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Abstract
Jordan-Gauss graphs are bipartite graphs given by special quadratic equations over the commutative 
ring K with unity with partition sets K n and K m such that the neighbour of each vertex is defined by 
the system of linear equation given in its row-echelon form. We use families of this graphs for the 
construction of new quadratic surjective multivariate maps  F of  affine spaces over  K  with the 
trapdoor accelerator T which is a piece of information which allows to compute the reimage of F in 
polynomial time.
In particular for each quadratic automorphism F of K[x1, x2,..., xn] with the trapdoor accelerator T we 
construct the quadratic surjective map F’ of Kt, t=n 2+n onto K t-s, s≥0 with the trapdoor accelerator T’,  
T’>T.
So we can introduce enveloping trapdoor accelerator for Matsumoto-Imai cryptosystem over finite 
fields of characteristic 2, for the Oil and Vinegar public keys over Fq or quadratic multivariate public 
keys defined over Jordan-Gauss graphs D(n, K),where K is arbitrary finite commutative ring  with the 
nontrivial multiplicative group
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1. Introduction

This paper presents the generalisations of the quadratic multivariate public key given in [23] 
and defined via special  walks on projective geometries over finite fields and their natural 
analogues defined over general commutative rings. Multivariate cryptography is one of the five 
main directions of Post-Quantum Cryptography.

The progress  in  the  design of  experimental  quantum computers  is  speeding up lately. 
Expecting such development the National Institute of Standardisation Technologies of USA 
announced in 2017 the tender on standardisation best known quantum resistant algorithms of 
asymmetrical  cryptography.  The first  round was finished in March 2019,  essential  part  of 
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presented algorithms were rejected. In the same time the development of new algorithms with 
postquantum perspective was continued. Similar process took place during the 2, 3 and 4th 
rounds.

The  last  algebraic  public  key  «Unbalanced  Oil  and  Vinegar  on  Rainbow  like  digital 
signatures» (ROUV) constructed in terms of Multivariate Cryptography was rejected in 2021 
(see [2], [3]). The first 4  winners of this competition was announced in 2022, they are developed 
in terms of Lattice Theory.

Noteworthy that NIST tender was designed for the selection and investigation of public key 
algorithms and  in the area of Multivariate Cryptography only quadratic multivariate maps were 
investigated.  We  have  to  admit  that  general  interest  to  various  aspects  of  Multivariate 
Cryptography  was connected with the search for secure and effective procedures of digital 
signature where mentioned above ROUV cryptosystem was taken as a serious candidate to 
make the shortest signature. 

Let us summarize the outcomes of mentioned above NIST tender. 
There  are  5  categories  that  were  considered by NIST in  the  PQC standardization (the 

submission date was 2017; in July 2022, the 4 winners and the 4 final candidates were proposed 
for the 4th round - this is the current official status. However, the current 8 final winners and 
candidates only belong to the following 4 different mathematical problems (not the 5 announced 
at the beginning):- lattice-based,- hash-based,- code-based, - supersingular elliptic curve isogeny 
based.

The standards are partially published in 2024. 
Its interesting that new obfuscation ‘’TUOV: Triangular Unbalanced Oil and Vinegar’’ were 

presented  to  NIST  (see 
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/TUOV-
spec-web.pdf) by principal submitter Jintaj Ding. 

Further development of Classical Multivariate Cryptography which study  quadratic and 
cubic endomorphisms of Fq[x1, x2,…, xn] is reflected  in [14]. Current research in Postquantum 

Cryptography can be found in  [4], [5], [6], [7], [8], [9], [10],  [11], [12]. [13], [15], [16], [17], [27], 
[28], [29], [30]

We use the concept of quadratic accelerator of the endomorphism σ of K[x1, x2,…, xn]  which 
is the piece of information T such that its knowledge allows us to compute the reimage of (σ, Kn) 
in time  O(n 2). Symbol  K  stands here for an arbitrary commutative ring with unity.   Our 
suggestion is to use for public key the pairs  (σ, T) such that σ has a polynomial density, i. e. 
number of monomial terms of σ(xi), i=1,2,…,n.  Some examples of such public keys the reader can 
find in [1], [22]

For each pair (K, n), n>1 we present quadratic  automorphism σ of K[x1, x2,…, xn]  with the 
trapdoor accelerator  T defined via totality of special bipartite Jordan-Gauss graphs with the 
partition sets isomorphic to Kn. We discuss the possible use of these transformation in the case 
of finite fields and arithmetical rings Zq where q is a prime power.

In  this  paper  we  suggest  new quadratic  multivariate  public  rules  defined  in  terms  of 
Projective Geometry. Recall that multivariate public rule G has to be given in its standard form 
xi →gi(x1, x2, … , xn), where polynomials  gi are given via the lists of monomial terms in the 
lexicographical order.

We consider the bipartite induced subgraphs  J(F) of projective geometry over the field F 
which partition sets are the largest Schubert cells. The incidence of points and lines of these 



graphs  is given by the system of quadratic equations such that the neighbourhood of each 
vertex is  a solution set  of  the system of linear equation written in its  row-echelon form. 
Straightforward change of the finite field F for the general commutative ring with unity gives 
the definition of cellular Schubert graph J(K) (see [23]). We use graphs J(K[x1, x2,…., xn])) for the 
construction of trapdoor accelerators, which are surjective multivariate maps F of Kn onto Kn’ 

written in their standard form together with the piece of information T such that the knowledge 
of this information allows to compute the reimage for the given value of F.

The first cryptosystem based on such trapdoor accelerator  where proposed in 2015 (see [31]), 
cryptanalysis for the system is still unknown. The obfuscations of these cryptosystems was 
suggested in [32]. They were seriously generalized in [23] where walks on general cellular 
Schubert graphs were used.

In this article we suggest a wide class of generalization of previously proposed trapdoor 
accelerators based on Jordan-Gauss graphs. The main idea is to use algebraic temporal graphs. 
Such graphs are given via the system of algebraic equations which depends on the time of the 
computation.

In the Section 2 we define cellular Schubert graphs. These Jordan-Gauss graphs will be used 
in  the constructions of quadratic multivariate transformations of the affine spaces together with 
the corresponding trapdoor accelerators for the computation of reimages of these maps (se 
Section 4).

Section 3 is dedicated to constructions of trapdoor accelerators for the polynomial maps 
defined in terms of temporal linguistic graphs, i. e. special sequences of linguistic graphs. In 
general case the degree of constructed maps can be essentially higher than 2.

Section 5 presents some methods of constructions of new trapdoor accelerators in terms of 
known ones. In Section 6 we discuss the possible impact of proposed algorithms.

2. Schubert cellular graphs over the fields 
commutative ring

The missing definitions of graph-theoretical concepts which appear in this paper can be found 
in [17], [18] or [19]. All graphs we consider are simple graphs, i.e. undirected without loops and 
multiple  edges.  Let  V(G) and  E(G) denote  the  set  of  vertexes  and  the  set  of  edges  of  G 
respectively. When it is convenient, we shall identify G with the corresponding anti-reflexive 
binary relation on  V(G),  i.e.  E(G) is a subset of  V(G)∙V(G)  and write  v G u for the adjacent 
vertexes u and v (or neighbours). We refer to |{ x ϵ V(G)| xGv }| as degree of the vertex v. The 
incidence structure is the set V with partition sets P (points) and L (lines) and symmetric binary 
relation I such that the incidence of two elements implies that one of them is a point and another 
one is a line. We shall identify I with the simple graph of this incidence relation or bipartite 
graph. The pair x,y, xϵP, yϵL such that x I y is called a flag of incidence structure I. Projective 
geometry  n-1PG(Fq) of dimension n-1 over the finite field Fq, where q is a prime power, is a totality 
of proper subspaces of the vector space   V=(Fq) n of nonzero dimension.

