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Abstract 
The reliability of the equipment affects the quality of performance of the functions assigned to it. Reliability 
is a complex indicator. It is influenced by a significant number of random factors, which include the 
equipment components aging, changes in operating weather conditions, the human factor, untimely 
procedures of maintenance and repair, lack of redundancy, and others. The issue of equipment reliability is 
especially important in the aviation industry and other industries, where the key task is to ensure the safety 
of human life and health. Statistical methods and data processing algorithms are usually used to estimate 
reliability indicators. The basis of their application is a priori information about the type of statistical model 
of the collected data on the operating time between failures and the operating time between restores. During 
the operation of the equipment, violations of its functioning modes are possible. These violations are 
associated with the deterioration of the technical condition. In such cases, the statistical model of the data 
is significantly complicated, which leads to difficulties in reliability estimation. This paper is devoted to the 
synthesis and analysis of a data processing algorithm under the assumption of deterioration of the technical 
condition of the equipment. The tasks ware solved analytically. The obtained results were verified on the 
basis of statistical simulation. 
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1. Introduction 

Today we live in a rapidly changing world. The development of electronics, computer technology, 
and the nascence of new intelligent data processing algorithms became the keys to the emergence of 
the concept of Industry 4.0 [1]. Electronic devices of the Internet of Things have made it possible to 
measure information and generate large datasets about equipment parameters, environment, 
production processes, user needs, and others [2]. The modern means of data and information 
transmission has become another aspect of sustainable development in the field of digitization [3]. 
The increase in the speed of data transmission due to the broadband of fiber optic networks and the 
capabilities of communication channels of the fifth and higher generations allow timely collection 
of datasets in the appropriate data warehouses [4]. 
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Big datasets can now be processed because of increased computer power and capability. This is 
explained by the possibility of implementing and using complex and sophisticated data manipulation 
procedures that allow extracting useful information for the user from unprocessed arrays [5]. 

Modern data processing technologies are a key factor in improving the constituent components 
of any industry. Data processing technologies make it possible to solve the following tasks: 

 identifying trends characterizing the presence of useful information or a sudden or gradual 
change in the state of equipment, production processes, the psychological and physical state 
of a person, and others [6, 7]; 

 determining regularities and building on their basis mathematical models of the 
interdependence of a group of parameters to be measured [8, 9]; 

 estimation of key parameters that characterize the quality of production processes, the use 
of equipment as intended, the efficiency of the functioning of the constituent components of 
the industry, and others [10, 11]; 

 forecasting future states, failures, malfunctions, occurrence of dangerous situations, and 
future trends of monitoring indicators [12, 13]; 

 data-driven management decision-making [14, 15]. 

The specified tasks can be considered within the framework of classification and prediction 
problems, which are constituent components of the modern theory of data processing based on 
artificial intelligence. Data processing methods are based on machine and deep learning tools, 
including statistical classification, regression analysis, statistical estimation, clustering, neural 
networks, and others. 

Data processing algorithms are currently becoming very important in the aviation industry. They 
can be used during surveillance and aeronautical support, security control, airport activity 
monitoring, logistics, route planning, and others. Nowadays, the data processing algorithms are 
associated with increasing the efficiency of civil aviation, primarily by reducing the risks of 
catastrophic and dangerous situations [16], reducing operational costs of aviation enterprises [17], 
and increasing the level of aviation equipment reliability [18]. 

In addition to the synthesis and analysis of data processing algorithms, an important problem in 
civil aviation is the development of the structure of hubs for the collection and use of statistical data, 
the purpose of which is algorithmic support of equipment operation processes. 

2. State-of-the-art and the statement of the problem 

The reliability of the equipment affects the quality of performance of the functions assigned to it. 
Reliability is a complex indicator. It is influenced by a significant number of random factors, which 
include the equipment components aging, changes in operating weather conditions, the human 
factor, untimely procedures of maintenance and repair, lack of redundancy, and others [19, 20]. 

