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Abstract
A novel method for parametric synthesis of an optimal controller, grounded in variational calculus,  
has been developed, assuming system mathematical model is expressed by a differential equation in 
operator  form,  with  both  sides  articulated  as  algebraic  polynomials  in  variable  p=d/dt.  The 
mathematical model of the controller is represented in a similar manner. An Euler-Poisson equation 
system for the extremal variational problem was derived, leading to an analytical expression for 
determining the settings for the specified controller structure by equating polynomial coefficients 
from the optimization task with those from the original system and controller equations. A computer 
experiment  involving  neural  network  implementation  of  this  parametric  synthesis  method 
demonstrated high effectiveness, with accuracy reaching 99.3% and losses not exceeding 0.5%. These 
results confirm the superior performance of the neural network model in prediction accuracy and 
error minimization compared to traditional methods. ROC analysis of the neural network controller, 
neuro-fuzzy controller, and “classical” PID controller showed that both neural network and neuro-
fuzzy controllers achieved high accuracy with minimal false positives, underscoring their reliability 
in  precision-critical  applications.  Conversely,  cubic  spline  interpolation  and  the  "classical"  PID 
controller displayed lower accuracy and higher false positives, emphasizing the advanced control 
methods' advantages for complex systems. 

Keywords ⋆1
optimal controller, parametric synthesis, dynamic system, control object, neural network, helicopter 
turboshaft engine, gas-generator rotor r.p.m.

⋆ITTAP’2024: 4th International Workshop on Information Technologies: Theoretical and Applied Problems, October 23-
25, 2024, Ternopil, Ukraine, Opole, Poland 
1∗ Corresponding author.
† These authors contributed equally.

 victoria.a.vysotska@lpnu.ua (V. Vysotska); vasyl.v.lytvyn@lpnu.ua (V. Lytvyn); serhii.vladov@univd.edu.ua (S. 
Vladov); klk.vonrgp@gmail.com (V. Vasylenko); krishan@ki-maup.com.ua (O. Kryshan) 

 0000-0001-6417-3689 (V. Vysotska); 0000-0002-9676-0180 (V. Lytvyn); 0000-0001-8009-5254 (S. Vladov); 0000-
0002-9313-861X (V. Vasylenko); 0000-0002-2967-0126 (O. Kryshan)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



1. Introduction

The parametric  synthesis  of  optimal  controllers  for  dynamic  systems represents  a  critical 
challenge in control theory, particularly when aiming to achieve desired system performance 
under varying operational conditions [1–3]. This research leverages the principles of variational 
calculus to develop a general mathematical model for dynamic systems, enabling the precise 
formulation and solution of optimization problems associated with controller design [4, 5]. By 
systematically deriving the optimal control parameters, this approach ensures enhanced system 
stability,  performance,  and adaptability,  making it  a robust framework for the controllers’ 
synthesis in complex dynamic environments [6].

The need for highly effective methods to synthesize optimal control parameters for dynamic 
systems is driven by increasing complexity and demands in modern technical systems. With 
growing variability in external  influences and uncertainty in dynamic processes,  ensuring 
stability  and  performance  in  controlled  systems  is  crucial.  Variational  calculus  enables 
enhanced adaptability, precision, and stability across a wide range of operating conditions, 
making it particularly relevant for fields such as aviation [7], energy [8], and robotics [9].

2. Related works

Research in the field of optimal controller parametric synthesis using variational calculus for 
dynamic systems has evolved over several decades, with foundational researches establishing 
the core principles. Initial research focused on applying variational techniques to derive optimal 
control laws for both linear and nonlinear dynamic systems. These early efforts demonstrated 
the potential for variational calculus to achieve precise control parameterization, leading to 
significant improvements in system stability and performance [10, 11]. Researchers successfully 
applied  these  methods  to  relatively  simple  systems,  paving  the  way  for  more  complex 
applications [12, 13].

As the field progressed, researchers began to address the challenges associated with real-
world  dynamic  systems,  including  nonlinearity,  time-varying  parameters,  and  external 
disturbances  [14,  15].  Researches  explored  the  variational  calculus  extension  to  more 
sophisticated dynamic models,  incorporating constraints such as actuator limitations,  time 
delays,  and  uncertainties  [16,  17].  This  phase  of  research  highlighted  the  versatility  and 
robustness of variational calculus in handling complex dynamic behaviors, making it applicable 
to a wide range of engineering systems [18, 19]. Advances in computational methods also played 
a  critical  role  during  this  period,  enabling  more  efficient  implementation  of  variational 
techniques for optimal controller synthesis [20].