This is the incidence system with type function t(W)=dim(W), W ϵ  n-1 PG(Fq) and incidence 
relation I defined by the condition W1IW2 if and only if one of these subspaces is embedded in 
another one. We can select standard base e1, e2,…, en of V and identify n-1PG(Fq) with the totality of 
linear codes in (Fq)n.The geometry   n-1ℾ(q)= n-1PG(Fq)  is a partition of subsets  n-1ℾ(q) i  consisting of 



elements of selected type i, i=1,2, …, n-1. We assume that each element of V is presented in the 
chosen base as column vector  (x1,  x1,  … , xn). Let  U stands for the unipotent  subgroup of 
automorphism group PGLn(Fq)  consisting of lower unitriangular matrices. 5

Let us consider orbits of the natural action of U  on the projective geometry  n-1PG(Fq). They 
are known as large Schubert  cells.  Each of   orbits  on the set  ℾm(Fq) contains exactly one 
symplectic element spanned by elements ei(1), ei(2), ..., ei(m).  So the number of orbits of (U, ℾm(Fq)) 
equals  to  binomial  coefficient  Cm

n (n,m). Noteworthy  that  the  cardinality  of   n-1 ℾm(Fq) is 
expressed by Gaussian binomial coefficient.  Unipotent subgroup U is generated by elementary 
transvections xi,j(t), i<j, tϵFq.  If we select i and j then  elements of kind  xi,j(t)  form root subgroup 
Ui,j, corresponding to the positive root ei-ej  of root system An-1.  

Let J be a proper subset of {1, 2, …, n}=N, JS be Schubert cell containing symplectic subspace 
WJ spanned by ej  ϵ J, ∆(J)= { (i,j) | iϵ J, jϵN-J, i<j }. Then a subgroup U(J) generated by root 
subgroups Ui,j, (i, j) ϵ  ∆(J)  of order qk, k= |∆(J)| acts regularly on JS. It means that we can identify 
JS  and U(J).Noteworthy that each ℾm(Fq) has a unique largest Schubert cell of size q m(n-m), it is JS 
for J={n, n-1, n-2, … , n-m+1}. We denote this cell as mLS(q).   We consider the bipartite graph 
m,kIn(Fq) of the restriction  of I onto disjoint union mLS(Fq) and kLS(Fq). It is bipartite graph with 
bidegrees  qr and qs where r=|∆({n, n-1, n-2, …, n-m+1})- ∆({n, n-1, n-2, … , n-m+1}) ∩∆({n, n-1, n-2, 
… , n-k+1}) |  and s=|∆({n, n-1, n-2, … , n-k+1}) - ∆({n, n-1, n-2, …, n-m+1})∩ ∆({n, n-1, n-2, …, n-
k+1})|. We refer to the graph of binary relation  m,kIn(Fq) as Cellular Schubert graph and denote it 
as m,kCSn(Fq) graph. In particular case n=2m+1, k=m these graphs are known as Double Schubert 
graphs [ 33].

Let K be a commutative ring. We consider  group U=Un(K) of lower unitriangular n times n 
matrices with the  entries from K. Let ∆ be the totality of all entries of (i, j), 1 ≤  i<j ≤ n, i. e. totality 
of positive roots from An-1. We identify element M from Un(K) with the function f: ∆→ K such 
that f(i,j)=mi,j. The restriction M|D of M on subset D of ∆ is simply f|D.   For each proper nonempty 
subset J of {1, 2, …, n } we define U(J) as totality of matrices M=(mi,j) from U such that (i, j) ϵ{∆- 
∆(J)} implies that  mi,j=0.  We  define incidence system  n-1PG(K) as a totality of pairs (J, M), M 
ϵU(J) with type function t(J, M)=|J| and incidence relation given by conditions (1J,  1M) I (2J, 2M)  if 
and only if one of subsets 1J and 2J is embedded in another one and  1M-2M) | ∆(1J )∩∆(2J) =1M ∙ 
2M-2M ∙ 1M.  We refer to this incidence system as projective geometry scheme over commutative 
ring K.  If K=F is the field  then n-1PG(F) coincides with n-1-dimensional projective geometry over 
F, i. e. totality of proper nonzero subspaces of the vector space F n(see [21] and further references) 
where the reader can find similar interpretations of  Lie geometries and their Schubert cells, 
their  generalisations  via pairs of type (irreducible root system, commutative ring  K). The 
concept of large and small Schubert cell in the classical case of field is presented in [34], [35].

We introduce ℾm(K), mLS(K) and graphs m,k CS 
n(K) for m=1, 2,  …, n-1 via simple substitution of 

K instead Fq.
We refer to disjoint union of mLS(K), m=1, 2, …, n-1 with the restriction of incidence relation I 

and type function t on this set as Schubert geometry scheme of type An-1 over commutative ring 
K. We refer to elements of this incidence system as linear codes of Schubert type.  We can define 
Schubert schemes over other Dynkin-Coxeter diagrams.



3. Linguistic graphs of type (r, s, p) and symbolic 
computations

Let K be a commutative ring. We refer to an incidence structure with a point set P=Ps,m=Km+s and 
a line set L=Lr,m=Km+r as linguistic incidence structure I m(K) of type (r, s, m) if point  x=(x1, x2,…,  
xs, xs+1, xs+2,…,  xs+m) is incident to line y=[y1, y2, …, yr, yr+1, yr+2, …, yr+m] if and only if the following 
relations hold

a1xs+1+b1yr+1=f1(x1, x2 ,..., xs, y1, y2,… , yr)

a2xs+2+b2yr+2=f2(x1, x2, ..., xs, xs+1, y1, y2, … , yr, yr+1)
                              
                                          ... 

amxs+m+bmyr+m=fm(x1, x2, …, xs, xs+1, …, xs+m, y1, y2, … , yr, yr+1, …, yr+m) 

where aj and bj, j=1,2, …, m are not zero divisors, and fj are multivariate polynomials with 
coefficients from K. Brackets and parenthesis allow us to distinguish points from lines (see  [20], 
[21] and further references).

The colour ρ(x)=ρ((x))  (ρ(y)=ρ([y])) of point  (x)  (line [y])  is defined as projection of an 
element (x) (respectively [y]) from a free module on its initial s (relatively r) coordinates. As it 
follows from the definition of linguistic incidence structure for each vertex of incidence graph 
there exists the unique neighbour of a chosen colour.

We refer to ρ((x))=(x1, x2, …, xs) for  (x)=(x1, x2, …, xs+m) and  ρ([y])=(y1, y2, …, yr) for  [y]=[y1,  
y2, … , yr+m] as the colour of the point and the colour of the line respectively.

For each bϵ Kr and p=(p1, p2, …, ps+m)  there is the unique neighbour of the point [l]=Nb(p) with 
the colour b. Similarly, for each c ϵ Ks and line l=[l1, l2, …, lr+m] there is the unique neighbour of 
the line (p)= Nc([l]) with the colour c.  We refer to operator of taking the neighbour of vertex 
accordingly  chosen colour as neighbourhood operator.  

On the sets  P  and  L of  points  and lines of  linguistic  graph we define jump operators 
1J=1Jb(p)=(b1, b2, …, bs, p1+s, p2+s, …, ps+m), where (b1, b2, …, bs)ϵKs  and 2J=2Jb([l])=[b1, b2, …, br, l1+r,  
l2+r, …, lr+m], where (b1, b2, …, br)ϵKr. We refer to tuple (s, r, m) as type of the linguistic graph I.  If 
(p1, p2, ...., ps+m) and [l1, l2, ..., lr+m] are point and line of some linguistic graph I(K) of the  type (s, r,  
m) over K then the values of jump operators do not depend on the choice of linguistic graph I(K).

We refer to a linguistic graph Im(K) where K  is a commutative ring with the unity as Jordan-
Gauss graph if each monomial term of fi, i=1, 2,...., m is of kind axiyj, a≠0.  

Let Li=L(fi) be the list of nonzero monomial terms of fi with coefficients equals 1.
We refer to the triple (s, r, m) and lists Li, i=1, 2,...,m  as linguistic symbolic scheme S =S(Im(K)) 

and say that linguistic graph Im(K) with parameters ai, bi,  i=1,2,....m and polynomials fi, i=1,2,...,  
m is  the interpretation of  S.  Noteworthy that  linguistic  scheme does not  depend on the 
commutative ring K. We refer to linguistic graphs 1Im(K) and 2Im(K’) as symbolically equivalent if 
S(1Im(K)) =S(2Im(K’)).