The issue of equipment reliability is especially important in the aviation industry and other 
industries, where the key task is to ensure the safety of human life and health. 

The main indicators of reliability are: the mean time between failures, the mean time between 
restores, the probability of failure-free operation, the probability of failure, the availability function, 
the steady-state availability, the coefficient of technical use, and others [21]. 

High levels of reliability indicators are associated with the high-quality performance of 
equipment functions and the efficiency of operational processes. 

The estimation of the reliability of aviation equipment is usually performed at the stage of 
implementation of the main operational processes, which include maintenance, control, monitoring, 
diagnosis, repair, and others [22, 23]. In addition, ensuring the required level of reliability is 
associated with the involvement of additional material resources, which affects the level of costs of 
the aviation enterprise [24, 25]. Due to the random nature of failure occurrence, reliability indicators 



are described using statistical models, or they can also be estimated based on statistical data 
processing algorithms [26, 27]. 

The article [28] presents a comprehensive overview of machine learning methods used for 
structural reliability analysis in civil engineering and mechanical engineering. The authors focus on 
various machine learning models, including artificial neural networks, support vector machines, and 
Bayesian methods. The article considers the analysis of efficiency and accuracy during reliability 
analysis, reducing the computational complexity of classical methods. The authors present 
procedures for Monte Carlo simulation and problems of processing the probabilities of rare events. 

The article [29] deals with the approach to the analysis of reliability and availability of the system 
based on the consideration of the time series of failures and repairs during the occurrence of 
dependent failures. The article notes that while traditional research assumes a constant number of 
failures, real systems rarely meet this assumption, especially in environments with cumulative shock 
and damage processes. The authors use numerical methods and modeling methods to analyze the 
reliability of these systems. The article contains an example of the implementation of the proposed 
methodology for studying the reliability of the mechanical system in a special vehicle. 

The article [30] focuses on a detailed study of how reliability changes during the life cycle of a 
system. The authors emphasize the importance of continuous reliability monitoring, which is crucial 
for early detection of potential system failures and ensuring a given level of efficiency. The article 
presents theoretical models with practical examples, demonstrating how data-driven methods and 
algorithms can optimize service strategies. Based on the application of statistical methods and real-
time data, the article highlights approach to increasing system reliability. The article also examines 
the complex interplay between design, operation and maintenance phases, emphasizing that system 
reliability is not a static property but one that changes over time. 

The article [31] investigates the reliability analysis of systems with several components based on 
stochastic methods. The authors consider systems with redundancy, in which backup groups are 
included only after the failure of the main group. The article provides detailed comparisons of life 
expectancy distributions in such systems. The authors used modern mathematical models and 
distribution functions to evaluate the effectiveness of the system. 

Statistical methods and data processing algorithms are usually used to estimate reliability 
indicators. The basis of their application is a priori information about the type of statistical model of 
the collected data on the operating time between failures and the operating time between restores. 
During the operation of the equipment, violations of its functioning modes are possible [32]. These 
violations are associated with the deterioration of the technical condition. In such cases, the 
statistical model of the data is significantly complicated, which leads to difficulties in reliability 
estimation. 

We assume that one sample of aviation equipment be under monitoring. This equipment has a 

certain structure described by a vector 𝑆(𝐼)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  that depends on the hierarchical level 𝐼 of consideration. 
In general, the quality of aviation equipment functioning can be described by a vector of reliability 

indicators 𝑅⃗ . Data processing algorithms 𝐴  are used to estimate the numerical values of these 

indicators. The set of algorithms is also determined by statistical models 𝑀⃗⃗  of the trends of the 

diagnostic parameters 𝐷⃗⃗ , which can flow in a stationary and nonstationary mode. The choice of the 

processing algorithm is influenced by the applied methods of ensuring reliability 𝐸⃗ , for example, the 
redundancy option, the periodicity of maintenance, and others. Both financial and computing 

resources 𝐶  are spent on the synthesis and implementation of data processing algorithm. Estimation 

of reliability indicators is performed under conditions of certain limitations 𝐿⃗ . Then the reliability 
indicator is estimated according to the transformation: 

