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Abstract
This study compares the effectiveness of autoencoders and variational autoencoders for clustering 
tasks, using the Iris dataset with k-means, spectral clustering, Affinity Propagation, and Gaussian 
Mixture Model.  Clustering quality was assessed with metrics like the Silhouette Index,  Davies-
Bouldin  Index,  Adjusted  Rand  Index,  and  Mutual  Information.  Results  showed  that  classical 
autoencoders performed more reliably and effectively, particularly with k-means, while variational 
autoencoders excelled with Affinity Propagation. The Gaussian Mixture Model was the least effective 
for  both  types.  The  study  underscores  the  importance  of  choosing  the  right  autoencoder  and 
clustering algorithm based on the task and data structure, paving the way for future research on more 
complex datasets.
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1. Introduction

In recent decades, data volume has grown exponentially across various fields, becoming 
complex, multidimensional, and irregular, necessitating advanced analysis methods. Classical 
clustering  methods  like  k-means  often struggle  with  such data,  especially  with  nonlinear 
dependencies or noise. Classical autoencoders, a type of neural network for dimensionality 
reduction, address this by compressing input data into a lower-dimensional latent space and 
reconstructing it, enabling more accurate clustering. Autoencoders automate feature selection 
by representing data in a low-dimensional space where clusters are more defined. They are used 
in fields such as image and text analysis,  time series,  and biomedical  data,  improving the 
extraction of valuable insights. 

Autoencoders can integrate with other methods like variational autoencoders and GANs, 
enhancing adaptability for complex tasks. They are especially effective for high-dimensional 
data, addressing the "curse of dimensionality" by compressing data for better clustering. The 
growth in GPU and computing power has made training these models more accessible, boosting 
their relevance in modern data analysis. The need to analyze complex data, extract features, and 
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integrate  deep learning methods  highlights  the  importance  of  autoencoders  for  achieving 
accurate results.

The main contributions of this paper are as follows: a)A comprehensive comparative analysis 
of the effectiveness of classical (AE) and variational (VAE) autoencoders for clustering tasks, 
applying various algorithmic approaches; b) Empirical evidence of the superiority of classical 
autoencoders in terms of stability and clustering quality, especially in combination with the k-
means algorithm; c)The high efficiency of the Affinity Propagation algorithm in combination 
with VAE, indicating its potential for specific types of data;d)The implementation of a multi-
criteria approach to clustering quality assessment, integrating several metrics, which provided a 
deep understanding of the effectiveness of the studied methods.

The rest of the paper is structured as follows. Section 2 provides a literature review, Section 3 
presents the problem statement. Section 4 describes the materials and methods used in this 
study. Section 5 presents the results of testing the proposed clustering methods. Finally, Section 
6 concludes the study.

2. Review of the literature

Autoencoders are effectively used for clustering by leveraging their latent representations. 
Clustering groups objects  based on similarities,  and autoencoders  help extract  latent  data 
features and reduce dimensionality before clustering. Hinton and Salakhutdinov [1] introduced 
a neural network methodology for dimensionality reduction, showing that autoencoders create 
compact latent representations suitable for clustering. This foundational work advanced the use 
of autoencoders in data clustering. The Deep Embedded Clustering (DEC) model [2] uses an 
autoencoder to learn latent data representations and cluster them, jointly optimizing data 
reconstruction and cluster distribution for more accurate and stable results. Xie and colleagues' 
work was a significant advancement in autoencoder-based clustering methods.  Variational 
autoencoders  (VAEs)  [3]  are key in data analysis  for  modeling complex distributions and 
uncertainty. They provide a theoretical foundation for creating latent representations, enabling 
effective data clustering and making them popular for generative modeling and clustering tasks. 
In  [4],  the  authors  proposed  a  method  combining  convolutional  autoencoders  with  deep 
learning for  clustering,  enhancing feature  extraction and clustering quality,  especially  for 
complex data like images. In [5], Adversarial Autoencoders (AAEs) were introduced, combining 
autoencoders with GANs to create more structured latent representations, enhancing clustering 
and generative capabilities for data analysis. The paper [6] introduces the Deep Embedded 
Clustering (DEC) method, noting its limitations in preserving local data structure. An improved 
method, IDEC, addresses this by combining clustering with local structure preservation through 
a  new  objective  function.  Results  demonstrate  IDEC's  superiority  across  metrics,  with 
visualizations highlighting enhanced local structure retention and clustering performance. This 
work underscores the importance of local structure in deep clustering and offers a practical 
enhancement. The article [7] introduces the Deep Clustering Network (DCN), which combines 
deep learning with the K-means algorithm to perform nonlinear data mapping and clustering 
simultaneously. DCN outperforms classical and modern methods by transforming data into a 
more  "K-means-friendly"  space,  improving  clustering  quality  and  advancing  data  analysis 
through the integration of deep learning with traditional clustering. The article [8] introduces a 
clustering  approach  combining  autoencoders  and  traditional  algorithms.  It  employs 