Note that commutative rings K and K’ can be different.



Let K be a subring of K’. We say that  the interpretation  of S has type (K’, K)  if point sets and 
line  set  are  affine  spaces  over  K’  but coefficients ai,  bi,   i=1,2,....m  are  elements  of  the 
multiplicative group K* and coefficients of the  polynomials fi ,  i=1,2,..., m are elements of K.

We will use the case when K’=K[z1, z2,  ..., zm+s] for arbitrary chosen K  to define  the  map 
from Ks+m to itself. 

Assume that graph Im(K)  has parameters ai ,  bi  and symbolic scheme S  is  defined by 
polynomials fi. Let Im(K[ z1, z2, ..., zl]) be the interpretation of S of type (K[z1,z2,..., zl], K) given by 
same parameters ai, bi and monomial terms of fi.

Algorithm 1 (construction of  endomorphisms of K[z1,  z2,…,  zs,  zs+1,zs+2,…,  zs+m]  via the 
sequence of linguistic graphs of type (s, r, m)).

We select the linguistic graph Im(K) of type (s, r, m) with symbolic scheme S and graphs 1Im(K) 
of type (r, s, m), 2Im(K) of type (s, r, m),..., graph 2t+1Im of type  r, s, m with the symbolic schemes iS,  
i=1, 2,..., 2t+1.

We consider the graphs Im(K[z1, z2, ..., zs+m]) together with
jIm(K[z1, z2,..., zm+s]) , j ≥ 1 and select the polynomial tuples 
 0H=(0h1(z1, z2,..., zs), 0h2(z1, z2, ..., zs), ..., 0hs(z1, z2, ..., zs)), 
0G=( 0g1(z1, z2, ..., zs), 0g2(z1, z2, ..., zs),...,  0gr(z1, z2, ..., zs)), 
  1H=(1h1(z1, z2,..., zs), 1h2(z1, z2, ..., zs), ..., 1hr(z1, z2, ..., zs)), 
1G= ( 1g1(z1, z2, ..., zs), 1g2(z1, z2, ..., zs),...,  1gs(z1, z2, ..., zs)),
2H=(2h1(z1, z2,..., zs),2h2(z1, z2, ..., zs), ..., 2hs(z1, z2, ..., zs)),
2G= ( 2g1(z1, z2, ..., zs), 2g2(z1, z2, ..., zs),...,  2gr(z1, z2, ..., zs)),
...,   
2t+1H=(2h1(z1, z2,..., zs),2h2(z1, z2, ..., zs), ..., 2hr(z1, z2, ..., zs)),
2t+1G= ( 2tg1(z1, z2, ..., zs), 2tg2(z1, z2, ..., zs),...,  2tgs(z1, z2, ..., zs)),
  H=H2t+2=(h1(z1, z2,..., zs), h2(z1, z2, ..., zs), ..., hs(z1, z2, ..., zs)).
Let Nb be the neighbourhood operator of Im(K[z1, z2,..., zm+s]) and jNb be the neighbourhood 

operator of jIm(K[z1, z2,..., zm+s]), j=1, 2,..., 2t+1.
Let us take a special point (z1, z2 , ..., zs, zs+1, zs+2,..., zm+s)=(z) and  compute 
1Jb(0) ((z))  = 0(z) in the graph Im(K[z1, z2, ..., zs+m]) with b(0)= 0H,
 Nc(0) (0(z))= 0([u])   in Im(K[z1, z2, ..., zs+m]) with c(0)= 0G, 
1Jb(1) (0([u]))=1([z])  in the graph 1Im(K[z1, z2,..., zm+s])  with b(1)= 1H,    
1Nc(1) (1([z]))= 1(u)        in the graph 1Im(K[z1, z2,..., zm+s]) with c(1)= 1G,  
1Jb(2) ( 1(u))=2(z)       in the graph 2Im(K[z1, z2,..., zm+s]) with b(2)= 2H,    
2Nc(2) ( 2(z))=2(u)      in the graph  2Im(K[z1, z2,..., zm+s]) with c(2)2= 2G,
…..
1Jb(2t+1) (2t([u]))=2t+1([z]) in the graph 2t+1Im(K[z1, z2,..., zm+s])  with b(2t+1)= 2t+1H,    
1Nc(2t+1) (2t+1([z]))= 2t+1(u) in the graph 2t+1Im(K[z1, z2,..., zm+s]) with c(2t+1)= 2t+1G.

Finally we compute u as   2Jb (2t+1(u)) with b=H.
Assume that u=(h1(z1, z2,..., zs), h2(z1, z2,...,zs),..., hs(z1, z2,...., zs), gs+1(z1, z2,..., zs, zs+1, zs+2,..., zs+m),  

gs+2(z1, z2,..., zs, zs+1, zs+2,..., zs+m), ...,  gs+m(z1, z2,..., zs, zs+1, zs+2,..., zs+m)).
          We consider the polynomial map F of Ks+m to itself  given by the following rule.
  z1 →h1(z1, z2,..., zs),
z2 → h2(z1, z2,..., zs),
...,



 zs→ hs(z1, z2,...., zs),

zs+1     →  gs+1(z1, z2,..., zs, zs+1, zs+2,..., zs+m), 
zs+2 →  gs+2(z1, z2,..., zs, zs+1, zs+2,..., zs+m), 
..., 
zs+m → gs+m(x1, x2,..., xs, xs+1, xs+2,..., x s+m).

We refer to linguistic graphs 1Im(K) and 2Im(K) of types (s, r, m) and (r, s, m) as  graphs of 
adjacent types. Let 

I*m(K) stands for the dual graph to Im(K) obtained via  the replacement of partition sets P and 
L.

So graphs Im(K) and  I*m(K)  are isomorphic graphs of adjacent types.
The transformation F is  defined via  the sequence of  linguistic  graphs of  consecutively 

adjacent types Im(K)=0Im(K), 1Im(K),  2Im(K), ...,2t+1Im(K) and listed above  sequences of tuples iH, 
i=0, 1, ..., 2t+2 and iG, i=0, 1, 2, ..., 2t+1 with coordinates  from K[z1, z2, ..., zs] of length s or r.

Proposition 1 [22] . Let z1 →h1(z1, z2,..., zs), z2 → h2(z1, z2,..., zs),..., zs→ hs(z1, z2,...., zs) be a 
bijective map B from Ks onto Ks. Then transformation F=F(jIm(K), jG, iH), j=0, 1, …, 2m+1, i=0, 1, …, 
2m+2 is a bijective  map of Ks+m to itself.

Proposition 2 [ 22]. Let the conditions of the Proposition 1 holds and the polynomial map B 
has a trapdoor accelerator. Then  the  standard form G of L1FL2  where  L1 and L2  are affine 
transformations from AGLn(K), n=s+m has a trapdoor accelerator.

Proof. We justify the Proposition 2 via the construction of trapdoor accelerator for G. 
Assume  that condition of Proposition 1 holds. We assume that Alice and Bob share the 

standard form of G. Alice poses the trapdoor accelerator T of B and the knowledge on graphs 
Im(K) and tuples jG and iH.

Alice  will  work  with the  intermediate  vector u  =  (u1,  u2,..., us+m). She  selects  affine 
transformation L1 from AGLs+m(K) of kind

 z1 →L1(z1, z2,..., zm+s) =u1, 

 z2 →L2(z1, z2,..., zm+s) =u2, 

…,
zs+m →Ls+m(z1, z2,..., zm+s)=um+s, 

Alice computes (w1(z1,  z2,  ....,  zm+s), w2(z1,  z2,  ....,  zm+s),…, wm+s(z1,  z2,  ....,  zm+s)) =w via the 
substitution of written above expressions for ui into   F(u1, u2, …um+s).  She selects another affine 
transformation L2 from AGLm+s(K) and compute L2(w)=(g1(z1, z2,..., zm+s), g2(z1, z2,..., zm+s), ..., gm+s(z1,  
z2,..., zm+s)). Alice announces publicly  the standard form of the map G: zi →gi, i=1, 2,..., m+s.