𝑅⃗ = 𝐴 ( 𝑆(𝐼)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , 𝐶 , 𝑀⃗⃗ (𝐷⃗⃗ ), 𝐸⃗ |𝐿⃗  ). (1) 

The purpose of this research is the synthesis and analysis of data processing algorithm under the 
assumption of deterioration of the technical condition of the aviation equipment. From a 
mathematical point of view, the paper solves the problem of finding the best data processing 



algorithm 𝐴 , which can be implemented for diagnostic parameters 𝐷⃗⃗  with given statistical model 𝑀⃗⃗  

for certain type of aviation equipment with structure 𝑆(𝐼)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  under the conditions of assumed 

limitations 𝐿⃗ . 

3. Materials and methods 

Let s consider the procedure for evaluating the reliability of aviation equipment. As aviation 
equipment, we will choose an airfield radar. This radar contains three channels: primary, secondary, 
and weather channel. To increase the level of reliability, redundancy of primary and secondary 
channels was provided at the design stage. 

When developing the reliability data processing algorithm, we will assume about the following 
limitations: 

1. Devices of individual channels of equipment are characterized by an exponential model of 
the failure occurrence. The failure rates of the primary, secondary, and weather channels are 
𝜆𝑝, 𝜆𝑠, and 𝜆𝑤 respectively. The failure rates of redundant groups are the same as those of 
the basic group.  

2. In case of failure of the main channel, the aviation equipment switches to the redundant 
channel with a probability equal to one. The redundant group is in an unloaded mode. 

3. During the functioning of the equipment, deterioration of the technical condition occurs. The 
degradation model corresponds to the step-function. After degradation, regardless of the 
channel type, the failure intensity is set at the level 𝜆𝑑. In general case, we suppose that 𝜆𝑑 >

𝜆𝑝, 𝜆𝑑 > 𝜆𝑠, and 𝜆𝑑 > 𝜆𝑤. The moments of deterioration in each channel are independent. 
At the same time, we will assume that the deterioration is possible in only one channel of 
radar during the observation period. The moment of deterioration corresponds to the 
observed failure or malfunction with the number 𝑘. In general, 𝑁 failures or malfunctions 
were observed during the observation period. 

4. The recovery process is characterized by an exponential model with the recovery rate 𝜆𝑟. 
Procedures for restoring serviceability are performed only after the loss of functioning of one 
of the radar channels. 

The structural diagram of the radar is shown in Figure 1. 

 

Figure 1: The structural diagram of the radar. 

The probability of failure-free operation of individual radar channels (without redundancy) will 
be determined by the equations: 

𝑅𝑝(𝑡) = 𝑒−𝜆𝑝𝑡, 𝑡 > 0; 

𝑅𝑠(𝑡) = 𝑒−𝜆𝑠𝑡 , 𝑡 > 0; 
𝑅𝑤(𝑡) = 𝑒−𝜆𝑤𝑡, 𝑡 > 0. 

(2) 
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𝑄(𝑡) = 1 − 𝑅(𝑡). (3) 

The probability density function of failure times: 

𝑓(𝑡) =
𝑑𝑄(𝑡)

𝑑𝑡
. (4) 

To simplify the mathematical representation, we will assume that 𝜆 = {𝜆𝑝, 𝜆𝑠, 𝜆𝑤 }. Then we will 
get: 

𝑅(𝜆, 𝑡) = 𝑒−𝜆𝑡, 𝑡 > 0. (5) 

𝑄(𝜆, 𝑡) = 1 − 𝑒−𝜆𝑡, 𝑡 > 0. (6) 

𝑓(𝜆, 𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 > 0. (7) 

To form the data processing algorithm regarding reliability, we will determine the main indicators 
during taking into account redundancy. For this purpose, we will use the methods of functional 
transformation of random variables. We will assume that redundancy corresponds to the parallel 
connection of elements. However, we take into account that the redundant blocks are in an unloaded 
mode. Then the first failure in such a system occurs in the basic unit (let it be at the time 𝑡1). The 
second failure occurs in the redundant equipment at the moment of time 𝑡2. Then the moment of 
occurrence of the failure 𝑡 = 𝑡1 + 𝑡2. 

