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Abstract 
Our paper is devoted to the design of methodological backgrounds to extend the class of chaotically 
generated data. Our backgrounds are based on the coordinate transformation of the system phase portrait, 
which is given in the orthogonal coordinates into non-orthogonal coordinate systems. We consider both 
coordinate systems in the plane and in some space. We provide the transformations from the initial 
coordinate system to the target one as discrete-time expressions. From the control theory viewpoint, one 
can consider these expressions as observability equations, whose discrete-time nature allows one to 
consider them as the basis for implementing some data processing routines. These routines take the signals 
from chaotic and/or regular generators as input information. We offer to produce this information by using 
the master-slave principle and considering the generator as some driven device. We think such an approach 
allows performing the synchronization of several generators from one source if it is necessary to use many 
intermediate signals to produce output one. We consider both cases of master device which use information 
about the generator state or do not use any. As an example of our approach's usage to process the chaotic 
data, we consider transforming the Duffing pendulum-based chaotic oscillator's output to various 
coordinate systems. 
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1. Introduction 

Nowadays, data transmission using chaotic systems [1, 2, 3] refers to the practical usage of chaos 
theory [4, 5, 6] and chaotic signals [7, 8] to secure information transmission. Chaotic systems are 
susceptible to initial conditions and exhibit complex, unpredictable behavior over time [9, 10, 11]. 
These facts about chaotic systems make them useful in secure communication [12, 13] because 
chaotic signals can be difficult to predict, intercept, or reproduce without knowing the exact system 
parameters [14, 15, 16]. 

Such unique chaotic systems  features cause several key concepts in chaotic communication:  

 Chaotic modulation involves embedding information into a chaotic signal [17, 18, 19]. The 
chaotic signal acts as a carrier wave, which is then modulated by the data. Only receivers 
knowledgeable about the chaotic system's parameters can demodulate and recover the 
original message. 

 Synchronization of chaotic systems requires the transmitter and receiver must use identical 
or synchronized chaotic systems [20, 21, 22]. These systems must be synchronized so the 
receiver can extract the embedded message from the chaotic signal.  

 Chaotic masking assumes the data signal is added to a chaotic carrier signal at the transmitter 
end [23, 24, 25]. The chaotic signal masks the data, making it indistinguishable from noise to 

 

ADP Algorithms of Data Processing, November 5, 2024, Kyiv, Ukraine 
 Corresponding author. 
 These authors contributed equally. 

 voliansky@ua.fm (R. Voliansky); ninanin@i.ua (N. Volianska); ariefbram@gmail.com (A.B.W. Putra)  
 0000-0001-5674-7646 (R. Voliansky); 0000-0001-5996-2341 (N. Volianska);  

0000-0003-1187-5040 (A.B.W. Putra) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ninanin@i.ua
mailto:ariefbram@gmail.com
https://orcid.org/0000-0001-5674-7646
https://orcid.org/0000-0001-5996-2341
https://orcid.org/0000-0003-1187-5040


an eavesdropper. The receiver, knowing the chaotic system, can subtract the chaotic carrier 
and retrieve the original data. 

 The noise-like signals concept assumes that chaotic signals appear similar to noise, making 
them hard to distinguish from random background noise in the communication channel [26, 
27, 28]. This property provides inherent security, as an eavesdropper without the system 
parameters will find it challenging to extract meaningful data. 

The above-shown concepts find their practical implementation in designing various chaotic 
modulation schemes. The main ones are Chaos Shift Keying (CSK) [29, 30] and Chaotic Phase 
Modulation (CPM) [31, 32]. These modulation schemes find their applications in establishing wireless 
communications. In this case, chaotic communication can be applied in wireless systems where 
robustness to interference is crucial. Since chaotic signals are noise-like and spread across a wide 
bandwidth, they can be used in environments with high electromagnetic interference. Also, various 
optical fiber communication systems use laser signals to transmit data securely [33, 34]. Optical 
chaos can be generated using semiconductor lasers, and synchronization between transmitter and 
receiver can be achieved with optical feedback. 

In summary, chaotic systems offer a promising approach to secure data transmission by 
leveraging the unpredictable and noise-like nature of chaos, making it difficult for unauthorized 
parties to intercept or decode the communication 

We offer to avoid this drawback by using coordinate transformations to give the considered 
system the desired features and put it attractor in the desired M-dimensional domain of coordinate 
system. Our method is demonstrating by considering a 2nd order chaotic system which is based on 
the Duffing pendulum usage. 

The paper is organized as follows: firstly, we show some general transformations of the driven 
chaotic system into discrete-time domain. Then we show the design of observability equations to 
define system motions in the generalized non-orthogonal coordinates in plane and space We 
illustrate the use of our approach by studying a well-known Duffing equation transformation. 
Finally, we make a conclusion. 