The trapdoor accelerator T for G consists of graphs Im(K) of type (s, r, m) , linguistic graphs 
jIm(K), tuples iH , i=0, 1,..., 2t+2 and iG, i=0, 1,..., 2t+1 with coordinates from K[z1, z2,..., zs] and affine 
transformations Li, i=1, 2.

Assume that Alice gets the value c =(c1 , c2 , ...,   cm+s ) of G(p1 , p2 , ...,   pm+s ). She computes (L2)-

1(c)=1c=(1c1 , 1c2 , ...,   1cm+s). Alice works with the equations

h1(u1, u2,..., us)= 1c1,
h2(u1, u2,..., us)= 2c1,
…,



hs(u1, u2,..., us)= sc1,
She is getting the solution ui=ti, i=1, 2,...,s from Ks. Let (11, t2, …, ts)=(t).

She  computes tuples  2t+1G(t1, t2,..., ts)=a(2t+1), H2t+1(t1, t2,..., ts)=b(2t+1), 2tG(t1, t2,..., ts)=a(2t),  
H2t(t1, t2,..., ts)=b(2t), ..., G0(t1, t2,..., ts)=a(0),  H0(t1, t2,..., ts)=b(0).

Alice works with the sequence of graphs jIm(K), ,j=2t+1, 2t,..., 1, 0.
She computes 2Ja(2t+1)(c )=2t+1c and treat it as vertex of the graph 2t+1Im(K) Then Alice computes 

the neighbours Nb(2t+1)(2t+1c)=2t+1b of this vertex  in  2t+1Im(K) and treat it as a vertex  of graph 2t 

Im(K). So, she computes the 2Ja(2t)(2t+1b)=2tc.  Then Alice computes the neighbour Nb(2t)(2tc)=2tb in 
the graph 2t Im(K). She continue this process.

Finally Alice gets Ja(1)( 2b)=1c and Nb(1)(1c)=1b together with Ja(0)(1b)=0c and Nb(0)( 0c)=0b.
So she gets (u*) as 1J(t)( 0b)=(t1, t2, ..., ts, us+1, us+2,..., us+m).
Alice computes the plaintext (p) as (L1)-1(u*).
Remark. We can substitute elements L1 and L2   by surjective affine map L’1  of affine space 

Kn’ onto Kn, n’>n and surjective map L’2 of affine space Km onto Km’, m≥m’ and get surjective map 
L’1 F L’2 of affine space Kn’ onto Km’.

1) Algorithm 2. 
 Let us assume that s>r.  We select the linguistic graph Im(K) of type (s, r, m) with symbolic 

scheme S and graphs 1Im(K) of type (r, s, m), 2Im(K) of type (s, r, m),..., graph 2tIm of type  r, s, m 
with the symbolic schemes iS, i=1, 2,..., 2t.  Similarly to algorithm 1 we consider the graphs 
Im(K[z1, z2, ..., zs+m]) together with

jIm(K[z1, z2,..., zm+s]) , j ≥ 1 and select the polynomial tuples 
 0H=(0h1(z1, z2,..., zs), 0h2(z1, z2, ..., zs), ..., 0hs(z1, z2, ..., zs)), 
0G=( 0g1(z1, z2, ..., zs), 0g2(z1, z2, ..., zs),...,  0gr(z1, z2, ..., zs)), 
  1H=(1h1(z1, z2,..., zs), 1h2(z1, z2, ..., zs), ..., 1hr(z1, z2, ..., zs)), 
1G= ( 1g1(z1, z2, ..., zs), 1g2(z1, z2, ..., zs),...,  1gs(z1, z2, ..., zs)),
2H=(2h1(z1, z2,..., zs),2h2(z1, z2, ..., zs), ..., 2hs(z1, z2, ..., zs)),
2G= ( 2g1(z1, z2, ..., zs), 2g2(z1, z2, ..., zs),...,  2gr(z1, z2, ..., zs)),
...,   
2tH=(2h1(z1, z2,..., zs),2h2(z1, z2, ..., zs), ..., 2hs(z1, z2, ..., zs)),
2tG= ( 2tg1(z1, z2, ..., zs), 2tg2(z1, z2, ..., zs),...,  2tgr(z1, z2, ..., zs)),
H=H2t+1=(h1(z1, z2,..., zs), h2(z1, z2, ..., zs), ..., hr(z1, z2, ..., zs)).

As in the algorithm 1 we take a special point (z1, z2 , ..., zs, zs+1, zs+2,..., zm+s)=(z) and  compute 
1Jb(0) ((z))  = 0(z) in the graph Im(K[z1, z2, ..., zs+m]) with b(0)= 0H,
 Nc(0) (0(z))= 0([u])   in Im(K[z1, z2, ..., zs+m]) with c(0)= 0G, 
1Jb(1) (0([u]))=1([z])  in the graph 1Im(K[z1, z2,..., zm+s])  with b(1)= 1H,    
1Nc(1) (1([z]))= 1(u)        in the graph 1Im(K[z1, z2,..., zm+s]) with c(1)= 1G,  
1Jb(2) ( 1(u))=2(z)       in the graph 2Im(K[z1, z2,..., zm+s]) with b(2)= 2H,    
2Nc(2) ( 2(z))=2(u)      in the graph  2Im(K[z1, z2,..., zm+s]) with c(2)2= 2G,
…..
1Jb(2t) (2t-1([u]))=2t([z])   in the graph 2tIm(K[z1, z2,..., zm+s])  with b(2t)= 2tH,    



1Nc(2t) (2t([z]))= 2t(u)        in the graph 2tIm(K[z1, z2,..., zm+s]) with c(2t)= 2tG.

Finally we compute u as   2Jb (2t(u)) with b=H.
Assume that u=(h1(z1, z2,..., zs), h2(z1, z2,...,zs),..., hr(z1, z2,...., zs), gs+1(z1, z2,..., zs, zs+1, zs+2,..., zs+m),  

gs+2(z1, z2,..., zs, zs+1, zs+2,..., zs+m), ...,  gs+m(z1, z2,..., zs, zs+1, zs+2,..., zs+m)).

We consider the polynomial map F of Ks+m to Kr+m itself  given by the following rule
(z1, z2,..., zs, zs+1, zs+2,..., zs+m)→(h1(z1, z2,..., zs), h2(z1, z2,..., zs),..., hs(z1, z2,...., zr), gs+1(z1, z2,..., zs,  

zs+1, zs+2,..., zs+m), 
 gs+2(z1, z2,..., zs, zs+1, zs+2,..., zs+m), ...,  gs+m(x1, x2,..., xs, xs+1, xs+2,..., x s+m).
The transformation F is defined via the sequence of linguistic graphs
of  consecutively  adjacent  types  Im(K)=0Im(K), 1Im(K),  2Im(K), ...,2tIm(K) and  listed  above 

sequences of tuples iH, i=0, 1, ..., 2t+1 and iG, i=0, 1, 2, ..., 2t with coordinates  from K[z1, z2, ..., zs] 
of length s or r.

Proposition  3 [22]. Let ( z1 , z2,   …, zs)→( h1(z1, z2,..., zs), h2(z1, z2,..., zs),..., hr(z1, z2,...., zs) be a 
surjective  map B from Ks onto Kr. Then transformation F=F(jIm(K), jG, iH), j=0, 1, …, 2m+1, i=0, 1, 
…, 2m+2 is a surjective  map of Ks+m to Kr+m .

Proposition  4 [22]. Let the conditions of the Proposition 1.1 holds and the polynomial map 
B has a trapdoor accelerator.

Assume that L’1 and L’2   are  surjective affine maps   of affine space Kn’ onto Kn, n’>n and 
affine space Km onto Km’, m≥m’ respectively . Then polynomial surjective map L’1 F L’2 of affine 
space Kn’ onto Km’ also has a trapdoor accelerator.