Then, for one radar channel (primary or secondary), the probability density function of failure 
times is found as for the sum of two independent random variables. At the same time, we can get: 

𝑓𝑟𝑒𝑑(𝜆, 𝑡) = ∫ 𝑓(𝜆, 𝑡1)𝑓(𝜆, 𝑡 − 𝑡1)𝑑𝑡1

𝑡

0

. (8) 

Let's consider two cases of calculation. The first case corresponds to the absence of deterioration 
of the technical condition. Then: 

𝑓𝑟𝑒𝑑(𝜆, 𝑡) = ∫ 𝑓(𝜆, 𝑡1)𝑓(𝜆, 𝑡 − 𝑡1)𝑑𝑡1

𝑡

0

= ∫ 𝜆𝑒−𝜆𝑡1𝜆𝑒−𝜆(𝑡−𝑡1)𝑑𝑡1

𝑡

0

= 𝜆2 ∫ 𝑒−𝜆𝑡1𝑒−𝜆(𝑡−𝑡1)𝑑𝑡1

𝑡

0

= 

= 𝜆2 ∫ 𝑒−𝜆𝑡𝑑𝑡1

𝑡

0

= 𝜆2𝑒−𝜆𝑡 ∫ 𝑑𝑡1

𝑡

0

= 𝜆2𝑡𝑒−𝜆𝑡. 

The second case corresponds to the occurrence of deterioration of the technical condition. Then: 

𝑓𝑟𝑒𝑑(𝜆, 𝑡) = ∫ 𝑓(𝜆𝑑 , 𝑡1)𝑓(𝜆, 𝑡 − 𝑡1)𝑑𝑡1

𝑡

0

= ∫ 𝜆𝑑𝑒−𝜆𝑑𝑡1𝜆𝑒−𝜆(𝑡−𝑡1)𝑑𝑡1

𝑡

0

= 

= 𝜆𝜆𝑑 ∫ 𝑒−𝜆𝑑𝑡1𝑒−𝜆(𝑡−𝑡1)𝑑𝑡1

𝑡

0

= −
𝜆𝜆𝑑

𝜆𝑑 − 𝜆
𝑒−𝜆𝑡𝑒−𝑡1(𝜆𝑑−𝜆)|

0

𝑡

=
𝜆𝜆𝑑

𝜆𝑑 − 𝜆
(𝑒−𝜆𝑡 − 𝑒−𝜆𝑑𝑡). 

The probability of failure in the case of deterioration absence: 

𝑄𝑟𝑒𝑑(𝜆, 𝑡) = ∫ 𝑓𝑟𝑒𝑑(𝜆, 𝑡)𝑑𝑡
𝑡

0

= ∫ 𝜆2𝑡𝑒−𝜆𝑡𝑑𝑡
𝑡

0

= 𝜆2 ∫ 𝑡𝑒−𝜆𝑡𝑑𝑡
𝑡

0

= −𝜆𝑡𝑒−𝜆𝑡|
0

𝑡
+ 𝜆∫ 𝑡𝑒−𝜆𝑡𝑑𝑡

𝑡

0

= 

= −𝜆𝑡𝑒−𝜆𝑡−𝑒−𝜆𝑡|
0

𝑡
= 1 − 𝑒−𝜆𝑡 − 𝜆𝑡𝑒−𝜆𝑡. 