2. Methods and materials 

2.1. The generalized oscillator s equation 

Let us consider the simplest conservative 2nd order dynamical system: 
𝑥̈ = −𝜔2𝑥, (1) 

where 𝑥 is a system output and 𝜔 is some factor. 
It is a well-known fact that with non-zero initial conditions: 

𝑥̇(0) = 𝑑𝑥0;    𝑥(0) = 𝑥0 (2) 

solution of (1) can be found in following class of harmonic functions: 

𝑥(𝑡) =
𝑑𝑥0

𝜔
sin(𝜔𝑡) + 𝑥0 cos(𝜔). 

(3) 

So, one can consider implementation of (3) as a generator of regular harmonic oscillations with 
frequency 𝜔, which amplitude depends on system initial conditions.  

Since the use of trigonometric functions can cause some implementation problems by using 
digital devices due to a quite long time to define values of these functions, one can use (1) instead of 
(3) to design a harmonic generator. In this case, equation (1) should be transformed into discrete-
time domain by using known approximations of derivative operator. We consider it in the most 
general case as follows: 

𝑥̈(𝑡) =
𝑑2𝑥

𝑑𝑡2
𝑥 ≈ 𝑓2(𝑥, 𝑧−1𝑥, 𝑧−2𝑥, 𝑇), (4) 

where T is a sample time, 𝑧−𝑖 is a shift operator which usage means taking the 𝑖-th previously defined 
value of variable 𝑥. Index 2 near function f means approximation of 2nd order derivative. 



Substitution of (4) into (1) allows us to write down 2nd order finite difference equation for the 
considered generator: 

𝑥 = 𝑔2(𝑧−1𝑥, 𝑧−2𝑥, 𝑇, 𝜔), (5) 

where 𝑔2(.) is a solution of (1) and (4) for 𝑥. 
Expression (5) allows us to define an element of regular data series by using known previous 

values and cyclic iteration of (5) allows us to get whole data series. One can use this series in various 
applications which need harmonic signal generator. 

At the same time some applications require more complex form of oscillations. That is why we 
turn our attention in (1) and generalize it by using some external non-monotonic signal 𝑢(𝑡) which 
is processed with nonlinear function ℎ𝑥𝑢(𝑢) as well as replacing linear feedback term with nonlinear 
sign-variable finite function ℎ𝑥𝑥(𝑥):  

𝑥̈ = −ℎ𝑥𝑥(𝑥) + ℎ𝑥𝑢(𝑢(𝑡)). (6) 

We call (6) as the generalized externally driven oscillator s equation in the continuous-time 
domain. It is clear that motion trajectory of (6) is uniquely determined by functions ℎ𝑥𝑥(.) and ℎ𝑥𝑢(.) 
which allow producing both regular and chaotic oscillations. 

Since nowadays most of signals produced by digital devices, we rewrite it into discrete-time 
domain by substituting (4) into (6) and solving it for 𝑥: 

𝑥 = 𝑔2(ℎ𝑥𝑥(𝑧−1𝑥), ℎ𝑥𝑥(𝑧−2𝑥), ℎ𝑥𝑢(𝑢((𝑖 − 1)𝑇)), 𝑇), 𝑖 ∈ [0, ∞), (7) 

where 𝑖 is a current sample number. 
Analysis of (7) shows highly nonlinearity of its right-and expression. Moreover, it shows the 

necessity to define nonlinear feedback signals for two previous time moment. Because function ℎ(.) 
can be defined by quite complex expression, its calculation for various signals can require a lot of 
time and other calculation resources. That is why we offer to simplify (7) by taking into account that 
in the previous time moment signal 𝑧−2𝑥 is considered as 𝑧−1𝑥 and memorized for future use: 

𝑥 = 𝑔2(ℎ𝑥𝑥(𝑧−1𝑥), 𝑧−1𝑀, ℎ𝑥𝑢(𝑢((𝑖 − 1)𝑇)), 𝑇), 𝑀 = ℎ𝑥𝑥(𝑧−1𝑥), 𝑖 ∈ [0, ∞). (8) 

One can use (8) to implement the generalized generator, which is able to produce nonlinear data 
sequences. The main feature of this generator is its time-dependence while signal u is defined. So, 
the internal clock signal should be used to implement (8). We call (8) as the generalized nonlinear 
generator s equation which differ from known ones by the possibility of multiply usage some 
previous memorized signals or their combinations as well as an open range of samples number. 

The last fact can cause some problems in real implementation of the considered discrete-time 
dynamical system in digital devices with limited hardware resources due to the necessity to operate 
with big numbers after some operating time. We offer to avoid this problem by considering dynamic 
of subsystem which produces signal 𝑢(𝑖𝑇) jointly with subsystem which produces system output 𝑥. 
We call the first subsystem as excitator and the second one as generator. In the most general case, 
these systems are interconnected as it is shown in Figure 1. 

GeneratorExcitator
u x

Generator s 
initial conditions

Excitator s 
initial conditions

 

Figure 1: Block-diagram of closed-loop excitatory-generator system. 