Below we present a modification of Algorithm 1.

Let Im(K) be a linguistic graph of type (s, r, m). We
define its digraph cover D(Im(K))  as the following directed graph.
The set of  vertexes of D(Im(K))  is subdivided  into  two blocks.
3The first one PLm(K)  is the totality of ordered flags of kind   ((p) , [l])  of the incidence 

structure Im(K) where (p)=(p1, p2,..., ps, ps+1,..., ps+2,..., ps+m), [l]=[l1, l2,..., lr, lr+1, lr+2,..., lr+m] such that 
(p)I[l] and the totality

LPm (K)  of ordered flags of kind [[l], p]  and binary relation  ψ  which is defined via the 
conditions

 ((p), [l])ψ[[l’], (p’)] if  [l]=[l’] and (p)≠(p’), [[l],(p)]ψ((p’), [l])) if 
(p)=(p’), [l] ≠[l’].

We refer to pair of tuples <(p1, p2,..., ps), [l1, l2, ..., lr]> of ((p), [l]) from PLm(K) as the colour of 
the flag. We say that (p1,p2,…,ps) and [l1,l2,…,ls] are internal and external colours of the flag ((p),  
[l]). The information on the flag can be given by the tuple (p1, p2, ..., ps, ps+1 , ps+2,..., ps+m, l1, l2, ..., lr).  
Dual presentation of ((p), [l]) is (p1, p2,…, ps, l1, lr+2,…, lr+m, l1, l2,…, lr)* given via the coordinates of 
line.

Similarly we say that [l1, l2,...,lr] and (p1,p2,…,ps) are internal and external colours of [[l],(p)].  
The information on this flag can be given by the tuple [l1,l2,..., lr, lr+1, lr+2,..., lr+m, p1, p2,..., ps] or dual 
presentation [l1,l2,..., lr, ps+1, ps+2,..., ps+m, p1, p2,..., ps]*.



We introduce operator of change the colour 1JCa,  a=(p’1, p’2,..., p’s, l’1, l’2,..., l’r) [(p), [l])]= (p1’,  
p’2, ..., p’s, ps+1, ps+2,..., ps+m, l’1, l’2,..., l’r) acting on PLm(K) and operator 2JCa , a=(l1’, l’2,...., l’r, p’1,  
p’2,..., p’s), 2JCa([[l],(p)]) [l’1, l’2,..., l’r, lr+1 ,lr+2, ..., lr+m, p’1, p’2 ,...p’s] acting on the set LPm(K).

Algorithm 3.

Alice takes the sequence of graphs  D(Im(K)), D(  lIm(K)), l=1,2,…,t. She will work with the 
multivariate  ring  K’=K[z1,  z2,…,  zs,  zs+1,  zs+2,…,  zs+m,  z1s+m+1,  zs+m+2,  …,  zs+m+r ] and  graphs 
D(Im(K’)),D( lIm (K’)).

Alice selects  the tuple  0H=(h1, h2,…, hs, g1, g2,…, gr) ,  H’=(h’1, h’2,…, h’s, g’1, g’2,…, g’r) and 
iH=(ih1, ih2,…, ihs, ig1, ig2,…, igr) from (K’)s+r . She takes the flag  (z)=( z1, z2,…, zs, zs+1, zs+2,…, zs+m, 
zs+m+1, zs+m+2, …, zs+m+r ) of Im(K’).

Assume that for ((p),[ l]) from  j PL(Im(K’)), j=1.2,…,t-1 symbol ((p),[ l])*  
means ([l], (p)) from j+1PL(Im(K’)). If ((p),[ l]) is a flag from tPL(Im(K’)) then ((p),[ l])*  is  ([l], (p))  

from t-1PL(Im(K’)).
Alice uses operator    1Ja, a= 0H and computes    1z =1Ja(z)=( h1, h2,…, hs, z s+1, zs+2,…, zs+m, g1, g2,… 

gr) in  the graph D(Im(K)). She computes (1u)=(1z)*= [ g1, g2,… gr, z’ s+1, z’s+2,…, zs’+m, h1, h2,…, hs] of 
the graph 1Im (K’) where [ g1, g2,… gr, z’ s+1, z’s+2,…, zs’+m] is the neighbour of ( h1, h2,…, hs, z s+1,)  
zs+2,…, zs+m) in Im(K’).

2Next Alice uses 1Ja(1),  a(1)=  1H  and computes   1Ja(1)(1u)= 2z  in the graph 1Im (K’)   and 
(2u)=( 2z)* from 2Im (K’).

She continue this procedure and constructs (iu), i=3.4,…, t. Alice takes (tu) from tIm (K’) 
and uses  2Jb, b= H’ for the computation of u=1J(tu) of  kind ( h’1, h’2,…, h’s, v1, v2, …, vm, g’1,  

g’2,…, g’r) or (g’1, g’2,…, g’r, v1, v2, …, vm, h’1, h’2, …, h’s) dependently on t mod 2.
She uses  the following map G= G=G(jIm(K), iH, H’), i=0,1,…,t as the output of the algorithm. 
z1→h’1(z1, z2,…, zs, zs+m+1, zs+m+2, …, zs+m+r),

z2→h’2(z1, z2,…, zs, zs+m+1, zs+m+2, …, zs+m+r),

…
zs→h’s(z1, z2,…, zs, zs+m+1, zs+m+2, …, zs+m+r),

zs+1→v1(z1, z2,…, zs, zs+1, zs+2,…, zs+m,  zs+m+1, zs+m+2, …, zs+m+r),

zs+2→ v2(z1, z2,…, zs, zs+1, zs+2,…, zs+m,  zs+m+1, zs+m+2, …, zs+m+r),

…,
zs+m→vm(z1, z2,…, zs, zs+1, zs+2,…, zs+m,  zs+m+1, zs+m+2, …, zs+m+r),

z1+s+m→g’1(z1, z2,…, zs zs+m+1, zs+m+2, …, zs+m+r),

z2+s+m→g’2(z1, z2,…, zs, zs+m+1, zs+m+2, …, zs+m+r),

…
zr+s+m→g’r(z1, z2,…, zs,, zs+m+1, zs+m+2, …, zs+m+r).

Proposition 5 [22]. Let z1 →h’1(z1, z2,..., zs zs+m+1, zs+m+2, …, zs+m+r), z2 → h’2(z1, z2,..., zs , zs+m+1,  
zs+m+2, …, zs+m+r),..., zs→ h’s,(z1, z2mzs, zs+m+1, zs+m+2, …, zs+m+r), z1+s+m→g’1(z1, z2,…, zs zs+m+1, zs+m+2, …, 
zs+m+r),  z2+s+m→g’2(z1, z2,…, zs zs+m+1, zs+m+2, …, zs+m+r), …,  ), zr+s+m→g’r(z1, z2,…, zs , zs+m+1, zs+m+2, …,  
zs+m+r) 

be a bijective map B from Ks+r onto Ks+r. Then transformation G=G(jIm(K), iH, H’), j=0, 1, …, t is 
a bijective  map of Ks+r+m to itself.



Proposition 6 [22]. Let the conditions of the Proposition 3 holds and the polynomial map B 
has a trapdoor accelerator. Then  the  standard form F of L1GL2  where  L1 and L2  are affine 
transformations from AGLn(K), n=s+r+m has a trapdoor accelerator.

The justification of this statement can be obtained via the modification of the procedure in 
the proof of Proposition  2. 

4. On the examples of Schubert cellular graphs, their 
symplectic quotients and cryptographic algorithms

Let us consider graphs m,m-1CS m+k-1(F) over the field F which are induced subgraphs of projective 
geometry PGm+k-1(F)  with  vertices  from  the  largest  Schubert  cells  on  the  totalities of 
m=dimensional and m-1 dimensional subspaces of the vector space Fm+k. They can be defined as 
totalities of points (x)=(x1, x2,…,xk, x1,1, x1,2,….,x k,m-1 ) and lines [y]=[y1, y2,…,ym-1, x1,1, x1,2,….,x k,m-1]  
from F k(m-1)+kand  F k(m-1)+m-1    where indexes of coordinates of kind i,j for` i=1,2,…,k and j=1,2,…,  
m-1 are 1ordered lexicographically and the point (x) is  incident  to the line [y]  if and only if the 
conditions for each pair i,j. 