In recent years, the variational calculus with modern optimization algorithms integration 
has led to further enhancements in the synthesis process. Researchers have combined these 
methods with gradient-based optimization,  evolutionary algorithms,  and machine learning 
techniques to address multi-dimensional and multi-agent systems [21–23]. These innovations 
have expanded the applicability of variational calculus to more complex scenarios, such as 
aerospace systems [24], robotics [25], and large-scale industrial processes [26]. Current research 
continues to explore new avenues for optimizing controller parameters, focusing on improving 
adaptability, computational efficiency, and real-time implementation in dynamic environments.



The necessity for parametric synthesis of controllers using variational calculus arises from 
the need to optimize control laws in complex dynamic systems, ensuring enhanced stability, 
adaptability, and performance across diverse operational scenarios.

3. Proposed technique

Based on [26, 27], it is assumed that the mathematical model describing the control object is 
represented by a differential equation in operator form with the right-hand side defined by the 

nominal value of the variable p= d
dt

:

( pn+dn−1 ∙ p
n−1+…+d1 ∙ p+d0)⏟

d ( p )

∙ y=(bx ∙ p
x+bx−1 ∙ p

x−1+…+b1 ∙ p+b0)⏟
b ( p )

(1)

in this case n > x; d(p)y = b(p)u. The controller mathematical model is also presented in general 
form as:

(gx−1 ∙ p
x−1+…+g1 ∙ p+g0)⏟

g ( p )

∙u=(r1+r2 ∙ p+…+rn ∙ p
n−1)⏟

r ( p )
(2)

in this case g(p)u = r(p)y.
As a quality functional, the integral-quadratic criterion is adopted in a generalized form, 

taking into account the constraint on energy costs for control [28] in the form:

J=∫
0

∞

(∑
i=1

γ

qii ∙ y
2 ∙ (i−1)+u2)dt . (3)

It is required to the controller structure (2) and the settings  rj determine such that the 
functional (3) reaches its minimum value. The controller structure is defined by rj values that are 
non-zero, zero, or close to zero. To solve the optimization task [26, 28, 29], i.e., to determine the 
transient response to a disturbance given by non-zero initial conditions y(0) = y10, y’(0) = y20, ... 
y(n)(0) = yn0, while considering boundary conditions that ensure asymptotic stability:

y (t→∞ )= y ' (t→∞ )=…= y (n ) (t→∞ )=0. (4)

Based on [26, 30, 31], the Lagrange function [32] is introduced. Since the constraints in this 
case are represented by a differential equation: d(p)y = b(p)u, the Lagrange multiplier λ should be 
replaced  by  a  time-dependent  Lagrange  variable  λ(t)  in  the  Lagrange  function.  Thus,  the 
Lagrange function is expressed as:

L=∑
i=1

γ

qii ∙ y
2 ∙ (i−1)+u2+ λ (t ) ∙(d ( p ) y−b ( p )u) . (5)



Let us compose the Euler-Poisson equation for the functional L(y, u) of two functions y(t) and 
u(t) and obtain a system of two equations:

{∂ L∂ y− d
dt
∙
∂ L

∂ y '
+… (−1)β ∙ d

d t β
∙
∂ L

∂ y (β )=d (−p ) λ+2 ∙ q ∙ ( p2) ∙ y=0

∂ L
∂u

− d
dt
∙
∂ L

∂u'
+… (−1)α ∙ d

d tα
∙
∂ L

∂u(α )=2 ∙u−b (−p ) λ=0
(6)

where q ( p2)=∑
i=1

γ

qii ∙ y
2 ∙ (i−1) ∙ (−1)(i−1).

By eliminating the variables u and λ from these equations, the equation for the variational 
task extremals has been obtained.