One can use the expressions which are similar to (8) and define dynamic of subsystems in Figure 
1 as follows: 

𝑥 = 𝑔2𝑥(ℎ𝑥𝑥(𝑧−1𝑥), 𝑧−1𝑀𝑥, ℎ𝑥𝑢(𝑧−1𝑢), 𝑇), 𝑀𝑥 = ℎ𝑥(𝑧−1𝑥), 

𝑢 = 𝑔2𝑢(ℎ𝑢𝑢(𝑧−1𝑢), 𝑧−1𝑀𝑢, ℎ𝑢𝑥(𝑧−1𝑥), 𝑇), 𝑀𝑢 = ℎ𝑢(𝑧−1𝑢),  
(9) 



where 𝑔2𝑥, 𝑔2𝑢, ℎ𝑥𝑥, ℎ𝑢𝑢, ℎ𝑥𝑢, ℎ𝑢𝑥 are some functions which defines motions of the considered 
system, 𝑀𝑥 and 𝑀𝑢 are memorized peace of information for generator and excitor subsystems. 

It is clear that system (9) does not use any information about current system time so it can be 
used to produce high frequency signals without the necessity to use any system clock or timers with 
very small sample time. 

We call (9) as equations of the generalized nonlinear oscillator with integrated nonlinear 
excitatory and iterations of these equations defines the algorithms to process chaotic data x by using 
the generated sequence u. In the most general case, all subsystems interrelate each other and make 
closed loop dynamical system. All subsystems are considered as driven one and each of them drive 
another one. In the particular case one can consider the open-loop system by removing feedback 
from generator output to excitatory input. In this case only generator should be considered as a 
driven subsystem and excitator is an autonomous device which produce some oscillations according 
to its inner algorithm. System equations in this case can be simplified as follows: 

𝑥 = 𝑔2𝑥(ℎ𝑥𝑥(𝑧−1𝑥), 𝑧−1𝑀𝑥, ℎ𝑥𝑢(𝑧−1𝑢), 𝑇), 𝑀𝑥 = ℎ𝑥(𝑧−1𝑥), 

𝑢 = 𝑔2𝑢(ℎ𝑢𝑢(𝑧−1𝑢), 𝑧−1𝑀𝑢, 𝑇),                              𝑀𝑢 = ℎ𝑢(𝑧−1𝑢). 
(10) 

Both of (9) and (10) allows to implement digital devices which produce some oscillations. The 
form and other parameters of these oscillations depend on the functions which are used in the right-
hand expressions of these formulas. One can make these oscillations more complex if extend the 
terms 𝑀𝑗 and consider them as some vectors which are used to store proceeded data from several 
previous system states. One can use known control methods to analyze the stability of system 
motions and prove that undamped oscillations occur in the designed in such a way discrete-time 
system. 

2.2. Observability equations based on non-orthogonal coordinate system use 

The use of nonlinear functions 𝑔2𝑥, 𝑔2𝑢, ℎ𝑥𝑥, ℎ𝑢𝑢, ℎ𝑥𝑢, ℎ𝑢𝑥  while generator s dynamic is being 
defined allows to form oscillations which are complex enough. At the same time, it is quite hard to 
form the desired system dynamic by using only (9) because of closed-loop system usage. 

That is why we offer to follow the known from control theory approach which is based on the 
use of state space equations. In the most general case such an equation can be defined as the 
nonlinear combination of generator and exciter state variables: 

𝑦 = 𝑔𝑦(𝑥, 𝑧−1𝑥, 𝑧−1𝑀𝑥, 𝑢, 𝑧−1𝑢, 𝑧−1𝑀𝑢), (11) 

where 𝑔𝑦(.) is some nonlinear function. 
One can append (11) to system (9) to define the state space equations for the considered driven 

generator. Moreover, he can use several observability equations with different 𝑔𝑦(.) functions to 
design a multichannel generator and form several signals at the same time. Numerical calculations 
according to (11) and (9) makes strong backgrounds for chaotic signal generating and processing. 

It is clear that no any limitations on class and parameters of function 𝑔𝑦(.) and one can use any 
single or multivariable functions to define the generator output variables. Due to a very wide class 
of the functions which can be potentially used a lot of methods of their determination exist. In our 
paper we offer to use an approach which is based on coordinate transformations from orthogonal N-
dimensional coordinate system into M-dimensional non-orthogonal ones. 

One can perform such transformations by considering dynamical system motion in the 2D 
cartesian plane and in some N-dimensional space. Let us consider the above-mentioned 
transformations in detail. 

2.3. Observability equation in M-dimensional non-orthogonal coordinates  plane 

Let us consider an orthogonal state plane which orths are defined by using 𝑥 and 𝑢 state variables 
from (10). We define in this plane some non-orthogonal coordinate system which origin is shifted 
from the origin of 𝑥𝑢 plane in 𝑥0 and 𝑢0, this non-orthogonal coordinate system has three axes 𝑦1, 



𝑦2 and 𝑦3 the angles between 𝑦1 and 𝑦2 is α1 and between 𝑦2 and 𝑦3 is α2. The angle between 𝑦1 
axis and axis 𝑥 equals to β (Figure 2). We think that each from 𝑦𝑖 axes has its own scale factors 𝑠𝑖 . 
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Figure 2: Positions of system s representative point A in different coordinates. 