autoencoders  for  nonlinear  dimensionality  reduction,  applies  K-means  to  the  hidden 
representation, and iteratively optimizes parameters. The method excels in handling complex, 
nonlinear  data,  automatically  extracting  relevant  features  and  outperforming  traditional 
clustering techniques.  The study highlights  the  potential  of  integrating autoencoders  into 
unsupervised  analysis  and  discusses  variational  autoencoders  (VAEs),  which  model 
probabilistic distributions and create latent representations for clustering and generative tasks. 
Variational Autoencoders (VAEs), introduced by Kingma and Welling [9], model the latent 
space as a probabilistic distribution, enabling data generation and effective organization in the 
latent  space.  This  makes  VAEs  ideal  for  clustering  complex,  high-dimensional  data.  The 
Variational Deep Embedding (VaDE) method [10] combines VAEs with clustering by modeling 
latent  variables  as  a  Gaussian  mixture,  enabling  direct  clustering  in  the  latent  space.  It 
outperforms traditional methods like K-means, particularly on complex datasets. The Gaussian 
Mixture  Variational  Autoencoder  (GMVAE)  [11]  combines  variational  autoencoders  with 
Gaussian mixtures, modeling the latent space as a Gaussian mixture to enhance clustering and 
handle complex data structures. In [12], the authors enhance VaDE by combining variational 
autoencoders with deep embedding, improving clustering for high-dimensional data like images 
and texts. Autoencoders effectively extract and utilize latent representations for clustering. This 
study  compares  classical  and  variational  autoencoders  for  clustering,  analyzing  their 
integration with algorithms like K-means, spectral clustering, GMM, and Affinity Propagation. 
It  aims to identify their  strengths,  limitations,  and suitability  for  different  data  types and 
requirements. Clustering quality will be evaluated using metrics such as silhouette, Davies-
Bouldin Index, Adjusted Rand Index, and Mutual Information, providing objective insights and 
practical recommendations.

3. Problem statement

A formal statement of the problem can be formulated as follows:
Given:1. Data set D = {x₁, x₂, ..., xₙ}, where xᵢ ∈ ℝᵐ is m-dimensional vector of features.
2. Multiple clustering methods based on autoencoders M = {M₁, M₂, ..., Mₖ}, where each 

method Mᵢ can be a classical or variation autoencoder.
3. Set of clustering algorithms A = {K-means, Spectral Clustering, Gaussian Mixture Model, 

Affinity Propagation}.
4. Set of clustering quality metrics Q = {Silhouette Score, Davies-Bouldin Index, Adjusted 

Rand Index, Mutual Information, Adjusted Mutual Information}.
Required: 1) For each method Mᵢ ∈ M and algorithm Aⱼ ∈ A: a) Learn the model Mᵢ on the data 

