem demands a multi-alternative solution. Dempster-Shafer evidence theory can be used for solution 
of this multi-alternative classification problem. This theory can deal with ambiguous, partial, vague and 
controversial data. It was emphasized, that Dempster-Shafer evidence theory can be applied for image 
classification. It was considered an example of image classification applying Dempster-Shafer theory in this 
work. It also was analyzed two examples of applying the Dempster-Shafer evidence theory and Dempster 
combination rule to an object coordinate determination. Each sensor (radar) gives one coordinate of an 
object. The value of this coordinate lies within a confidence interval. Then all basic masses, belief functions, 
plausibility functions for all given intervals and all possible intersections of these intervals and belief 
intervals were calculated, applied main concepts of Dempster-Shafer evidence theory, accuracy and 
probability of failure-free operation of sensors. Then it was determined most likely coordinate of an object 
and its most probable confidence interval or intersection of these confidence intervals. Analyzing these two 
examples, we considered the relationship between reliability and basic mass. 
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1. Introduction 

Recently, with the rapid development of science and technology, many new remote sensing methods, 
technologies and materials have appeared. These new remote sensing techniques and approaches 
are applied for environmental monitoring, agriculture problems, biological and geological tasks, 
land-cover classification and various ecological problems. 

Nowadays a lot of remote sensing satellite image processing methods and techniques are known 
[1 3]. 

It should be noted that hyperspectral satellite images are most informative. They contain a large 
amount of information about the objects, which allows detecting, analyzing and classifying objects, 
recording changes and providing forecast estimates. This technique can be applied for the 
identification of objects by analyzing their unique spectral signatures. 

It collects and processes information across the electromagnetic spectrum to obtain the spectrum 
for each pixel in a hyperspectral satellite image.  
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Hyperspectral satellite images provide unique additional information about the characteristics 
and properties of researched objects. It was emphasized, that hyperspectral images provide important 
and unique information about the all characteristics of researched objects [4, 5, 6]. 

The total number of spectral bands in hyperspectral sensors is up to several hundred. 
Various remote sensing objects have different emissivity characteristics. In different spectral 

different objects have various spectral characteristics.  
It should be noted that hyperspectral satellite images have some disadvantages. 
A large data volume causes a problem with the classification procedure. Different spectral bands 

can give different estimates (probabilities) of the same object belonging to a certain class. In other 
words, a large number of spectral bands pose a multi-alternative classification problem, which, in 
turn, provides a multi-alternative solution to the problem in the form of a certain set of hypotheses.   

It should be noted, that Dempster-Shafer evidence theory can be applied for solution of this multi-
alternative classification problem. 

2. Main concepts of Dempster-Shafer evidence theory 

Dempster-Shafer evidence theory is a generalization of traditional probability theory. But unlike 
probability theory, Dempster-Shafer theory can process incomplete, imprecise and conflicting 
information. It can process ignorance and missing information. 

This theory deal with probabilities of a collection of hypotheses, whereas a classic probability 
theory deals with only one single hypothesis. 

That s why Dempster-Shafer evidence theory is more flexible approach than the probability 
theory. 

Dempster-Shafer evidence theory allows to combine data obtained from different sources 
(experts) and provides a multi-alternative solution of the problem (in the form of a set of hypotheses) 
in the presence of inaccurate and contradictory input data.  

In other words, using the Dempster combination rule, it is possible to process all expert opinions 
and obtain an integral (generalized) assessment.  

Dempster-Shafer evidence theory or the theory of belief functions, originated as a mathematical 
approach for modeling uncertainty. This theory was developed in two stages by A. P. Dempster and 
G. Shafer.  

The foundation of evidence theory is Dempster. He dealt with multivalued mappings and 
statistical inference. Dempster introduced a method for combining evidence from different experts 
(sources of information) to derive probabilistic conclusions. Then this method was formalized into 
Dempster s combination rule.  

This rule allowed to combine independent sources of data. Unlike traditional probability theory, 
it can combine conflicting or incomplete evidence from different sources and calculate degrees of 
belief. 

Dempster-Shafer evidence theory does not require the strict assumptions of classic probability 
theory, particularly when there is insufficient information to assign precise probabilities. G. Shafer 
is a famous scientist in the fields of probability theory and statistics. He is known for his work on 
the theory of belief functions and the Dempster-Shafer evidence theory, which is a mathematical 
background for modeling incompleteness and uncertainty.  

Shafer expanded Dempster s work in the scientific work A Mathematical Theory of Evidence , 
which provided a more detail analysis of this theory. Shafer reinterpreted Dempster's work in terms 
of belief functions and introduced the concept of belief and plausibility measures. 