The simple trigonometric transformations give us the possibility to write down following 
expressions that define interrelations between point positions in different coordinate bases: 

𝑦1𝑎 = (𝑥𝑎 − 𝑥0)cos(β) + (𝑢𝑎 − 𝑢0)sin(β); 
𝑦2𝑎 = (𝑥𝑎 − 𝑥0)cos(β + α1) + (𝑢𝑎 − 𝑢0)sin(β + α1); 

𝑦3𝑎 = (𝑥𝑎 − 𝑥0)cos(β + α1 + α2) + (𝑢𝑎 − 𝑢0)sin(β + α1 + α2). 

(12) 

Analysis of (12) allows us to generalize the component of point A position in some axis 𝑦𝑖: 

𝑦𝑖𝑎 = (𝑥𝑎 − 𝑥0)cos (β + ∑ 𝛼𝑗

𝑖

𝑗=1

) + (𝑢𝑎 − 𝑢0)sin (β + ∑ 𝛼𝑗

𝑖

𝑗=1

). (13) 

Observability equations (12) and (13) are defined for the case the same scales in axes. If one take 
into account the different scales in the axes, (13) can be rewritten as follows: 

𝑦𝑖𝑎 = 𝑠𝑖𝑥(𝑥𝑎 − 𝑥0)cos (β + ∑ 𝛼𝑗

𝑖

𝑗=1

) + s𝑖𝑢(𝑢𝑎 − 𝑢0)sin (β + ∑ 𝛼𝑗

𝑖

𝑗=1

), (14) 

where 𝑠𝑖𝑥 and s𝑖𝑢 are scale factors for signals in 𝑥 and 𝑢 axes. 
Expression (14) define interrelation between system position in the orthogonal and non-

orthogonal coordinates. This equation is linear for 𝑥𝑎 and 𝑢𝑎 if other factors are constants.  
It is necessary to say that one can use as many axes in non-orthogonal coordinates as he likes and 

the studied system in non-orthogonal coordinates can be considered as linear or nonlinear dependent 
one. This expression can be considered as the solution of direct problem of system position 
transformation into new coordinate system. Analysis of the above-obtained expression shows that 
new coordinate system can be at least first order one. In this case the system position is defined as 
point in the axis 𝑦1. In other words, observability equations  usage allows us to decrease and increase 
of system output s order. 

Because the initial system position is defined in the state plane it is necessary to define at least 
two observability equations to solve the inverse problem of determination system state variable 𝑥 
and 𝑢 by its output signals 𝑦1 and 𝑦2: 

𝑢𝑎 =
𝑢0𝑠𝑖𝑛(𝛼1) − 𝑦1 cos(𝛽 + 𝛼1) + 𝑦2𝑐𝑜𝑠(𝛽)

sin(𝛼1)
; (15) 



𝑥𝑎 =
𝑥0𝑠𝑖𝑛(𝛼1) − 𝑦1 sin(𝛽 + 𝛼1) − 𝑦2𝑠𝑖𝑛(𝛽)

sin(𝛼1)
. 

The use of (15) allows us to define system state variables by its known outputs and can be 
considered as some intermediate step in identifying the reasons that caused the observed system 
motions. 

In the considered case we study defining of observability equations when system state variables 
are interpreted as coordinates of some orthogonal state plane. But this case cannot be considered as 
the only one. Thus, one can assume that system state variable x defines system linear position and u 
defines its angular position in polar coordinate system. In this case (14) should be rewritten in such 
a way: 

𝑦𝑖𝑎 = 𝑠𝑖𝑥(𝑥𝑎sin(𝑢𝑎) − 𝑥0)cos (β + ∑ 𝛼𝑗

𝑖

𝑗=1

) + s𝑖𝑢(𝑥𝑎cos(𝑢𝑎) − 𝑢0)sin (β + ∑ 𝛼𝑗

𝑖

𝑗=1

). (16) 

Due to the nonlinearity of (16) its solution for 𝑥𝑎 and 𝑢𝑎 can be performed only in the numerical 
way. So, the defining of system state variables in this case can be quite untrivial problem by using 
conventional digital devices due to the necessity to perform a big amount of calculations to solve 
nonlinear equations in the real time mode. 

Generally speaking, one can consider any term from (14) as system state variable but not only 
position of A point. We think that one can assume the constant values of point A coordinate and 
consider components of origin 𝑂𝑦1𝑦2𝑦3  position 𝑥0 and 𝑢0 as system state variables. Another way to 
interpret system (9) outputs is their consideration as scale factors 𝑠𝑖𝑥 and s𝑖𝑢. It is clear that all above-
considered cases allow operating with weights near trigonometric functions which values are 
considered as constants. The more complex observability equation can be defined if one takes two 
angles from the angles  set and consider them as inputs for the observability equation. In this case 
(14) can be rewritten in such a way: 

𝑦𝑖𝑎 = 𝐶1cos (β + x + u + ∑ 𝛼𝑗

𝑖

𝑗=3

) + 𝐶2sin (β + x + u + ∑ 𝛼𝑗

𝑖

𝑗=3

), 

𝐶1 = 𝑠𝑖𝑥(𝑥𝑎 − 𝑥0); 𝐶2 = s𝑖𝑢(u𝑎 − 𝑢0). 