Thesymbolic type S of this graph is the triple (k, m-1, k(m-1)) and the  list of Li,j={xi yj} ordered 
lexicographically. Let K be  commutative ring with the unity then graph m,m-1CS m+k-1(K) is defined 
via the change of F for K.

Let Ik(m-1)(K) be the Jordan-Gauss graph over K  symbolically equivalent to m,m-1CS m+k-1(K) then 
corresponding equations are ai,jxi,j- bijyi,j= ci,jxiyj where ai,j and bij  are elements of multiplicative 
group K* and ci,j are elements from K-{0}.

We can see that arbitrary nonempty subset  M of  {(11),(1,2),…, (m-1, m-1)}  is define the 
symplectic quotient IM of Ik(m-1)(K).

Other special case of cellular Schubert graph is m,1CSm(F) of type (m-1, m-1, 1) when we have 
points and lines of kind  (x1, x2,…, xm) and  [y1, y2, …., ym] and equation xm-ym=x1y1 +x2y2+…
+xm-1ym-1. Symbolically equivalent to m,1CSm(F)  will be Jordan-Gauss graph of type (m-1, m-1, 1)  
with the incidence given by an equation of kind axm-bym=c1x1y1 +c2x2y2+…+cm-1xm-1ym-1 with a and 
b from the multiplicative group K* and ci from K-{0}.

Let us consider special homomorphisms of linguistic graphs and  corresponding semigroups. 
Let I(K) be linguistic graph  over commutative ring K defined in section  and M = {m(1), m(2),…, 
m(d)} be a subset of {1, 2, …, m} (set of indexes for equations). Assume that equations indexed by 
elements from M of the following kind

am(1)+s xm(1) -bm(1)ym(1)+r=fm(1)(x1, x2 ,  …, xs ,y1, y2, …  , yr)

am(2)xm(2)+s -bm(2)ym(2)+r= fm(2)(x1, x2, … ,xs,xm(1)+s,y1, y2, …  , yr,, ym(1)+r)
)…
am(d)xm(d)+s -bm(d)ym(d)+r =fm(d) (x1, x2, … , xs,, ,xm(1)+s, xm(2)+s,… , xm (d-1)+s, y1, y2, …  , yr,, ym(1)+r, ym(2)+r,,… , ym (d-1)+r) 

define other linguistic incidence structure  IM..
Then the natural projections δ1,: (x)→(x1, x2, … , xs,, xm(1)+s, xm(2)+s,… , xm(d)+s) and δ2: [y]→[y1, y2, … , 

yr, ym(1)+r,ym(2)+r,…  , y m(d)+r]  of free modules define  the natural homomorphism  δ of incidence 
structure I onto I’=IM.. We will use the same symbol ρ for the colouring of linguistic graph IM..

It  is clear,  that  δ  is colour preserving homomorphism of incidence structures (bipartite 
graphs). We refer to δ as symplectic homomorphism and graph IM  as symplectic quotient of 



linguistic graph I. In the case of linguistic graphs defined by infinite number of equations we 
may consider symplectic quotients defined by infinite subset  M  (see [22] where symplectic 
homomorphism was used for the cryptosystem construction).

As it follows from the definition the symplectic quotient of Jordan-Gauss graph is also 
Jordan-Gauss graph.

For each linguistic graph I and M={1, 2,…,d}, d<m there is the  symplectic quotient IM. 
Let  us  consider  graphs m,m-1CS m+k-1(F)  over the field F  which are induced subgraphs of 

projective geometry PGm+k-1(F) with vertices from the largest Schubert cells on the totalities of 
m=dimensional and m-1 dimensional subspaces of the vector space Fm+k. They can be defined as 
totalities of points (x)=(x1, x2,…,xk, x1,1, x1,2,….,x k,m-1 ) and lines [y]=[y1, y2,…,ym-1, x1,1, x1,2,….,x k,m-1]  
from F k(m-1)+kand  F k(m-1)+m-1    where indexes of coordinates of kind i,j for` i=1,2,…,k and j=1,2,…,  
m-1 are 1ordered lexicographically and the point (x) is  incident  to the line [y]  if and only if the 
conditions for each pair i,j. The symbolic type S of this graph is the triple (k, m-1, k(m-1)) and the 
list of Li,j={xi yj} ordered lexicographically. Let K be  commutative ring with the unity then graph 
m,m-1CS m+k-1(K) is defined via the change of F for K.

Let Ik(m-1)(K) be the Jordan-Gauss graph over K  symbolically equivalent to m,m-1CS m+k-1(K) then 
corresponding equations are ai,jxi,j- bijyi,j= ci,jxiyj where ai,j and bij  are elements of multiplicative 
group K* and ci,j are elements from K-{0}.

We can see that arbitrary nonempty subset  M of  {(11),(1,2),…, (m-1, m-1)}  is define the 
symplectic quotient IM of Ik(m-1)(K).

Let us consider trapdoor  accelerators defined in terms of cellular Schubert graphs.
We introduce the degree of the tuple from K[z1, z2, ...., zp], p>1 as maximal degree of its 

coordinates as multivariate polynomials.
Proposition 7 [22]. Let the condition of Proposition 1 holds, graph jIm(K),  j=0,1, …, 2t +1 are 

symbolically equivalent  to l,kCSn(K)  or  its  dual  graph and deg(jH)+deg(jG)≤2,  j=1,2,…,  2t+1,  
deg(H)=2. Then transformation G=F(jIm(K)j, jG, iH), j=0, 1, …, 2t+1, i=0, 1, …, 2m+2 is a bijective 
quadratic  map of Ks+m to itself.

So under the conditions of Proposition 7 the construction of Proposition 2 is a bijective 
quadratic transformations with the trapdoor accelerator.

Proposition 8 [22]. Let the condition of Proposition 3 holds, graph jIm(K),  j=0,1, …, 2t  are 
symbolically equivalent  to l,kCSn(K)  or  its  dual  graph  and deg(jH)+deg(jG)≤2,  j=1,2,…,  2t,  
deg(H’)=2. Then transformation G=F(jIm(K), jG, iH), j=0, 1, …, 2t, i=0, 1, …, 2m+1 is a surjective 
quadratic  map of Ks+m to Kr+m itself.

So under the conditions of Proposition 8 the construction of Proposition 4 is a surjective 
quadratic transformations with the trapdoor accelerator.

Proposition 9 [22]. Let the condition of Proposition 7  holds, graph jIm(K),  j=0,1, …, t  are 
symbolically equivalent to l,kCSn(K) or its dual graph and deg(jh1, jh2, ,,,, jhs)+deg( jg1, jg2, ,,,, jgr)≤2,  
j=0,1,2,…, t, and deg (H’)=2. Then the transformation G=G(jIm(K)j, iH, H’), j=0, 1, …, t is a bijective 
quadratic map of Ks+r+m to itself.

So under the conditions of Proposition 9 the construction of Proposition 6 is a bijective 
quadratic transformations with the trapdoor accelerator.

Remark. We can substitute graphs jIm(K) of the propositions 7, 8 and 9 for the nontrivial 
symplectic quotients of these Jordan-Gauss graphs.



5. On the extensions of known trapdoor accelerators

Let us discuss Algorithm 1 in the case when the conditions of Proposition 2 and Proposition 7 
hold. So graph jIm(K),  j=0,1, …, 2t +1 are symbolically equivalent to l,kCSn(K) or its dual graph and 
deg(jH)+deg(jG)≤2,  j=1,2,…,  2t+1,  and deg(H)=2  and  the  transformation B  has  a  trapdoor 
accelerator T. We suggest the following two options for the construction of the pair (B, T).