(d ( p ) ∙ d (−p )+b ( p ) ∙ b (−p ) ∙ q ( p2)) y=0. (7)

Characteristic polynomial

∆ ( p )=d ( p ) ∙ d (−p )+b ( p ) ∙ b (−p ) ∙ q ( p2) (8)

is an equation of degree 2∙β, where β=max {n , (γ+x−1)}.
For simplicity, let  x +  γ – 1  ≤ n.  This is a polynomial of even degrees  P,  which can be 

expressed in factored form:

∆ ( p )=δ ( p ) ∙ δ (−p ) , (9)

where  δ ( p ) is the polynomial of degree  β containing the roots of a polynomial  Δp with a 

negative real part.
On the other hand, the closed-loop system characteristic polynomial is given by:

D ( p )=d ( p ) ∙ q ( p )+b ( p ) ∙ r ( p ) . (10)

We form the identities δ ( p )  = D(p) and compare the same degrees coefficients of P in these 

identities, resulting in equations for determining the desired controller settings.
To summarize, the formula for the optimal control u(t) is obtained by solving the resulting 

polynomial equations and substituting the values back into the control law:

u (t )= r ( p )
g ( p )

∙ y (t ) . (11)

where the coefficients rj are determined from:

∆ ( p )=D ( p ) . (12)



Thus, solving these equations will provide the optimal controller settings and structure. This 
mathematical model presents a novel approach to optimizing dynamic systems control through 
several key aspects:

1. The  model  utilizes  polynomials  in  the  frequency  domain  to  describe  system  and 
controller dynamics. This enables efficient optimization by considering both nominal 
system parameters and controller parameters.

2. Employing time-dependent Lagrange multipliers λ(t) to account for control constraints 
provides flexibility in solving optimization problems and allows integration of stability 
conditions and energy expenditure constraints.

3. The  introduction  of  an  integral-quadratic  criterion  (quality  criterion)  allows  for 
consideration  of  both  dynamic  system  error  and  control  costs,  ensuring  a  more 
comprehensive and accurate analysis of control quality.

4. Introducing  the  characteristic  polynomial  Δ(p)  and  its  factorization  simplifies  the 
optimal controller settings determination, streamlining the solution and interpretation 
process.

Optimal control u(t) can be obtained by solving the characteristic polynomial equation and 
substituting the derived coefficients into the control expression. Solving these equations and 
substituting values yields optimal settings for  rj,  minimizing functional  J and satisfying all 
stability conditions. This ensures optimal system control considering given constraints and 
requirements.

Thus, the proposed model and method for optimal control represent an innovative approach 
to  controlling  dynamic  systems,  integrating  modern  polynomial  analysis  and  Lagrange 
multipliers to achieve optimal outcomes.

4. Experiment

The work presents a computer experiment involving the proposed technique application in the 
helicopter turboshaft engines (TE) gas-generator rotor r.p.m. nTC controlling task. The proposed 
neural  network  (Figure  1)  is  a  tool  for  implementing  the  developed  technique  and  is 
implemented using the TensorFlow and Keras libraries [33, 34].



Figure 1: The proposed neural network (author’s research).

The input layer takes four input parameters: the current gas-generator rotor r.p.m. nTC, the 
gas temperature in front of the compressor turbine TG

¿ , the engine inlet pressure P¿
¿, and the fuel 

consumption GT [35, 36], that is: 

x=[nTC ,TG
¿ , P¿

¿ ,GT ] . (13)

Hidden  layers  with  ReLU  activation  function  allow  the  model  to  capture  nonlinear 
dependencies between input and output data.

The first hidden layer is defined as:

h1=ReLU (W 1 ∙ x+b1) , (14)

where W1 is the first hidden layer weight matrix, b1 is the first hidden layer bias, and ReLU is the 
ReLU activation function. A modified Smooth ReLU function described in [37] can be used, 
which preserves the ReLU advantages, such as the gradient absence for positive values, while 
adding smoothness for negative values.

The second hidden layer is defined as:

h2=ReLU (W 2 ∙ h1+b2) , (15)

where W2 is the second hidden layer weight matrix, b2 is the second hidden layer bias.
The output layer returns the desired gas-generator rotor r.p.m. nTC predicted value, i.e.:

y=W 3 ∙ h2+b3 , (16)

where W3 is the output hidden layer weight matrix, b2 is the output hidden layer bias.



A loss function is used to minimize the mean squared error (MSE), allowing the model to 
train from the difference between the predicted and actual gas-generator rotor r.p.m. nTC values.

5. Results

The  focus  of  this  research  is  the  TV3-117  TE,  an  integral  component  of  the  Mi-8MTV 
helicopter's propulsion system and its variants, extensively utilized in civil and military aviation 
[35–38]. Flight tests provided the gas-generator rotor r.p.m. nTC, the gas temperature in front of 
the compressor turbine TG

¿ , the engine inlet pressure P¿
¿, and the fuel consumption GT, which 

formed a training dataset with 256 values for each parameter (Table 1).