(17) 

Contrary to the observability equation (14) which has variable factors near constants 
trigonometric functions values, expression (17) is defined with variable arguments of trigonometric 
functions which are weighted with some constants 𝐶𝑖. 

The all above-given cases are considered for two variables which are produced by generator and 
excitator in Figure 1. This fact limits the number of variables that are used in the (14) and (16). At 
the same time, it is possible to increase the number of variables in the designed observability 
equations if one takes into account previous system states. Various linear and nonlinear 
combinations of state variables of (9) make it possible to define all terms in (14) as variable ones 
which depend on the studied system state. Such an approach allows considering motions of the 
generator and axes where these motions are defined. Under term axes motion we understand the 
changing of each component of their origin position in a separate way with its own linear speed. We 
assume that in the most general case, the rotation of each axis is happening with its own angular 
speed and each axis can change its scale. 

Thus, one can consider the calculations according to the above-given observability equations as 
performing complex data post-process routine to improve the designed system features. One can 
apply this routine in the different ways. From the one hand, it can be used for immediate processing 
of the generated data. For example, one can find this approach is useful to process non-regular data. 
From another hand, the regular data can be generated and its one period can be saved in some 
memory storage. We call such data as core data. Then various observability equations with different 
parameters and/or algorithms of their changings can be applied to the data to make system output 
more complex. It is clear that the second way to produce system output can be considered as using 
of some freezed core data using. Moreover, contrary to the conventional approach in signal 



generating when data is produced continuously, one can turn of the generator after core data is 
obtained and saved to reduce the consumption of calculation resources or allocate their use for 
another purposes. 

2.4. Nonlinear observability equation in M-dimensional non-orthogonal state 
space 

One more complex way to improve system performance is the use of observability equation which 
is defined not in plane but in some space. In Figure 3 we show the above considered orthogonal 2D 
plane (red lines) in which coordinates of representative point A are defined. This plane is taken into 
3D orthogonal (blue lines) and non-orthogonal (black lines) spaces. 
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Figure 3: Representative point position in 3D state spaces. 

At first, we offer to define position of representative point in the extended orthogonal 
coordinates: 

𝑥𝑎 = 𝑥0 + 𝑢𝑎cos(𝛼2); 𝑦𝑎 = 𝑦0 − 𝑥𝑎cos(𝛼1);  𝑧𝑎 = 𝑧0 + 𝑥𝑎sin(𝛼1) + 𝑢𝑎sin(𝛼2). (18) 

Expressions (18) allows us to define the position of the representative point, which is given in 2D 
plane, in 3D space by taking into account the plane origin s position and orientation. The use of such 
an approach gives the possibility to increase the number of output variables similar to previous 
considered approach but using other interrelations between state space coordinates and system 
outputs. Since the signs in (18) depend on axes directions one can generalize it by using following 
expressions for M dimensional state space: 

𝑥𝑖𝑎 = 𝑥𝑖0 + 𝑢𝑖𝑎cos(𝛼𝑖);  𝑧𝑖 = 𝑧0 + ∑ 𝑢𝑖𝑎sin(𝛼𝑖)

𝑚

𝑖=1

, (19) 

where 𝑢𝑖𝑎 is a position of representative point in 𝑖-th axis, 𝛼𝑖 is an angle between 𝑖-th axis and plane. 
One can make one more generalization of (19) by taking into account scale factors 𝑠𝑖: 

𝑥𝑖𝑎 = 𝑠𝑖(𝑥𝑖0 + 𝑢𝑖𝑎cos(𝛼𝑖));  𝑧𝑖 = 𝑠𝑖 (𝑧0 + ∑ 𝑢𝑖𝑎sin(𝛼𝑖)

𝑚

𝑖=1

). (20) 

Expressions (20) gives us the possibility to define 𝑚-th sized system outputs by using the system 
state variables as well as factors of shift, scale and rotate of coordinate axes. These outputs are 
defined as some projections of system representative point  position in some M-dimensional space. 
Due to the algebraic form of these expressions one can use them to define system position under 
stationary and variable transformation factors. 



Moreover, one can use (20) as the initial orthogonal coordinates to define system position in the 
non-orthogonal coordinates. We offer to use the approach which we consider in the previous 
subsection and define system position in non-orthogonal coordinates as follows: 

𝑦𝑖𝑎 = (𝑥𝑖𝑎 − 𝑥𝑖0)cos (γ𝑖 + ∑ 𝛽𝑗

𝑖

𝑗=1

) + (x𝑖𝑎 − 𝑥𝑖𝑜)sin (γ2 + ∑ 𝛽𝑗

𝑖

𝑗=1

) , 𝑖 = 1. . 𝑚, (21) 

where we assume that variables 𝑥𝑖 means coordinates in non-orthogonal base. 
Thus, in the most general case the produced by generator data should be transformed into M-

dimensional orthogonal space according to (20) and then expression (21) should be applied to obtain 
system output in the non-orthogonal coordinates. It is clear that both transformations (20) and (21) 
can be applied to the (9) with assumption that all transformation factors have variable values which 
are defined as system state variables or their combinations as well as combinations of their previous 
values. We believe that this fact allows to define the huge range of system output signals. 