Since Shafer s formalization, the Dempster-Shafer theory has gained attention in fields such as 
artificial intelligence, data fusion, decision-making and expert systems, because this theory can 
process uncertain data.  

This theory can be applied as an alternative to traditional probabilistic models, especially in cases 
where data are incomplete or imprecise. It also can model imprecision [7, 8, 9]. 



Shafer s contributions have been influenced expanding the traditional scope of known traditional 
probability theory. He generalized Bayesian probability by degrees of belief. His work challenges the 
assumption that uncertainty must always be represented by probabilities and has led to new 
approaches in fields like expert systems, machine learning and pattern recognition. 

Shafer also made important contributions to the decision theory, philosophy of statistics and the 
foundations of probability. His work intersects with the ideas of game theory and imprecise 
probability, offering alternative views on how to process uncertain and incomplete information. 

Dempster-Shafer theory can process incomplete, uncertain and ambiguous information. Ω is a 
frame of discernment, so Ω is a set of hypotheses about membership of certain pixel; 2Ω −number of 
all subsets of Ω Ω and ∅ are included in this number too. 𝑚(𝐴) is the basic mass 
(basic probability) that represents the degree of belief allocated to the certain hypothesis 𝐴. 

Basic mass satisfies the two conditions: 

∑ 𝑚(𝐴) = 1;
𝐴⊆2Ω

 𝑚(∅) = 0. (1) 

Let s note, that basic mass also satisfies such condition: 
0 ≤ 𝑚(𝐴) ≤ 1. 

Subset 𝐴 is called the focal subset, if basic mass  𝑚(𝐴) > 0. 
Let s consider main differences between Dempster-Shafer evidence theory and probability theory. 

The three conditions are met for the probability theory: 

1. 𝑃(Ω) = 1. 
2. If 𝑋 ⊂ 𝑌, then the condition is necessarily satisfied: 

𝑃(𝑋) ≤ 𝑃(𝑌). 
3. 𝑃(𝑋) + 𝑃(𝑋̅) = 1. 
4. 𝑋̅ is the complement of the set 𝑋, so 

𝑋 ∩ 𝑋̅ = ∅,  
𝑋 ∪ 𝑋̅ =  Ω. 

The three conditions are met for the Dempster-Shafer evidence theory: 

1. 𝑚(Ω) ≠ 1. 
2. If 𝑋 ⊂ 𝑌,  then the condition is not necessarily satisfied: 

𝑚(𝑋) ≤ 𝑚(𝑌). 
3. No relationship is demanded between 𝑚(𝑋) and 𝑚(𝑋̅). 
4. 𝑋̅ − the complement of the set 𝑋, so 

𝑋 ∩ 𝑋̅ = ∅, 
𝑋 ∪ 𝑋̅ =  Ω. 

The probability theory requires complete knowledge of combined probabilities and the priory 
knowledge of probability distribution. The main limitation of probability theory cannot model 
imprecision and measure a body of evidence. 

Dempster-Shafer evidence theory is more flexible approach than the probability theory. It is 
generalization of classical probability theory. It can process incomplete and vague information. 
Dempster-Shafer theory can deal with probabilities of a collection of hypotheses, whereas a 
traditional probability theory deals with only one single hypothesis. Dempster-Shafer evidence 
theory can deal with missing and ignorance data. 

If we consider main differences between Dempster-Shafer evidence theory and probability theory, 
we can conclude, that Dempster-Shafer evidence theory has advantages over probability theory.  

Let s note, that belief function 𝐵𝑒𝑙(𝐴) and plausibility function 𝑃𝑙(𝐴) shows the level of 
hypothesis support. 



Belief function 𝐵𝑒𝑙(𝐴) measures the minimum or necessary support for the hypothesis. It is 
calculated by summing the basic probabilities over all nonempty subsets 𝐵 ≤ 𝐴 .   

The Belief function is defined as follows: 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵⊆𝐴

. (2) 

Plausibility function 𝑃𝑙(𝐴) reflects the maximum or potential support for that hypothesis. The 
values of the plausibility function are a set of basic probabilities of all nonempty subsets 
𝐵 intersecting with the considered subset 𝐴  

𝑃𝑙𝑠(𝐴) = ∑ 𝑚(𝐵)

𝐵∩𝐴≠∅

. (3) 

The plausibility function 𝑃𝑙𝑠(𝐴) and belief function 𝐵𝑒𝑙(𝐴) are interconnected: 
𝑃𝑙𝑠(𝐴) = 1 − 𝐵𝑒𝑙(𝐴̅), (4) 

where 𝐴̅ − the complement of the set 𝐴, so 
𝐴 ∩ 𝐴̅ = ∅,   𝐴 ∪ 𝐴̅ =  Ω. 