Table 1
The training dataset fragment

Number The gas-generator 
rotor r.p.m. nTC

The gas temperature in 
front of the compressor 

turbine TG
¿ ,

The engine 
inlet 

pressure P¿
¿

The fuel 
consumption 

GT

1 0.973 0.961 0.983 0.973

… … … … …

42 0.983 0.966 0.988 0.977

… … … … …

139 0.988 0.950 0.992 0.970

… … … … …

256 0.985 0.952 0.984 0.971

The training dataset homogeneity assessment, detailed in [35–38], utilized Fisher-Pearson 
[39]  and  Fisher-Snedecor  [40]  criteria.  According  to  these  measures,  the  dataset  is 
homogeneous, as the calculated Fisher-Pearson and Fisher-Snedecor values are below their 

respective  critical  thresholds,  specifically  χ2=5.717< χ critical
2 =6.6 and 

F=2.221<Fcritical=2.58. To evaluate the representativeness of the dataset, cluster analysis 
was performed using k-means [41, 42]. The dataset was split into training and test subsets in a 
2:1 ratio (67 and 33 %, equating to 172 and 84 samples, respectively). The cluster analysis (Table 
1) revealed eight distinct classes (I...VIII), confirming these groups presence and demonstrating 
consistency between the training and test datasets (Figure 2). These findings facilitated the 
optimal sample datasets determination: the training dataset comprises 256 elements (100 %), the 
validation dataset includes 172 elements (67 % of the training set), and the test dataset includes 
84 elements (33 % of the training set).



          a              b

Figure 2: The cluster analysis results: a is the training dataset, b is the test (author’s research).

During the neural network training initial  phase, the epochs number impacts the  MSE, 
calculated as [43]:

MSEt=
1
N
∙∑
i=1

N

(n̂TCit −nTC )2 , (17)

where N represents the count observations (i.e., the elements number in the training dataset), 

nTCi  denotes the actual value, and n̂TCi
t  indicates the predicted value at training epoch t.

This is achieved by examining the MSEt values at each epoch, as computed using (17), and 
evaluating the relations between  MSEt and the epochs number (Figure 3). Notably, the  MSE 
metric in this research is influenced by the neural network’s loss function, with the model error 
magnitude reflecting the difference between predicted and actual values.

To identify the neural network training epochs optimal number, a training curve is analyzed 
to pinpoint the epoch where the validation dataset error is minimized or reaches stability, 
indicating that further training yields no significant improvement. For each epoch t ∈ [1, t], the 
MSE on the validation dataset MSEval(t) is calculated. The epochs optimal number t∗ is determined 
as:

t ¿=min {t|∀ t ' ,|MSEval (t
' )−MSEval (t

' )|¿ ϵ }, (18)

where  t∗ denotes the initial epoch from which the change in error on the validation dataset 
remains below the threshold value ϵ for all subsequent epochs.



Figure 3: Diagram illustrating the epochs number impact on the mean squared error (author’s 
research).

The findings suggest that 160 training epochs are adequate to reach the minimum value of 
MSEmin = 0.969.

To assess neural network performance during the subsequent stage of training, accuracy 
(Figure 4) and loss (Figure 5) are calculated over 160 training epochs. The Accuracy metric 
quantifies the proportion of correctly predicted values, whereas the Loss metric indicates the 
mean squared error of predictions, reflecting the extent of deviation from actual values.

To estimate the accurate calculations proportion for the gas-generator rotor r.p.m. nTC, the 
Accuracy metric is employed (Figure 4),  which is calculated at training epoch  t using the 
following expression:

Accuracy t=
1
N
∙∑
i=1

N

I (n̂TCit =nTC ) , (19)

where I represents an indicator function that equals 1 if the predicted value matches the true 
value, and 0 otherwise.

As illustrated in Figures 4 and 5,  these metrics suggest that the neural network model 
achieves high accuracy (99.3 %) in predictions and demonstrates efficiency, as the mean squared 
error remains below 2.5 %. Additionally, a substantial decrease in the loss function from 2.5 to 
0.5 % indicates an improvement in model quality throughout the training process.



Figure 4: The accuracy metric diagram (author’s research).

Figure 5: The loss metric diagram (author’s research).