3. Results and discussions 

3.1. Duffing pendulum model with the nonlinear excitator 

Let us consider the well-known second order Duffing equation into normal form (6): 
𝑥̈ = −𝑏1𝑥̇ − 𝑏2𝑥 − 𝑏3𝑥3 + 𝑏4cos(𝑏5𝑡), (22) 

where 𝑥 is a pendulum position, bi are pendulum factors, t is system time. 
Signal in the last summand of (22) can be obtained as the result of solution the following second 

order ordinary differential equation (ODE): 
𝑢̈ = −𝑏5

2𝑢,   𝑢(0) = 1, 𝑢̇(0) = 0. (23) 

Thus, the Duffing pendulum model in continuous time can be given in such a way: 
𝑥̈ = −𝑏1𝑥̇ − 𝑏2𝑥 − 𝑏3𝑥3 + 𝑏4𝑢,   𝑥(0) = 0, 𝑥̇(0) = 0; 
𝑢̈ = −𝑏5

2𝑢,                                          𝑢(0) = 1, 𝑢̇(0) = 0. 
(24) 

To represent (24) into discrete time domain, at first, we rewrite it as the system of fourth first 
order ODE: 

𝑥̇1 = 𝑥2;     𝑥̇2 = −𝑏1𝑥2 − 𝑏2𝑥1 − 𝑏3𝑥1
3 + 𝑏4𝑢1,   𝑥1(0) = 0, 𝑥2(0) = 0; 

𝑢̇1 = 𝑢2;     𝑢̇2 = −𝑏5
2𝑢1,                                             𝑢1(0) = 1, 𝑢2(0) = 0, 

(25) 

and then apply first order feedback difference approximation of derivative operator: 
𝑑

𝑑𝑡
≈

1 − 𝑧−1

𝑧−1𝑇
 (26) 

to each equation of (25): 
𝑥1 = 𝑧−1𝑥1 + 𝑧−1𝑇𝑥2, 𝑥1(0) = 0; 

𝑥2 = (1 − 𝑇𝑏1)𝑧−1𝑥2 − 𝑇𝑏2𝑧−1𝑥1 − 𝑇𝑏3𝑧−1𝑥1
3 + 𝑇𝑏4𝑧−1𝑢1, 𝑥2(0) = 0; 

𝑢1 = 𝑧−1𝑢1 + 𝑧−1𝑇𝑢2,         𝑢1(0) = 1;  
𝑢2 = 𝑧−1𝑢2 − 𝑇𝑏5

2𝑧−1𝑢1,    𝑢2(0) = 0. 

(27) 

We call (27) as discrete-time model of Duffing pendulum with cosine-like excitator.  
Results of numerical solution of (27)  are given in Figure 4. We consider following factors of (27) 

in our simulations: 𝑇 = 10−4 s, 𝑏1 = 0.02, 𝑏2 = 1, 𝑏3 = 5, 𝑏4 = 8, 𝑏5 = 0.5. Equations (27) are 
implemented as some code for Arduino Due board, which performs all calculations, obtained results 
transmitted to PC with simple serial communication. 



 

a) Pendulum position and speed  b) Pendulum phase portrait 

 

c) Excitator position and speed d) Excitator phase portrait 

Figure 4: Duffing pendulum simulation results. 

Comparison of the above-given curves with known ones shows they are the same. This fact 
proves the correctness of our transformation from the continuous time to the discrete time domain. 

One can make the Duffing excitatory nonlinear by applying some nonlinear function to its last 
summand. We believe that such changing gives us the possibility to get new pendulum motion 
trajectories and give it new features. Unfortunately, study of such system is out of our paper scope, 
so we leave it for future research. Here we only define the class of possible nonlinear functions as 
class of variable-sign nonlinear functions. Such class selection we explain the necessity to get not 
monotonic risen coordinate u which can cause occurring big signals and lead calculation overflows. 

In our study we use one of function from the above-mentioned class: 

𝑓(𝑢, 𝑣) = {

𝑎𝑏𝑠(𝑢)𝑣 𝑖𝑓 𝑢 > 0,
0 𝑖𝑓 𝑢 = 0

−𝑎𝑏𝑠(𝑢)𝑣 𝑖𝑓 𝑢 < 0,
, (28) 

where 𝑎𝑏𝑠(.) means taking absolute value from the u signal. 
Substitution of this function into (27) allows us to rewrite it as follows 

𝑥1 = 𝑧−1𝑥1 + 𝑧−1𝑇𝑥2, 𝑥1(0) = 0; 
𝑥2 = (1 − 𝑇𝑏1)𝑧−1𝑥2 − 𝑇𝑏2𝑧−1𝑥1 − 𝑇𝑏3𝑧−1𝑥1

3 + 𝑇𝑏4𝑧−1𝑢1, 𝑦2(0) = 0; 
𝑢1 = 𝑧−1𝑢1 + 𝑧−1𝑇𝑢2,         𝑢1(0) = 1;  

𝑢2 = 𝑧−1𝑢2 − 𝑇𝑏5
2𝑓(𝑧−1𝑢1, 𝑣),    𝑢2(0) = 0. 