Belief function defines the lower boundary of the interval containing the exact value of the 
probability of the considered subset 𝐴. Plausibility function defines the upper boundary of the 
interval containing the exact value of the probability of the considered subset 𝐴: 

𝐵𝑒𝑙(𝐴) ≤ 𝑃𝑟𝑜𝑏(𝐴) ≤ 𝑃𝑙(𝐴). 
Let s note, that [𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)] is called the belief interval. The length of this belief interval 

shows the imprecision about the uncertainty value of 𝐴. 

Main properties of plausibility function 𝑃𝑙(𝐴) and belief function 𝐵𝑒𝑙(𝐴): 
𝐵𝑒𝑙(Ω) = 1; (5) 

𝑃𝑙𝑠(Ω) = 1; (6) 

𝐵𝑒𝑙(𝐴) ≤ 𝑃𝑙𝑠 (𝐴),    ∀𝐴 ⊆ Ω; (7) 

𝐵𝑒𝑙(𝐴̅) = 1 − 𝑃𝑙𝑠(𝐴), ∀𝐴 ⊆ Ω; (8) 

𝐵𝑒𝑙(𝐴) + 𝐵𝑒𝑙(𝐴̅) ≤ 1,   ∀𝐴 ⊆ Ω. (9) 

The main advantage of the Dempster-Shafer evidence theory is the presence of a simple rule for 
combining data from different experts [8, 9]. This Dempster s combination rule is applied for 
combining data from different experts or other sources.  

Suppose that one expert assigned mass 𝑚1 to the class 𝐴 and another expert independently 
assigned mass 𝑚2 to the same class. 

Then, the combined assessment of the mass of the class 𝐴 is defined as follows: 

𝑚(𝐴) =
1

1 − 𝐾
∑ 𝑚1(𝐵1) ∙

𝐵1∩𝐵2=𝐴

𝑚2(𝐵2), (10) 

𝐾 = ∑ 𝑚1(𝐵1) ∙

𝐵1∩𝐵2=∅

𝑚2(𝐵2), (11) 

where 𝐾 is called conflict coefficient. The value of 𝐾 reflects the degree of conflict among the sources 
or experts. 

Conflict coefficient also satisfies next condition: 
0 ≤ 𝐾 ≤ 1. 

The less contradictions we have, the closer is the 𝐾 value to 0. 



3. Example of application of Dempster-Shafer evidence theory to 
image classification 

The process of solution of actual scientific and practical problems, using hyperspectral satellite 
images as a rule includes a procedure of its classification.  

The most accurate results are provided by supervised classification method, which uses a priori 
information about the characteristics of the classes. This information is extracted from the training 
sample. 

The hyperspectral image consists of a set of spectral images: 

𝑆𝑘 = {𝜋𝑛, 𝑢𝑛𝑘 }𝑛=1
𝑁𝜋 ;    𝑘 = 1,2, … , 𝐾. (12) 

where 𝑆𝑘 is the 𝑘-spectral image; 𝐾 is the total number of spectral images; 𝜋𝑛 is the 𝑛-th pixel; 𝑁𝜋 
is the total number of pixels in the hyperspectral image; 𝑢𝑛𝑘 is the 𝑘-component of full signal 𝑢𝑛 of 
the pixel 𝜋𝑛. 

Full signal of a pixel  is considered as a vector with components 𝑢𝑛𝑘 in the spectral space: 
𝑢𝑛 = {𝑢𝑛𝑘 }𝑘=1

𝐾 . (13) 

Each 𝜋𝑛 pixel of the hyperspectral image displays an object of some class and the aim of pixel-
wise classification, using the Dempster-Shafer evidence theory is to determine the class of the pixel 
object 𝜋𝑛 as accurately as possible, based on the analysis of the 𝑢𝑛 signal. 

Dempster-Shafer evidence theory can be applied for image classification. The pixels of satellite 
image are classified independently.  

Let s consider an example of hyperspectral satellite image classification applying Dempster-
Shafer evidence theory and Dempster s combination rule. The set of pixel signals of training sample 
represents each class by a set of intervals in the spectral space. Each of the axes of this spectral space 
is divided into intervals according to the number 𝑆 of the classes. Each of these intervals gets a mark 
of corresponding class. 

The position of the interval is set by the average values of the signals of pixels of certain class in 
the certain spectral band. For example, 𝑢̅𝑘,𝑠 and 𝑢̅𝑘,𝑠+1 are average values of the signals of pixels of 
𝑠-class and 𝑠 + 1-class respectively for 𝑘-spectral band (see Figure 1). 

 

Figure 1: Construction of the spectral intervals for classes. 