Simulation results for the automatic control system of the  gas-generator rotor r.p.m.  nTC 

using  various  PID  controllers  are  shown  in  Figure  6.  The  neural  network  regulator  is 
represented  by a  blue  transient  response,  the  neuro-fuzzy controller  developed in  [43]  is 
depicted in black, and the “classical” PID controller [44] is shown in red.

The transient responses of the neural network and neuro-fuzzy controllers exhibit identical 
speed (transient process time of 1.5 seconds), which is notably shorter compared to the transient 
process time of 2.5 seconds observed with the “classical” controller.

In practice, the helicopter TE model is described by a high-order differential equation (up to 
the  30th order)  [45].  This  poses  challenges  in  synthesizing controllers.  Simplified models, 
typically  described  by  the  2nd  to  4th  order  equations,  are  used  in  the  control  systems 
development. However, not all controllers can ensure proper system performance under real 
flight conditions. Therefore, the helicopter TE various operating modes are considered in the 
control systems research and simulation.



Figure 6: The diagrams of transient processes for the gas-generator rotor r.p.m.  nTC during 
engine operation in the helicopter turboshaft engines cruise mode (author’s research).

The helicopter TE model presented in [35–38] is relevant for the cruising (primary) mode. 
The research also examines engine models in two additional modes: emergency (climbing) and 
idle (ground) conditions.

The gas-generator rotor r.p.m.  nTC transient characteristics with various PID controllers 
during the helicopter TE emergency operation are shown in Figure 7.

Figure 7: The diagrams illustrating the transient processes during helicopter turboshaft engines 
operation in climb mode (author’s research).

Figure 8 shows the simulation results for the system in idle mode. In maximum operating 
conditions, both neural network and neuro-fuzzy PID controllers achieve a transient response 
time of 2 seconds. In contrast, the system with a classical controller has a transient response 
time of 6 seconds, significantly longer than with the neural network and neuro-fuzzy PID 
controllers. In idle mode, the system with the “classical” controller exhibits overshooting and 
oscillations,  which are unacceptable.  The neural  network and neuro-fuzzy PID controllers 
achieve a transient response time of 1 second.



Figure 8: The diagrams illustrating the transient processes during helicopter turboshaft engines 
operation in ground mode (author’s research).

6. Discussion

A method for parametric synthesis of an optimal controller based on variational calculus has 
been developed, assuming that the mathematical  model of the system is represented by a 
differential equation in operator form, with both sides expressed as algebraic polynomials in the 

variable p= d
dt

. The controller's mathematical model is similarly represented. Based on this, an 

Euler-Poisson equation system for the extremal variational task was derived. By equating the 
polynomials coefficients in the optimization task with those obtained from the system and the 
controller original equations, an analytical expression was obtained to determine the settings 
for the specified controller structure.

A computer experiment was conducted involving the neural network implementation of a 
parametric synthesis method for optimal control based on variational calculus (see Figure 1). 
The obtained results (accuracy up to 99.3 % as shown in Figure 3 and losses not exceeding 0.5 % 
as depicted in Figure 4) demonstrate the effectiveness and high precision of the developed neural 
network-based approach.  These  findings  indicate  that  the  neural  network model  achieves 
superior performance in terms of prediction accuracy and error minimization compared to 
traditional  methods,  validating  its  suitability  for  optimizing  control  systems  in  complex 
applications.

For ROC analysis across the three approaches (the proposed neural network controller, the 
neuro-fuzzy controller [43], and the “classical” PID controller [44]),  true positive and false 
positive  rates  were  computed  for  each  class  and  method,  followed  by  the  generation  of 
corresponding ROC curves. This process required establishing a binary classification for each 
class (distinguishing this class from all others). 

A confusion matrix was constructed for the four classification categories (True Positives, 
True  Negatives,  False  Positives,  False  Negatives).  Each  cell  within  the  confusion  matrix 
represents the frequency with which the actual class (rows) was predicted as the corresponding 
class (columns) for each method. For each class, True Positive Rate (TPR) and False Positive Rate 
(FPR) are calculated as [46–48]:



TPR= TP
FP+TN

, FPR= FP
FP+TN

. (20)

The area under the ROC curve (AUC) can be approximated using the trapezoidal rule. Given 
that (TPRi and FPRi) represent the ROC curve points coordinates, the AUC is determined as [49–
51]:

AUC=∑
i=1

P−1 TPRi+TPRi+1

2
∙ (FPRi+1−FPRi) , (21)

where P denotes the ROC curve points number [52]. The ROC analysis results are presented in 
Table 2.