The probability of failure in the case of deterioration occurrence: 

𝑄𝑟𝑒𝑑(𝜆, 𝑡) = ∫ 𝑓𝑟𝑒𝑑(𝜆, 𝑡)𝑑𝑡
𝑡

0

= ∫
𝜆𝜆𝑑

𝜆𝑑 − 𝜆
(𝑒−𝜆𝑡 − 𝑒−𝜆𝑑𝑡)𝑑𝑡

𝑡

0

= 

=
𝜆𝜆𝑑

𝜆𝑑 − 𝜆
∫ (𝑒−𝜆𝑡 − 𝑒−𝜆𝑑𝑡)𝑑𝑡

𝑡

0

=
𝜆𝜆𝑑

𝜆𝑑 − 𝜆
(−

1

𝜆
𝑒−𝜆𝑡 +

1

𝜆𝑑
𝑒−𝜆𝑑𝑡)|

0

𝑡

= 

=
𝜆𝑑

𝜆𝑑 − 𝜆
(1 − 𝑒−𝜆𝑡) −

𝜆

𝜆𝑑 − 𝜆
(1 − 𝑒−𝜆𝑑𝑡) = 1 −

𝜆𝑑

𝜆𝑑 − 𝜆
𝑒−𝜆𝑡 +

𝜆

𝜆𝑑 − 𝜆
𝑒−𝜆𝑑𝑡. 

The probability of failure-free operation will be: 
𝑅𝑟𝑒𝑑(𝜆, 𝑡) = 𝑒−𝜆𝑡 + 𝜆𝑡𝑒−𝜆𝑡; 

𝑅𝑟𝑒𝑑(𝜆, 𝑡) =
𝜆𝑑

𝜆𝑑 − 𝜆
𝑒−𝜆𝑡 −

𝜆

𝜆𝑑 − 𝜆
𝑒−𝜆𝑑𝑡. 



Three channels of the radar from the point of view of reliability can be represented as a series 
connection of elements. Then for whole radar we can write for the case of deterioration absence: 

𝑅Σ(𝑡) = 𝑅𝑟𝑒𝑑(𝜆𝑝, 𝑡)𝑅𝑟𝑒𝑑(𝜆𝑠, 𝑡) 𝑅(𝜆𝑤, 𝑡) = (𝑒−𝜆𝑝𝑡 + 𝜆𝑝𝑡𝑒
−𝜆𝑝𝑡)(𝑒−𝜆𝑠𝑡 + 𝜆𝑠𝑡𝑒

−𝜆𝑠𝑡)𝑒−𝜆𝑤𝑡 = 

= 𝑒−Λ𝑡 + 𝜆𝑝𝑡𝑒
−Λ𝑡 + 𝜆𝑠𝑡𝑒

−Λ𝑡 + 𝜆𝑝𝜆𝑠𝑡
2𝑒−Λ𝑡 = (1 + 𝜆𝑝𝑡 + 𝜆𝑠𝑡 + 𝜆𝑝𝜆𝑠𝑡

2)𝑒−Λ𝑡, 
for the case of deterioration occurrence in the primary channel: 

𝑅Σ(𝑡) = 𝑅𝑟𝑒𝑑(𝜆𝑝, 𝑡)𝑅𝑟𝑒𝑑(𝜆𝑠, 𝑡) 𝑅(𝜆𝑤 , 𝑡) = 

= (
𝜆𝑑

𝜆𝑑 − 𝜆𝑝
𝑒−𝜆𝑝𝑡 −

𝜆𝑝

𝜆𝑑 − 𝜆𝑝
𝑒−𝜆𝑑𝑡)(𝑒−𝜆𝑠𝑡 + 𝜆𝑠𝑡𝑒

−𝜆𝑠𝑡)𝑒−𝜆𝑤𝑡 = 

=
𝜆𝑑

𝜆𝑑 − 𝜆𝑝

(1 + 𝜆𝑠𝑡)𝑒
−Λ𝑡 −

𝜆𝑝

𝜆𝑑 − 𝜆𝑝

(1 + 𝜆𝑠𝑡)𝑒
−Λ1𝑡, 

and for the case of deterioration occurrence in the secondary channel: 
𝑅Σ(𝑡) = 𝑅𝑟𝑒𝑑(𝜆𝑝, 𝑡)𝑅𝑟𝑒𝑑(𝜆𝑠, 𝑡) 𝑅(𝜆𝑤 , 𝑡) = 