The point 𝐴𝑠,𝑠+1 divides s-class and 𝑠 + 1-class.  
The position of point 𝐴𝑠,𝑠+1,   intervals 𝑎𝑠 and 𝑎𝑠−1 are defined from the next proportion: 

𝑎𝑠

𝑎𝑠+1
=

𝛿𝑘,𝑠

 𝛿𝑘,𝑠+1   
, 

where 𝛿𝑘,𝑠,  𝛿𝑘,𝑠+1  are variances (standard deviations) of the signals of pixels of 𝑠-class and  
𝑠 + 1-class. 

Then we should conduct a focalization procedure. Focalization is the procedure of obtaining the 
list of focal pixel subsets, whose signals are located in this interval and the calculation procedure of 
the basic probabilities for them. 

Supposing, that interval with certain class mark contains not only the signals of the pixels of the 
same class, but the signals of the pixels of other classes as well. That s why, forming focal subsets 
we consider a number of hypotheses about the class membership of the pixels. Each focal subset is 
assigned a basic probability.  



One focal subset is formed from a single hypothesis that the pixel whose signal is located within 
the interval, belongs to the same class as the interval. Each of the other focal subsets includes two 
hypotheses. One hypothesis states that the class membership of the pixel corresponds to a given 
interval, and another hypothesis states that pixel does not correspond to a given interval. If pixel 
does not correspond to a given interval, it belongs to another specific class. Other intervals can be 
formed for each of the classes represented in the hyperspectral satellite image in the same way. 

Suppose, the signals of the 𝑀 pixels are located in the spectral interval of the 𝑠1 −class. 
Then expert assesses the class membership of pixels: 

1. 𝑀1 pixels are assigned to the 𝑠1 − class. 
2. 𝑀2 pixels are assigned to the 𝑠2 − class. 
3. 𝑀3 pixels are assigned to the 𝑠3 − class. 

The list of focal subsets for the spectral interval includes such subsets: 
{𝑠1}; 

{𝑠1,  𝑠2}; 
{𝑠1,  𝑠3}. 

Then basic massed for these focal subsets are defined as follows: 

1. 𝑚({𝑠1}) =
𝑀1

𝑀
. 

2. 𝑚({𝑠1,  𝑠2}) =
𝑀2

𝑀
. 

3. 𝑚({𝑠1,  𝑠3}) =
𝑀3

𝑀
. 

Let s note, that 𝑀 = 𝑀1 + 𝑀2 + 𝑀3. 
Each pixel of hyperspectral satellite image displays an object of some class. Main purpose of 

classification procedure is to determine the class of the pixel s object, based on the analysis of the 
pixel signal. 

Let s note, that pixels of satellite image are analyzed and classified independently. Therefore, it 
should consider the classification procedure for only one arbitrary pixel.  

The classification procedure involves such steps: 

1. The known signal 𝑢𝑛 = {𝑢𝑛𝑘 }𝑘=1
𝐾  of the pixel 𝜋𝑛 is retrieved. 

2. Analyzing components 𝑢𝑛𝑘 of the vector signal 𝑢𝑛 we should form spectral intervals within 
which corresponding components are located. 

3. Focal subsets and their basic masses for each of the spectral intervals are composed. 
4. The calculation of the combined basic masses for the focal subsets was conducted, applying 

Dempster s combination rule.  
5. The calculated values of combined basic masses for all focal subsets are ranked. Then the 

most likely class membership for the pixel is defined, applying the criterion of maximum 
basic probability. 

This classification procedure can be applied sequentially to each pixel of the hyperspectral 
satellite image and in the end of this procedure we get the classified hyperspectral satellite image in 
whole. 

The results of classification of the hyperspectral image EO1H1810252013112110KF of the Kyiv 
region in April 2013, obtained by the EO-1 satellite system (see Figure 2, a) by the Dempster-Shafer 
method are shown in Figure 2, b [9, 4].  

The six classes of objects were identified: 1  deciduous forest, 2  orchards, 3  uncultivated land, 
4  meadows, 5  cereal fields, 6  vegetable fields. 



                     
a)                                                          b) 

Figure 2: Hyperspectral image Hyperion EO1H1810252013112110KF (April 2013) (a) and 
classification result (b). 

4. Examples of applying the Dempster-Shafer evidence theory to an 
object coordinate determination 

4.1. First example 

Let s consider an example of applying the Dempster s combination rule to determine the coordinates 
of an object (target). Most likely coordinate of an object locates in the interval or intersection of 
intervals with maximum value of basic mass, belief function and plausibility [10, 11, 12]. 

Suppose we have 3 sensors (radars): 

1. Sensor 1 with confidence interval 𝐴. 
2. Sensor 2 with confidence interval 𝐵. 
3. Sensor 3 with confidence interval 𝐶. 