(29) 

Simulation results for various parameter v are shown in Figure 5. 



 

a) Pendulum positions for various  b) Field of oscillations  amplitudes 
excitator parameter 

 

c) Excitator output 𝑢1 d) First derivative of excitator output 

Figure 5: Duffing pendulum with nonlinear excitatory. 

Analysis of the solution of (29) proves the possibility to change Duffing pendulum dynamic by 
changing form of excitatory oscillations. As one can see, the use of nonlinear functions in the 
excitatory equation change form of its output oscillations and effects on Dufding pendulum motions 
by shifting peaks of its oscillations in right when power factor in nonlinear function is increased. 

Equations (29) define pendulum motion without using of feedback signal about pendulum 
position. One can claim that these equations are the example of (10). But taking into account 
information about variable y1 while u2 is being defined allows us to design an excitator which is 
driven by pendulum position: 

𝑥1 = 𝑧−1𝑥1 + 𝑧−1𝑇𝑥2,                                                                                      𝑦1(0) = 0; 

𝑥2 = (1 − 𝑇𝑏1)𝑧−1𝑥2 − 𝑇𝑏2𝑧−1𝑥1 − 𝑇𝑏3𝑧−1𝑥1
3 + 𝑇𝑏4𝑧−1𝑢1,               𝑦2(0) = 0; 

𝑢1 = 𝑧−1𝑢1 + 𝑧−1𝑇𝑢2,                                                                                      𝑢1(0) = 1;  

𝑢2 = 𝑧−1𝑢2 − 𝑇𝑏5
2𝑓(𝑧−1𝑢1, 𝑣) − 𝑇𝑏6𝑧−1𝑥1,                                              𝑢2(0) = 0. 

(30) 

Oscillations which are produced by (30) are shown in Figure 6. 

X
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a) Pendulum positions for various  b) Field of oscillations  amplitudes 
 excitator parameter 

 

c) Excitator output 𝑢1 d) First derivative of excitator output 

Figure 6: Duffing pendulum with chaotic driven nonlinear excitatory with 𝑏6 = 0.2. 

As one can see the use of driven oscillator allows us to make pendulum motion more 
unpredictable and form more complex oscillations. This fact is proven by analysis of fields in Figure 
5b and Figure 6b which shows that in the system with driven excitatory chaos becomes earlier and 
only one first oscillation can be considered as regular one. 

3.2. Duffing pendulum model in M-dimensional non-orthogonal coordinates  
plane 

The above designed models (29) and (30) illustrate the effect of driven regular or chaotic oscillations 
on pendulum motions. If one implements these models, he can design novel chaotic generator with 
new features. At the same time, analysis of the curves in Figure 5, Figure 6 and comparison them 
with Figure 4 shows the same common patterns in oscillations forming.  

That is why we offer to append (30) with (14). In our paper we study the case of dynamical system 
with three outputs. Since the considered generator s dynamic is defined by four state variables, one 
can write down different observability equations.  

We offer to use the following equations for the case when all parameters of observability equation 
are considered as independent variables: 

𝑥1 = 𝑠𝑖𝑥(𝑦1 − 𝑥0)cos(β) + s𝑖𝑢(u1 − 𝑢0)sin(β); 
𝑥2 = 𝑠𝑖𝑥(𝑦1 − 𝑥0)cos(β + α1) + s𝑖𝑢(u1 − 𝑢0)sin(β + α1); 

𝑥3 = 𝑠𝑖𝑥(𝑦1 − 𝑥0)cos(β + α1 + α2) + s𝑖𝑢(u1 − 𝑢0)sin(β + α1 + α2). 

(31) 

Simulation results for the system (30) with observability equations (31) are given in Figure 7 for 
the case of constant factors equals to one.  
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a) System state variables b) System outputs 

 

c) System 2D phase portrait  d) System 3D attractor 

Figure 7: Simulation results of pendulum with observability equations (31). 

Here and further, we take into account the three-channel system output and consider system 
motions in some virtual orthogonal 3D state space to show signals interrelations. At the same time, 
the designed system is still considered in some plane where it has phase portrait which is shown in 
Figure 7c. This phase portrait is same for all systems which are considered in current subsection. 
Figure 8 shows simulation results for case of harmonically changed factors which usage means the 
determination of pendulum position in rotating coordinates. Here we assume that angles 
β, α1, and α2 are defined by sine functions with angular speeds 1, 2, and 3 rad/s. Also, we think that 
origin position 𝑥0 and 𝑢0 are defined by cosine function with angular speeds 5 and 10 rad/s and scale 
factors are changed with speeds 1 and 2. 

 

a) System outputs b) System 3D attractor 
Figure 8: Simulation results of pendulum with observability equations (31) with variable factors. 