= (𝑒−𝜆𝑝𝑡 + 𝜆𝑝𝑡𝑒
−𝜆𝑝𝑡) (

𝜆𝑑

𝜆𝑑 − 𝜆𝑠
𝑒−𝜆𝑑𝑡 −

𝜆𝑠

𝜆𝑑 − 𝜆𝑠
𝑒−𝜆𝑠𝑡) 𝑒−𝜆𝑤𝑡 = 

=
𝜆𝑑

𝜆𝑑 − 𝜆𝑠
(1 + 𝜆𝑝𝑡)𝑒

−Λ𝑡 −
𝜆𝑠

𝜆𝑑 − 𝜆𝑠
(1 + 𝜆𝑝𝑡)𝑒

−Λ2𝑡, 

where Λ = 𝜆𝑝 + 𝜆𝑠 + 𝜆𝑤, Λ1 = 𝜆𝑑 + 𝜆𝑠 + 𝜆𝑤, and Λ2 = 𝜆𝑝 + 𝜆𝑑 + 𝜆𝑤 are total failure rates for 
three considered cases. 

To determine the probability density function we can use equation (3) and (4). However, of greater 
interest is the value of the mean time between failures, which can be found according to the equation: 

𝑀𝑇𝐵𝐹 = ∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

0

. (9) 

Omitting mathematical calculations, we obtain the following densities for three cases: absence of 
deterioration: 

𝑓Σ(𝑡) = (𝜆𝑤 + (𝜆𝑝
2 + 𝜆𝑠

2 + 𝜆𝑝𝜆𝑤 + 𝜆𝑠𝜆𝑤)𝑡 + (𝜆𝑝
2𝜆𝑠 + 𝜆𝑝𝜆𝑠

2 + 𝜆𝑝𝜆𝑠𝜆𝑤)𝑡2)𝑒−Λ𝑡, 
deterioration in the primary channel: 

𝑓Σ(𝑡) = (
𝜆𝑠𝜆𝑑 − 𝜆𝑑(1 + 𝜆𝑠𝑡)Λ

𝜆𝑝 − 𝜆𝑑
) 𝑒−Λ𝑡 − (

𝜆𝑝𝜆𝑠 − 𝜆𝑑(1 + 𝜆𝑠𝑡)Λ1

𝜆𝑝 − 𝜆𝑑
)𝑒−Λ1𝑡, 

and deterioration in the secondary channel: 

𝑓Σ(𝑡) = (
𝜆𝑝𝜆𝑑 − 𝜆𝑑(1 + 𝜆𝑝𝑡)Λ

𝜆𝑠 − 𝜆𝑑
)𝑒−Λ𝑡 − (

𝜆𝑝𝜆𝑠 − 𝜆𝑑(1 + 𝜆𝑝𝑡)Λ2

𝜆𝑠 − 𝜆𝑑
)𝑒−Λ2𝑡. 

The mean time between failures for three cases: absence of deterioration 

𝑀𝑇𝐵𝐹 =
6𝜆𝑝𝜆𝑠 + 2(𝜆𝑝

2 + 𝜆𝑠
2 + 𝜆𝑝𝜆𝑤 + 𝜆𝑠𝜆𝑤) + 𝜆𝑤Λ

Λ3
, (10) 

deterioration in the primary channel: 

𝑀𝑇𝐵𝐹 =
𝜆𝑝(2𝜆𝑠 + 𝜆𝑤 + 𝜆𝑑)

(𝜆𝑑 − 𝜆𝑝)Λ1
2 −

𝜆𝑑(2𝜆𝑠 + 𝜆𝑤 + 𝜆𝑝)

(𝜆𝑑 − 𝜆𝑝)Λ
2

, (11) 

and deterioration in the secondary channel: 