In this case, the basic mass, confidence interval, accuracy of each sensor (radar) and reliability are 
determined by the passport data. Each radar gives one coordinate of an object. The value of this 
coordinate locates within a confidence interval (see Figure 3).  

Let s note, that different sensors have different accuracy, basic masses, confidence intervals and 
reliability. We find the most likely confidence interval where the object's coordinate locates, taking 
into account the accuracy and reliability of the sensors. Reliability is the probability of failure-free 
operation. Accuracy of the sensor is determined by the length of the confidence interval. It should 
be noted that the smaller the confidence interval in which the object coordinate value is located, the 
higher the value of the basic mass and accuracy of this sensor. 



 

Figure 3: Confidence intervals 𝐴, 𝐵, 𝐶 and their intersections. 

Initial conditions of the problem are as follows: 

1. I sensor: confidence interval 𝐴 ≡ (1, 2);  𝑝1 = 0.5 − probability of failure-free operation; 
2. II sensor: confidence interval 𝐵 ≡ (1.5, 4);  𝑝2 = 1 − probability of failure-free operation; 
3. III sensor: confidence interval 𝐶 ≡ (1, 7);  𝑝3 = 0.6 − probability of failure-free operation.  

Then basic masses are defined as the ratio of the probability of failure-free operation (reliability) 
and accuracy: 

𝑚1({𝐴}) =
𝑝1

|𝐴|
=

0.5

1
= 0.5; 

𝑚2({𝐵}) =
𝑝2

|𝐵|
=

1

2.5
= 0.4; 

𝑚3({𝐶}) =
𝑝3

|𝐶|
=

0.6

6
= 0.1. 

Then values of the basic masses are normalized: 

𝑚1𝑛({𝐴}) =
0.5

|0.5 + 0.4 + 0.1|
= 0.5; 

𝑚2𝑛({𝐵}) =
0.4

|0.5 + 0.4 + 0.1|
= 0.4; 

𝑚3𝑛({𝐶}) =
0,1

|0.5 + 0.4 + 0.1|
= 0.1. 

Then we should calculate belief functions and plausibility functions for intervals 𝐴, 𝐵, 𝐶 and all 
possible intersections of these intervals. 

1. Belief functions for intervals 𝐴, 𝐵, 𝐶 are defined as follows: 
𝐵𝑒𝑙({𝐴}) = 𝑚1𝑛({𝐴}) = 0.5; 
𝐵𝑒𝑙({𝐵}) = 𝑚2𝑛({𝐵}) = 0.4; 
𝐵𝑒𝑙({𝐶}) = 𝑚3𝑛({𝐶}) = 0.1. 

2. Plausibility functions for intervals A, B, C are defined as follows: 
𝑃𝑙𝑠({𝐴}) = 𝑚1𝑛({𝐴}) + 𝑚3𝑛({𝐶}) = 0.5 + 0.1 = 0.6; 
𝑃𝑙𝑠({𝐵}) = 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.4 + 0.1 = 0.5; 

𝑃𝑙𝑠({𝐶}) = 𝑚3𝑛({𝐶}) = 0.1. 
3. Basic mass for intersection 𝐴 ∩ 𝐵 is defined as follows: 

𝑚12({𝐴 ∩ 𝐵}) = 𝑚1𝑛({𝐴}) ∙ 𝑚2𝑛({𝐵}) = 0.5 ∙ 0.4 = 0.2. 
In this case conflict coefficient 𝐾 = 0, because all intersections of sets are not empty. Basic 
mass for intersection 𝐴 ∩ 𝐵 ∩ 𝐶 is defined as follows: 

𝑚123({𝐴 ∩ 𝐵 ∩ С}) = 𝑚12({𝐴 ∩ 𝐵}) ∙ 𝑚3𝑛({𝐶}) = 0.2 ∙ 0.1 = 0.02. 
In this case conflict coefficient 𝐾̃ = 0 too, because all intersections of sets are not empty. 
Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐵 ∩ 𝐶 are defined as follows: 

𝐵𝑒𝑙({𝐴 ∩ 𝐵 ∩ С}) = 𝑚123({𝐴 ∩ 𝐵 ∩ С}) = 0.02; 
𝑃𝑙𝑠({𝐴 ∩ 𝐵 ∩ С}) = 𝑚1𝑛({𝐴}) + 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.5 + 0.4 + 0.1 = 1. 