As one can see regular motions of system factors make output motions highly chaotic. 
In Figure 9 we show simulation for the case when origin position is defined by using internal 

state variables of (14): 
𝑥1 = 𝑠𝑖𝑥(𝑦1 − 𝑢2)cos(β) + s𝑖𝑢(u1 − 𝑦2)sin(β); 

𝑥2 = 𝑠𝑖𝑥(𝑦1 − 𝑢2)cos(β + α1) + s𝑖𝑢(u1 − 𝑦2)sin(β + α1); 
𝑥3 = 𝑠𝑖𝑥(𝑦1 − 𝑢2)cos(β + α1 + α2) + s𝑖𝑢(u1 − 𝑦2)sin(β + α1 + α2). 

(32) 

This figure is given for the case of constant angles between axes as well as scale factors. 

 

a) System outputs b) System 3D attractor 

Figure 9: Simulation results of pendulum with observability equations (31) with variable factors. 

Comparison of curves in Figure 7  Figure 9 shows that the use of observability equations allows 
to increase the numbers of system outputs and transform its attractor from plane to space. Also, one 
can find that system dynamic becomes more complex when more factors have variable values. In 
Figure 10 we show simulation results for the case when one rewrite (32) with using of nonlinear 
functions: 

𝑥1 = (𝑦1 − 𝑢2)𝑎𝑏𝑠(𝑢1)cos(β) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑦1)sin(β); 
𝑥2 = (𝑦1 − 𝑢2)𝑎𝑏𝑠(𝑢1)cos(β + α1) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑦1)sin(β + α1); 

𝑥3 = (𝑦1 − 𝑢2)a𝑏𝑠(𝑢1)cos(β + α1 + α2) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑦1)sin(β + α1 + α2). 

(33) 

 

a) System outputs b) System 3D attractor 

Figure 10: Simulation results of pendulum with observability equations (31) with variable factors. 

Comparison of Figure 8 and Figure 10 shows that the use of nonlinear scale factor allows to form 
more complex system dynamic. As come can see from analysis of the above-given curves, the above-
defined observability equations change systems attractors but they leave its two wings form. 

In Figure 11 we illustrate the forming of system outputs with chaotic axes rotation angles by 
using following observability equations: 



𝑥1 = (𝑦1 − 𝑢2)𝑎𝑏𝑠(𝑢1)cos(β) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑥1)sin(β); 
𝑥2 = (𝑦1 − 𝑢2)𝑎𝑏𝑠(𝑢1)cos(β + α1) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑥1)sin(β + α1); 

𝑥3 = (𝑦1 − 𝑢2)a𝑏𝑠(𝑢1)cos(β + α1 + α2) + (u1 − 𝑥2)𝑎𝑏𝑠(𝑥1)sin(β + α1 + α2). 

(34) 

 

a) System outputs b) System 3D attractor 

Figure 11: Simulation results of pendulum with observability equations (34). 

As one can see the use of chaotic signals as argument of trigonometric functions in observability 
equations change the form of system attractor and does not allow to claim which system generates 
it. 

All above-given in this subsection observability equations proves our approach and show ways 
to design discrete-time chaotic system as core closed-loop chaotic generator which produce some 
oscillations and some subsystem to post-process generated data.  

3.3. Duffing pendulum model in M-dimensional non-orthogonal coordinates  
plane 

Let us show how to improve system features by performing one more post-processing of the 
generated data by transforming system from plane representation to space one. Such transformation 
can be performed if one takes into account (19) to define representative point position in some M-
dimensional state space.  

It is clear that components of (19) can be defined in a different ways, some of which is considered 
in previous subsection. To make system oscillations more complex we offer to rewrite (19) in terms 
of equations  (30) state variables as follows: 

𝑥𝑎 = 𝑥1 + 𝑦1cos(𝑢1);  
𝑦𝑎 = 𝑥2 + 𝑦2cos(𝑢2);   

𝑧𝑎 = 𝑥3 + 𝑦1sin(𝑢1) + 𝑦2sin(𝑢2). 

(35) 

Expression (35) are defined by using system state variables as well as its outputs in the plane 
models. It is clear that the above-given expression is one from possible variants to perform system 
transformation. We leave their studies for future researches. 

Results of simulation (30) with observability equations (32) and (35) are shown in Figure 12. 
As one can see applying observability equations to the initial generator equations allows to form 

output chaotic signals which are tremendously different from the known ones and have new 
attractor. 



 

a) System outputs b) System 3D attractor 

Figure 12: Simulation results of pendulum in 3D nonorthogonal coordinate system. 

4. Conclusions 

The considering of chaotic system as dynamical system in non-orthogonal coordinates gives us the 
possibility to produce novel chaotic oscillations by using well-known chaotic systems. This fact 
allows us to claim that novel chaotic system can be designed by changing one or both core system 
and system, which define transformations of coordinate system. In both cases system dynamic differs 
the core dynamic very much. The order of designed in such a way system equals to core system 
order Analysis of the obtained discrete-time models shows that chaotic system can be defined in 
class of discrete-time dynamical systems. 
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