1.We take the triangular transformation  Q:x1→a1x1+b1, x2→a2x2+f2(x1), x3→a3x3+f3(x1, x2),…, 
xs→ asxs+fs(x1, x2,…,xs-1) where ai, i=1, 2,…, s are elements from K* and deg fi=2, i=2,3,…,s together 
with two elements D1wn  and D2 from AGLs(K) and define B as D1QD2.

So the standard form of B and the decomposition of B into D1QD2 will be used as a trapdoor 
accelerator.

2. In [1] authors constructed multivariate quadratic  cryptosystem based on Jordan-Gauss 
graphs D(s, K), s>4 of type (1, 1, s).  Corresponding trapdoor accelerator is a standard form of 
automorphism of K[z1, z2,…, zs] and trapdoor accelerator which provides1 the knowledge on the 
graph D(s,K) and the tuple of ring elements of length O(n2). We may assume that the  knowledge 
on the graph is publicly known.

3. We can use the procedure of Algorithm 1 under the conditions of Proposition 2 and 
Proposition 7 in the case of graph s,kCSs, k<s for the construction of B. Alice can select the  tuples 
0H, 0 G, 1 H, 1G,…, 2t+1H, 2t+1G and can choose  2t+1H which defines the transformation from AGLk-

s(K). This way she obtains the quadric bijective  transformation F and  construct B as the map 
D1FD2 ,  D1 , D2 ϵAGLs(K)       on the affine  space Ks.

In the case of finite fields of characteristic 2 Alice can use quadratic automorphism of Fq[z1,  
z2,…, zs] from Matsumoto-Imai Cryptosystem. In the case of general finite field Fq she can use 
bijective encryption map of Oil and Vinegar public key or  use other transformations with the 
trapdoor accelerators from known suggested multivariate schemes.

Remark.  The  simplest  choice  of  linear  transformation  B is  not  appropriate  for  the 
construction of  multivariate public key. Accordingly [22] the choice of B as the element from 
AGLs(K) insures the fact that the inverse map for F is also quadratic transformation. So the 
linearization attack will allow to construct inverse transformation in a polynomial time.

Example 1. 
Let us assume that   the graph Im(K) of the Algorithm 1 is r,r-1CSk+r-1   and the conditions of 

Proposition 7 hold.
The type of this Jordan-Gauss graph is (k, r-1, m) where m=k(r-1). Let us assume  that k=O(n) 

and r=O(n). So m=O(n2),
The interpretation of each graph from the sequence requires 2k(r-1) elements of K* and (r-1) 

elements from K-{0}.
So Alice has to select the parameter t and  form the tuple from (K*)2(2t+2)k(r-1) and the tuple from 

(K-{0})(2t+2)k(r-1) .
Let us assume A that k≥ r-1. She has to form the colours of the point  and line  as the tuples of 

length k  and r-1 with coordinates from K[z1, z2 ,…., zk] of degree 2, 1 and 0. In the entscase of the 
colour of the point  of  degree 2  Alice has to choose ((k(k-1)/2+k+1)k  coefficients from K.  
Roughly the number of parameters  is (1/2)k3. In the case of degree 1 or 0 the numbers will be 
(k+1)k  and k respectively.



In the case of line we get (k(k-1)/2+k+1)(r-1), (k+1)(r-1) and r. Assume that the parameter t has 
size O(n).

The construction of the chain 0H, 0G,  1H, 1G,…  requires O)(n4)  parameters. The trapdoor 
accelerator T can be thought as the sequence of O(n4) elements of the commutative ring. Alice 
has to keep it safely as her private key.

Recall that the dimension of the space of plaintexts is d=k+k(r-1). It means that the trapdoor 
accelerator is a tuple of length O(d2). 

The symbolic type of the graph can be given publicly.
The cost of the computation of the neighbor of vertex in the graph is O(d). The computation 

of the walk with jumps of length O(n) costs O(d3/2) and application of the element from AGLd(K) 
costs O(d2).

Thus the complexity of private decryption procedure is O(d2).

The obfuscation of the algorithm.

a) Let us take permutations 0π, 1π, 2π, , …, 2π
 on the set {1, 2,…,k} and  0µ, 1µ, 2µ,  …,  2t+1µ on the set {1, 2,…, m-1} and change the incidence 

equations of lIm(K), l=1, 2, …, 2t+1for lai,jxi,j  -lbi,jyi,j = lci,jxi’ yj’ where  ‘i=1π(i), j’=lµ(j) and get the new 
graphs lI’m(K).

It is easy to see that graphs  lI’m(K) and  lIm(K)  have different  symbolic type but they are 
isomorphic incidence structures.

We can change graphs lIm(K) for l’Im(K) and construct the new quadratic transformation F’  
with the trapdoor accelerator.

b) We can select a nontrivial subset M of the Cartesian product of {1, 2,…,k} and {1,2….,m-1}  
and consider a symplectic quotient IM(K) instead of Im(K)  in the Proposition 5 The degree of a 
new transformation F’ will be the same. The information on the choice of a subset M can be 
treated as part of the trapdoor accelerator. So the graph IM(K) will be unknown to public.

Example 2. 
Let us assume that the graph Im(K) of the Algorithm 2 is r,r-1CSk+r-1   and the conditions of 

Proposition 6 hold. We assume that k ≥r-1.
In this case Alice also  has a wide choice of options to create appropriate transformation B‘  

from Ks to Kr.
For instance she can use bijective transformations B  on Ks  in the presented above schemes 1 

and 2. Alice takes affine map D from AGLs(K) and surjective affine map D3 from Ks onto Kr and 
forms B’=BD3.

In the case of finite fields K=Fq  we can use for the construction of  B recently developed 
scheme TUOV.

In the case of the field of characteristic 2 Alice can use B of kind (z1, z2,…., zk)→(l1(z1, z2,…,  
zk)2+b1, l2(z1, z2,…, zk)2+b2,…, lr-1(z1, z2,…, zk)2+br-1) where (z1, z2,…., zk)→(l1(z1, z2,…, zk), l2(z1, z2,…,  
zk),…, lr-1(z1, z2,…, zk)) is a linear map of rank r-1.

She can use (z1, z2,…., zk)→(l1(z1
2, z2

2,…., zk
2)+b1, l2(z1

2, z2
2,…, zk

2) +b2,…, lr-1(z1
2, z2

2,…, zk
2)+br-1)  

alternatively.



Alice will use the same  graph Im(K)= r, r-1CSk+r-1    of the Algorithm 1  but under  the conditions 
of Proposition 6.

She will select  that k=O(n) and r=O(n). So m=O(n2). Recall that the interpretation, of each 
graph from the sequence requires 2k(r-1) elements of K* and k(r-1) elements from K-{0}.

Alice selects symbolically equivalent to r, r-1CSk+r-1    graphs jIm(K), m=k(r-1), j=0,1, …, 2t  and 
symbolic colours

0H=(0h1(z1, z2,..., zk), 0h2(z1, z2, ..., zk), ..., 0hs(z1, z2, ..., zk)), 0G=( 0g1(z1, z2, ..., zk), 0g2(z1, z2, ..., zk),...,  
0gr-1(z1, z2, ..., zk)),                                

  1H=(1h1(z1, z2,..., zk), 1h2(z1, z2, ..., zk), ..., 1hr-1(z1, z2, ..., zk)), 1G= ( 1g1(z1, z2, ..., zk), 1g2(z1, z2, ...,  
zk),...,  1gk(z1, z2, ..., zk)),

2H=(2h1(z1, z2,..., zk),2h2(z1, z2, ..., zk), ..., 2hk(z1, z2, ..., zk)),2G= ( 2g1(z1, z2, ..., zk), 2g2(z1, z2, ..., zk),...,  
2gr-1(z1, z2, ..., zk)),

...,   
2tH=(2h1(z1, z2,..., zk),2h2(z1, z2, ..., zk), ..., 2hk(z1, z2, ..., zk)),2tG= ( 2tg1(z1, z2, ..., zk), 2tg2(z1, z2, ...,  

zk),...,  2tgr-1(z1, z2, ..., zk)),

Alice chooses the tuple H==(h1(z1, z2,..., zk),h2(z1, z2, ..., zk), ..., hr-1(z1, z2, ..., zk)).  Recall that 
B(z)=H.