Table 5
ROC analysis results (author's research)

Actual \ 
Predicted

The proposed 
neural network 

controller

The neuro-fuzzy 
controller [43]

The “classical” PID 
controller [44]

True Positives 94 94 0

True Negatives 4 3 11

False Positives 269 270 280

False Negatives 23 22 110

TPR 0.832 0.832 0

FPR 0.012 0.012 0.426

AUC 0.856 0.857 0.214

As a result, the neural network controller proposed in this work, along with the neuro-fuzzy 
controller [43], provides high accuracy with a minimal level false positive. The use cubic spline 
interpolation, on the contrary, leads to low accuracy and the highest number false positives. 

This  highlights  the  effectiveness  and  reliability  the  neural  network  and  neuro-fuzzy 
controllers in scenarios where precision is critical. Their ability to minimize false positives 
without sacrificing accuracy makes them superior choices for applications requiring robust and 
accurate control mechanisms. Conversely, the “classical” PID controller’s [44] higher rate false 
positives underscore its limitations in achieving the desired accuracy. The significant contrast in 
AUC values further emphasizes the advantages these advanced control methods bring to the 
table, making them preferable options in complex and dynamic systems.

These findings suggest that the neural network and neuro-fuzzy controllers are not only 
more reliable but also more adaptable to varying conditions, ensuring stable performance across 



different operational modes. In contrast, the “classical” PID controller’s [44] limitations could 
lead to suboptimal decisions in critical scenarios, potentially compromising system safety and 
efficiency.

The difference in the areas under the AUC curve is clearly illustrated in Figure 9.

          

        a             b

          с

Figure 9: The AUC-ROC curve: a is the proposed neural network controller; b is the neuro-
fuzzy controller [43]; c is the “classical” PID controller [44] (author's research).

Future research in this domain should focus on several key areas to further enhance the 
developed method's applicability and robustness. One avenue is the extension of the parametric 
synthesis approach to multi-variable systems, where the interaction between multiple control 
variables  can  significantly  impact  overall  system  performance.  Additionally,  integrating 
advanced  machine  learning  techniques,  such  as  reinforcement  learning  or  hybrid  models 
combining neural networks with fuzzy logic, could further improve the controller's adaptability 
and  precision  in  dynamic  environments.  Another  promising  direction  involves  real-time 
implementation and validation in practical  applications,  particularly in systems with high 
nonlinearity and uncertainty. This would not only confirm the theoretical results but also 
provide  insights  into  potential  modifications  required  for  real-world  deployment.  Lastly, 
exploring  the  method's  scalability  and  computational  efficiency  for  larger,  more  complex 
systems  could  open  new  possibilities  for  its  use  in  cutting-edge  technologies,  such  as 
autonomous vehicles or advanced robotics.



7. Conclusions

This research scientific novelty lies in the development of a method for parametric synthesis of 
an  optimal  controller  using  variational  calculus,  with  the  system  and  controller  models 
represented by differential equations in operator form as algebraic polynomials in the variable 

p= d
dt

. This approach led to the derivation of an Euler-Poisson equation system for extremal 

variational tasks, providing an analytical expression for determining optimal controller settings. 
Furthermore,  the  implementation  of  this  method  through  neural  networks  demonstrated 
remarkable  accuracy,  achieving prediction precision up to  99.3  % and minimal  losses  not 
exceeding 0.5 %. These results underscore the superiority of the proposed neural network-based 
approach in optimizing control systems, particularly in complex and dynamic applications, 
marking a significant advancement over traditional control methods.

The ROC analysis  conducted for the three approaches is  the proposed neural  network 
controller, the neuro-fuzzy controller, and the “classical” PID controller is involved computing 
true positive and false positive rates for each class, followed by generating corresponding ROC 
curves based on binary classification for each class. The results demonstrated that both the 
neural  network  and  neuro-fuzzy  controllers  achieved  high  accuracy  with  minimal  false 
positives,  highlighting  their  effectiveness  and  reliability  in  precision-critical  scenarios.  In 
contrast, cubic spline interpolation resulted in lower accuracy and the false positives highest 
number, while the "classical" PID controller exhibited limitations due to its higher rate of false 
positives.  The marked difference in AUC values underscores the superiority of the neural 
network and neuro-fuzzy controllers, making them preferable for applications requiring robust 
and accurate control mechanisms in complex and dynamic systems.
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