4. Basic mass for intersection 𝐴 ∩ 𝐶 is defined as follows: 



𝑚({𝐴 ∩ 𝐶}) = 𝑚1𝑛({𝐴}) = 0.5. 
Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐶 are defined as follows: 

𝐵𝑒𝑙({𝐴 ∩ 𝐶}) = 𝐵𝑒𝑙({𝐴}) = 𝑚1𝑛({𝐴}) = 0.5; 
𝑃𝑙𝑠({𝐴 ∩ 𝐶}) = 𝑃𝑙𝑠({𝐴}) = 𝑚1𝑛({𝐴}) + 𝑚3𝑛({𝐶}) = 0.5 + 0.1 = 0.6. 

5. Basic mass for intersection 𝐵 ∩ 𝐶 is defined as follows: 
𝑚({𝐵 ∩ 𝐶}) = 𝑚2𝑛({𝐵}) = 0.4. 

Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐶  are defined as follows: 
𝐵𝑒𝑙({𝐵 ∩ 𝐶}) = 𝐵𝑒𝑙({𝐵}) = 𝑚2𝑛({𝐵}) = 0.4; 

𝑃𝑙𝑠({𝐵 ∩ 𝐶}) = 𝑃𝑙𝑠({𝐵}) = 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.4 + 0.1 = 0.5. 
6. Belief intervals for intervals A, B, C and all possible intersections of these intervals are defined 

as follows: 
Belief interval for A: [𝐵𝑒𝑙({𝐴}), 𝑃𝑙𝑠({𝐴})] ≡ [0.5; 0.6]; 
Belief interval for B: [𝐵𝑒𝑙({𝐵}), 𝑃𝑙𝑠({𝐵})] ≡ [0.4; 0.5]; 
Belief interval for C: [𝐵𝑒𝑙({𝐶}), 𝑃𝑙𝑠({𝐶})] ≡ [0.1; 0.1] ≡ {0,1}; 
Belief interval for  𝐴 ∩ 𝐵 ∩ С: [𝐵𝑒𝑙({𝐴 ∩ 𝐵 ∩ С}), 𝑃𝑙𝑠({𝐴 ∩ 𝐵 ∩ С})] ≡ [0.02; 1]; 𝑚({𝐴 ∩

𝐵 ∩ С}) = 0.02. 
Belief interval for  𝐴 ∩ С: [𝐵𝑒𝑙({𝐴 ∩ С}), 𝑃𝑙𝑠({𝐴 ∩ С})] ≡ [0.5; 0.6]; 𝑚({𝐴 ∩ С}) = 0.5. 
Belief interval for 𝐵 ∩ С: [𝐵𝑒𝑙({𝐵 ∩ С}), 𝑃𝑙𝑠({𝐵 ∩ С})] ≡ [0.4; 0.5]; 𝑚({𝐵 ∩ С}) = 0.4. 

So, interval 𝐴 and intersection 𝐴 ∩ 𝐶 are assigned maximum values of basic masses (basic 
probabilities), belief functions and plausibility functions. 

Then we can make a conclusion, most likely coordinate of an object lies within a intersection of 
confidence intervals 𝐴 and 𝐶: 𝐴 ∩ 𝐶.  

4.2. Second example 

Let s consider another example of applying the Dempster s combination rule to determine the 
coordinates of an object (target). 

Initial confidence intervals 𝐴, 𝐵, 𝐶 will be same as initial confidence intervals in I example (see 
Figure 3). 

But reliabilities (probabilities of failure-free operations) of these 3 sensors will be another. 

1. I sensor: confidence interval 𝐴 ≡ (1, 2);  𝑝1 = 0.2 − probability of failure-free operation. 
2. II sensor: confidence interval 𝐵 ≡ (1.5, 4);  𝑝2 = 1 − probability of failure-free operation. 
3. III sensor: confidence interval 𝐶 ≡ (1, 7);  𝑝3 = 0.6 − probability of failure-free operation. 

Then basic masses are defined as the ratio of the probability of failure-free operation (reliability) 
and accuracy: 

𝑚1({𝐴}) =
𝑝1

|𝐴|
=

0.2

1
= 0.2; 

𝑚2({𝐵}) =
𝑝2

|𝐵|
=

1

2.5
= 0.4; 

𝑚3({𝐶}) =
𝑝3

|𝐶|
=

0.6

6
= 0.1. 

Then values of the basic masses are normalized: 

𝑚1𝑛({𝐴}) =
0.2

|0.2 + 0.4 + 0.1|
≈ 0.3; 

𝑚2𝑛({𝐵}) =
0.4

|0.2 + 0.4 + 0.1|
≈ 0.6; 

𝑚3𝑛({𝐶}) =
0.1

|0.2 + 0.4 + 0.1|
≈ 0.1. 



Then we should calculate belief functions and plausibility functions for intervals A, B, C and all 
possible intersections of these intervals. 