She follows to Algorithm 2 and creates the polynomial map F of Ks+m to Kr+m-1 itself  given by 
the following rule

(z1, z2,..., zk, zk+1, zk+2,..., zk+m)→(h1(z1, z2,..., zk), h2(z1, z2,..., zk),..., hr-1(z1, z2,...., zk), gr(z1, z2,..., zk,  
zk+1, zk+2,..., zk+m), 

 gr+1(z1, z2,..., zk, zk+1, zk+2,..., zk+m), ...,  gr+m-1(x1, x2,..., xk, xs+1, xs+2,..., xk+m)).

Alice forms  L’1 and L’2  of the Proposition 2.1 which  are  surjective affine maps   of affine 
space Kn’ onto Kn, n’>n=k+m and  the affine space Km+r-1 onto Km’, m+r-1≥m’ respectively. Then 
she computes the standard form G of  polynomial surjective map L’1 F L’2 of affine space Kn’ onto 
Km’ and sends it to Bob.

Assume that Alice and Bob gets the hash value (c1, c2, …., cm’).

Alice creates the intermediate tuple of variables  u=(u1, u2,…ur-1, ur, ur+1, …, ur+m-1)   and writes 
the system of linear equations L’2 (u)=c. So she gets the solution *u=(*u1, *u2,…, *ur-1 , *ur, *ur+1,  
…, *ur+m-1)  and considers the quadratic equations B(z1,  z2,...,  zk)=*u =(*u1,  *u2,…, *ur-1).  The 
knowledge on the trapdoor accelerator of B allows Alice to get a solution z*=(*z1, *z2,…, *zk).

So Alice computes  2tG= (  2tg1(*z1,  *z2,  ...,  *zk),  2tg2(*z1,  *z2,  ...,*  zk),...,   2tgr-1(*z1,  *z2,  ...,  
*zk))=b(2t),

2tH=(2h1(*z1, *z2,..., *zk),2h2(*z1, *z2, ..., *zk), ..., 2hk(*z1, *z2, ..., *zk))=a(2t),…,
2G= ( 2g1(*z1,* z2, ..., *zk), 2g2(*z1, *z2, ..., *zk),...,  2gr-1(*z1,*z2, ..., *zk))=b(2),

2H=(2h1(*z1, *z2,..., *zk),2h2(*z1,* z2, ..., *zk), ..., 2hk(*z1,* z2, ...,* zk))=a(2),    



1G= ( 1g1(*z1, *z2, ..., *zk), 1g2(*z1,*z2, ..., *zk),...,  1gk(*z1,* z2, ..., *zk))=b(1),

1H=(1h1(*z1, *z2,..., *zk), 1h2(*z1, *z2, ..., *zk), ..., 1hr-1(*z1, *z2, ..., *zk))=a(1),
-
0G=( 0g1(*z1, *z2, ..., *zk), 0g2(*z1, *z2, ..., *zk),...,  0gr-1(*z1, *z2, ..., *zk))=b(0), 

0H=(0h1(*z1, *z2,..., *zk), 0h2(*z1, *z2, ..., *zk), ..., 0hk(*z1, *z2, ..., *zk)))=a(0).

Alice considers the graph 2tIm(K)  with the line *u and computes 2Jb(2t)(*u)=u2t. She 
takes the point Na(2t)(u2t)=v2t.
Alice treats v2t as the line of the graph 2t-1Im(K) and computes 2Jb(2t-1)=u2t-1.  Alice forms the 

vertex
 Na(2t-1)=v2t-1 of graph 2t-1Im(K).
She treats v2t-1 as vertex of 2t-2Im(K) and computes 2Jb(2t-2)=u2t-2.
Alice takes the neighbour Na(2t-2)(u2t-2)=v2t-2.
She continues this process.

Alice takes the vertex v1 of the graph 1Im (K). She treat it as the line of the graph 0Im(K).
Alice computes 2Jb(0)((v1)=u0.  
She computes Na(0)(u0)=v0 .
Finally Alice computes v=1Jz*(v0).

So she gets v=(v1, v2,…., vk, vk+1, vk+2,…,vk+m).

Alice writes the system of linear equations 

L’1(y1, y2, …., yn’)=v and gets the solution *y= (*y1, *y2, …., *yn’).

She sends  *y to Bob. He checks that G(*y)=c.

6. Conclusion

6.1. Some remarks

Below we present some heuristic arguments supporting the conjecture that the complexity to 
find the reimage of quadratic map of algorithms 1 and 2 without the knowledge of described 
trapdoor accelerator  is nonpolynomial.

Let us consider the case when Alice does not use endomorphisms L1  and L2 of degree 1.
Assume that  she use  only one cellular  Schubert  graphs  s,kCSm(K) with the  operator  of 

changing colour and the operator to compute the neighbour of chosen vertex. We can consider 
the graph ψ of the binary relation “ colours of vertexes x and y of different type can be changed 
to make recoloured vertexes adjacent in  s,kCSm(K).  Then input  x and output  y vertexes of 



algorithm 1 or 2 will be connected by the walk in ∙ψ. Dijkstra algorithm will allow us to find the 
walk between x and y and recover the reimage of y in time vln (v) where v is the order of graph.

Let d , d>3 be the order of finite commutative ring K and n be the  maximal dimension of the 
space of the partition sets of ψ.  Then v>dn and the  complexity  of Dijkstra algorithm of finding 
the path between the input and the output of the algorithm is exponential one. We can expect 
that with the temporal graph defined via the sequence of Jordan-Gauss graphs j Im(K), j=0, 1, 2,…
the complexity of finding the path will be higher.

Temporal  Jordan-Gauss  graphs can be  used for  the  constructions  of  new platforms of 
Noncommutative Cryptography (see [36], [37], [38], [39], [40], [41], [42] and new cryptanalytic 
results [43],[ 44], [45], [46], [47], [48], [49]). These platforms are special semigroups or groups of 
degree bounded by constant (2 or 3) of the Cremona semigroup of all endomorphisms of K[x1,  
x2,…, xn] over the selected K.  Examples of such platforms can be found in [33], [22].

6.2. The summary

Multivariate  Cryptography  (MC)  is  one  of  the  five  core  directions  of  Postquantum 
cryptography. It is specially important for creation of fast digital signatures procedures. Despite 
the fact currently announced by National Standards of Information Technology (NIST, USA) 
standards of postquantum cryptography are constructed in the terms of alternative to MC 
approaches the intensive research on new multivariate cryptosystem is continue.  When it 
comes to digital signatures, NIST has developed two standards. The first is called Module-
Lattice-Based Digital Signature Algorithm (ML-DSA for short) and defines a general digital 
signature algorithm. 

The second one is called Stateless Hash-Based Digital Signature Algorithm (SLH-DSA for 
short). It is a digital signature algorithm based on the hash technique.  Essentially shorter 
signatures can be obtained with the multivariate cryptosystem ’’TUOV: Triangular Unbalanced 
Oil  and  Vinegar’’  algorithm  were  presented  to  NIST  (see 
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/TUOV-
spec-web.pdf) by principal submitter Jintaj Ding. 

Our  paper  presents  several  new multivariate  digital  signatures.  Some of  them are  the 
generalisations  of schemes [31] known  since 2015 for which the cryptanalysis is still unknown. 
Proposed  methods  allow  us  to  construct  obfuscations  of  arbitrary  selected  multivariate 
cryptosystem such as mentioned above TUOV, old Matsumoto-Imai system, various variants of 
Oil and Vinegar system and others. Additionally new method gives an option to create algebraic 
cryptosystems  over  the  finite  commutative  rings  K  different  from  finite  fields  such  as 
arithmetical  or Boolean rings. We believe that Multivariate K-theory for which  the main 
instrument is an element of Cremona semigroup of endomorphisms of K[x1, x2,…, xn] (see [25], 
[26]) has a capacity to provide efficient digital signatures. Suggested algorithms in case of finite 
fields and arithmetical rings can be already used for the protection of Information systems.
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