𝑀𝑇𝐵𝐹 =
𝜆𝑠(2𝜆𝑝 + 𝜆𝑤 + 𝜆𝑑)

(𝜆𝑑 − 𝜆𝑠)Λ2
2 −

𝜆𝑑(2𝜆𝑝 + 𝜆𝑤 + 𝜆𝑠)

(𝜆𝑑 − 𝜆𝑠)Λ
2

. (12) 

The mean time between restores can be obtained as follows: 

𝑀𝑇𝐵𝑅 = ∫ 𝑡𝑓𝑟(𝑡)𝑑𝑡
∞

0

= ∫ 𝑡𝜆𝑟𝑒
−𝜆𝑟𝑡𝑑𝑡

∞

0

=
1

𝜆𝑟
. (13) 

The information obtained with the help of formulas (10)  (13) can be used for the purpose of 
evaluating the steady-state availability of the radar. For this, we will use the equation: 

𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝐵𝑅
. (14) 



The parameters included in equation (14) are random variables. The following equations can be 
used to find their estimates based on the collected dataset: 

𝑀𝑇𝐵𝐹 =
1

𝑁
∑𝑡𝑖

𝑁

𝑖=1

; (15) 

𝑀𝑇𝐵𝑅 =
1

𝑁
∑𝑡𝑟𝑖

𝑁

𝑖=1

. (16) 

The statistical distributions of estimates (15) and (16) have a complex form. For example, for an 
exponential model, they can be described by the chi-square distribution. In the case of large datasets, 
these distributions can be considered normal with average value calculated according to the formulas 
(10)  (12). 

In the general case, the steady-state availability distribution can be defined as: 

𝑓𝐴(𝑥) =
1

(1 − 𝑥)2
∫ 𝑥𝑓𝑀𝑇𝐵𝐹 (

𝑥𝑡

(1 − 𝑥)
)

0

𝑓𝑀𝑇𝐵𝑅(𝑥)𝑑𝑥. (17) 

4. Results and discussions 

This section contains the results of numerical calculations of reliability indicators of radar for the 
proposed methodology. Mathematical modeling was performed for the initial data: 

 𝜆𝑝 = 10−3;  
 𝜆𝑠 = 5 ∙ 10−4;  
 𝜆𝑤 = 5 ∙ 10−4;  
 𝜆𝑑 = 5 ∙ 10−3.  

The dependencies for probability of failure-free operation, the probability density function of 
operating time between failures, and the mean time between failures are shown in Figure 2, Figure 
3, and Figure 4. 

 

Figure 2: The probability of failure-free operation. 
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Figure 3: The probability density function of operating time between failures. 

Analysis gives possibility to conclude that for this case deterioration occurrence decreases the 
mean time between failures approximately by 40 %. Deterioration in the primary and secondary 
channels has same influence on reliability of whole radar. Figure 5 shows the histogram of 
availability estimates. The availability was calculated for initial parameters 𝜆𝑝 = 0.05, 𝑁 = 10, and 
the number of iterations 𝑀 = 1000. The obtained distribution is asymmetric. 

 

Figure 4: The mean time between failures. 
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Figure 5: The probability density function of availability estimates. 

5. Conclusions 

The paper considers the issue of developing the algorithm for estimating the reliability of aviation 
equipment in case of deterioration of the technical condition of one of its components. The proposed 
approach is illustrated on the example of the operation of the radar containing three channels, two 
of which are with redundancy in an unloaded mode. The reliability estimation algorithm involves 
the analysis of the structural connections of the components, the calculation of the probability of 
failure-free operation, the mean time between failures, and steady-state availability. Obtaining 
calculation formulas became possible due to the use of mathematical statistics methods. The results 
of the calculations confirm the need to monitor reliability indicators in the event of a possible 
deterioration in the technical condition of the equipment. 

Future research will be aimed at: synthesis of detector of deterioration of technical condition, 
research of multistage deterioration process, operational costs analysis in the case of deterioration, 
improvement of algorithmic support of operation system of aviation equipment. 
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