1. Belief functions for intervals 𝐴, 𝐵, 𝐶 are defined as follows: 
𝐵𝑒𝑙({𝐴}) = 𝑚1𝑛({𝐴}) ≈ 0.3; 
𝐵𝑒𝑙({𝐵}) = 𝑚2𝑛({𝐵}) ≈ 0.6; 
𝐵𝑒𝑙({𝐶}) = 𝑚3𝑛({𝐶}) ≈ 0.1. 

2. Plausibility functions for intervals 𝐴, 𝐵, 𝐶 are defined as follows: 
𝑃𝑙𝑠({𝐴}) = 𝑚1𝑛({𝐴}) + 𝑚3𝑛({𝐶}) = 0.3 + 0.1 = 0.4; 
𝑃𝑙𝑠({𝐵}) = 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.6 + 0.1 = 0.7; 

𝑃𝑙𝑠({𝐶}) = 𝑚3𝑛({𝐶}) = 0.1. 
3. Basic mass for intersection 𝐴 ∩ 𝐵 is defined as follows: 

𝑚12({𝐴 ∩ 𝐵}) = 𝑚1𝑛({𝐴}) ∙ 𝑚2𝑛({𝐵}) = 0.3 ∙ 0.6 = 0.18 ≈ 0.2. 
In this case conflict coefficient 𝐾 = 0, because all intersections of sets are not empty. 
Basic mass for intersection 𝐴 ∩ 𝐵 ∩ 𝐶 is defined as follows: 

𝑚123({𝐴 ∩ 𝐵 ∩ С}) = 𝑚12({𝐴 ∩ 𝐵}) ∙ 𝑚3𝑛({𝐶}) = 0,2 ∙ 0,1 = 0,02. 
In this case conflict coefficient 𝐾̃ = 0 too, because all intersections of sets are not empty. 
Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐵 ∩ 𝐶 are defined as follows: 

𝐵𝑒𝑙({𝐴 ∩ 𝐵 ∩ С}) = 𝑚123({𝐴 ∩ 𝐵 ∩ С}) = 0.02; 
𝑃𝑙𝑠({𝐴 ∩ 𝐵 ∩ С}) = 𝑚1𝑛({𝐴}) + 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.3 + 0.6 + 0.1 = 1. 

4. Basic mass for intersection 𝐴 ∩ 𝐶 is defined as follows: 
𝑚({𝐴 ∩ 𝐶}) = 𝑚1𝑛({𝐴}) = 0.3. 

Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐶 are defined as follows: 
𝐵𝑒𝑙({𝐴 ∩ 𝐶}) = 𝐵𝑒𝑙({𝐴}) = 𝑚1𝑛({𝐴}) = 0.3; 

𝑃𝑙𝑠({𝐴 ∩ 𝐶}) = 𝑃𝑙𝑠({𝐴}) = 𝑚1𝑛({𝐴}) + 𝑚3𝑛({𝐶}) = 0.3 + 0.1 = 0.4. 
5. Basic mass for intersection 𝐵 ∩ 𝐶 is defined as follows: 

𝑚({𝐵 ∩ 𝐶}) = 𝑚2𝑛({𝐵}) = 0.6. 
Belief functions and plausibility functions for intersection 𝐴 ∩ 𝐶  are defined as follows: 

𝐵𝑒𝑙({𝐵 ∩ 𝐶}) = 𝐵𝑒𝑙({𝐵}) = 𝑚2𝑛({𝐵}) = 0.6; 
𝑃𝑙𝑠({𝐵 ∩ 𝐶}) = 𝑃𝑙𝑠({𝐵}) = 𝑚2𝑛({𝐵}) + 𝑚3𝑛({𝐶}) = 0.6 + 0.1 = 0.7. 

6. Belief intervals for intervals 𝐴, 𝐵, 𝐶 and all possible intersections of these intervals are defined 
as follows: 
Belief interval for A: [𝐵𝑒𝑙({𝐴}), 𝑃𝑙𝑠({𝐴})] ≡ [0.3; 0.4]; 
Belief interval for B: [𝐵𝑒𝑙({𝐵}), 𝑃𝑙𝑠({𝐵})] ≡ [0.6; 0.7]; 
Belief interval for C: [𝐵𝑒𝑙({𝐶}), 𝑃𝑙𝑠({𝐶})] ≡ [0.1; 0.1] ≡ {0,1}; 
Belief interval for  𝐴 ∩ 𝐵 ∩ С: [𝐵𝑒𝑙({𝐴 ∩ 𝐵 ∩ С}), 𝑃𝑙𝑠({𝐴 ∩ 𝐵 ∩ С})] ≡ [0.02; 1]; 𝑚({𝐴 ∩

𝐵 ∩ С}) = 0.02. 
Belief interval for  𝐴 ∩ С: [𝐵𝑒𝑙({𝐴 ∩ С}), 𝑃𝑙𝑠({𝐴 ∩ С})] ≡ [0.3; 0.4]; 𝑚({𝐴 ∩ С}) = 0.3. 
Belief interval for 𝐵 ∩ С: [𝐵𝑒𝑙({𝐵 ∩ С}), 𝑃𝑙𝑠({𝐵 ∩ С})] ≡ [0.6; 0.7]; 𝑚({𝐵 ∩ С}) = 0.6. 

So, interval 𝐵 and intersection 𝐵 ∩ 𝐶 are assigned maximum values of basic masses (basic 
probabilities), belief functions   and plausibility functions. Then we can make a conclusion, most 
likely coordinate of an object locates within the intersection of confidence intervals 𝐵 and 𝐶: 𝐵 ∩ 𝐶, 
because initial value of reliability (probability of failure-free operation) of II sensor is maximum 
(𝑝2 = 1), and initial values of reliability (probability of failure-free operation) of I and III sensor are 
smaller (𝑝1 = 0.2;  𝑝3 = 0.6 ). 

Analyzing these two examples, we can consider the relationship between probability of failure-
free operation and basic mass. The higher the initial value of probability of failure-free operation, 
the higher the value of basic mass of the sensor and it s belief interval.  



It was noted, that determination of confidence interval or intersection of confidence intervals 
with maximum value of basic mass depends on sensor specifications.  
Changes in sensor specifications affect the choice of confidence interval with maximum value of 
basic mass and coordinate determination of an object (target). 

5. Conclusions 

Nowadays Remote sensing is one of the most popular techniques of obtaining information about the 
properties of objects by data collected from sensors or unmanned aerial vehicles (UAV). Different 
techniques of remote sensing can distinguish various objects, study these objects and make 
predictive estimations. Remote sensing provides data about objects based on analysis of 
electromagnetic radiation emitted or reflected from these researched objects. Remote sensing is used 
in various fields.  It is applied for ecology, hydrology, geology, geophysics, geography, agriculture, 
oceanography. Modern remote-sensing techniques involves data processing. It was noted, that one 
of the most important data processing procedures is the image classification. The process of solution 
of various remote sensing tasks, using hyperspectral satellite images includes a classification 
procedure. Each pixel of the hyperspectral image displays an object of some class and the aim of 
pixel-wise classification is to determine the class of this pixel object. 

It was emphasized, that hyperspectral images provide important and unique information about 
the all characteristics of researched objects. But it was noted, that large data volume causes a problem 
with the classification procedure. Different spectral bands can give different assessments or 
probabilities of the same object belonging to a certain class, because a lot of spectral bands poses a 
multi-alternative classification problem, which provides a multi-alternative solution to the problem.   

It should be noted, that Dempster-Shafer evidence theory can be applied for solution of this multi-
alternative classification problem. 

It was considered and analyzed main concepts of Dempster-Shafer evidence theory. It is 
generalization of classical probability theory and it can overcome some limitations of known 
probability theory. 

This theory can process conflicting, incomplete and ambiguous information. It was proposed to 
apply the Dempster s combination rule for classification of vague and contradictory data from 
different experts. Dempster-Shafer theory can deal with missing information, ignorance data and 
probabilities of a collection of hypotheses.  

It was noted, that Dempster-Shafer evidence theory can be applied for image classification.  
It was considered an example of hyperspectral satellite image classification applying Dempster-

Shafer evidence theory and Dempster s combination rule. It was considered results of classification 
of the hyperspectral image in this work. 

It also was considered two examples of applying the Dempster-Shafer evidence theory to an 
object coordinate determination, applying data for 3 sensors (radars). Each radar gives one 
coordinate of an object. The value of this coordinate locates within a confidence interval.  It was 
noted, that various sensors (radars) have different confidence intervals, accuracy and reliability 
(probability of failure-free operation). 

Then all basic masses, belief functions, plausibility functions for intervals A, B, C, all possible 
intersections of these intervals and belief intervals were calculated, applying main concepts of 
Dempster-Shafer theory, basic masses, accuracy and probability of failure-free operation of sensors. 
Then it was determined most likely coordinate of an object and its most probable confidence interval 
or intersection of these confidence intervals.  

Analyzing these two considered examples, we can show the relationship between reliability 
(probability of failure-free operation) and basic mass. The higher the initial value of reliability 
(probability of failure-free operation), the higher the value of basic mass of the sensor and it s belief 
interval. 

It was noted, that determination of confidence interval or intersection of confidence intervals 
with maximum value of basic mass depends on sensor specifications. 
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