D; b) Apply the algorithm Aⱼ to the latent representation of the data obtained by the Mᵢ;    c) 
Calculate the values of all quality metrics q  ∈ Q for the resulting clustering; 2) Carry out a 
comparative analysis of the results obtained: a) Evaluate the effectiveness of each combination 
(Mᵢ, Aⱼ) across all metrics q ∈ Q; b) Identify the advantages and limitations of each method Mᵢ ∈ 
M;  c) Identify the most effective combinations of methods and algorithms for different types of 
data  and  clustering  tasks;  3)  To  formulate  recommendations  for  selecting  the  optimal 
autoencoder  based  clustering  method  and  clustering  algorithm  depending  on  data 
characteristics and clustering quality requirements.

Limitations and assumptions: 1. The true cluster labels for the dataset D are assumed to be 
unknown (unsupervised learning problem); 2. The number of clusters K is assumed to be given 



or determined automatically depending on the clustering algorithm used; 3. Computational 
resources  and model  training time are  not  considered as  limiting factors  in  this  problem 
formulation.  This  formal  problem statement  covers  all  aspects  mentioned in  the  research 
objective  and provides  a  clear  structure  for  a  comparative  analysis  of  autoencoder  based 
clustering methods.

4. Materials and Methods

4.1. Data

The IRIS dataset (https://www.kaggle.com/uciml/iris) was chosen for comparing classical (AE) 
and variational (VAE) autoencoders in clustering due to its known structure, interpretability, 
and manageable size, enabling efficient training and testing. Its explicit clustering structure 
(three  classes)  allows  assessment  of  the  models'  ability  to  extract  informative  latent 
representations, making it an ideal baseline for such analyses.

4.2. Autoencodes

A  classical  autoencoder  encodes  data  into  a  compact  representation  and  reconstructs  it, 
extracting features for clustering. Below is its mathematical description and application in 
clustering:Autoencoder 
Architecture. The autoencoder consists of two main parts:-

 Encoder: Function   converts the input data   in the hidden view .

,
(1)

where  — encoder parameters.

Decoder: Function  reconstructs the original data  from the hidden view .

(2)

where  is refurbished entrance, and  is decoder parameters.
Loss function. The autoencoder is trained using a loss function that measures the difference 

between the original data  and recovered data . Typically, the standard error of mean square 
error is used (MSE):

(3)

where  is number of examples in the batches.
Application  for  clustering.  After  training  the  autoencoder  and  obtaining  hidden 

representations for all the data, one can use these representations for clustering. The process 
can be described as follows:

a) Obtaining latent representations: Skip the entire dataset   through the encoder to get 
the hidden views :



(4)

b) Clustering: Apply a clustering algorithm such as K-means or other method to the hidden 
representations  for cluster tagging :

(5)

where  is parameters of the clustering algorithm.
Thus, a classical autoencoder can be described as a model that first encodes data into a hidden 

representation and then reconstructs data from that representation. Hidden representations 
obtained from the encoder are used for clustering, which are then clustered using a clustering 
algorithm.

4.3. Variation Autoencoder

Variational Autoencoder (VAE) is  a probabilistic model that encodes data as a probability 
distribution  rather  than  a  fixed  representation.  In  clustering,  VAE  generates  compact, 
informative data representations for clustering, with an encoder and decoder, differing from the 
classical  autoencoder.  instead  of  a  pointwise  latent  representation   distribution  is  used 

.
Encoder. The encoder converts the input data into distribution parameters (it's usually an 

average ) and standard deviation ):

        (6)

where   and    are parameters that depend on the input data and network 

parameters .



Decoder. The decoder recovers data from a hidden view , which was sampled from the 

distribution :

        (7)

where   is a distribution (e.g., Gaussian) defined by the decoder.
The variational autoencoder is trained by minimizing the two components of the loss function:
1.  Reconstructive error  (RMS error or cross-entropy) between the original  data and the 

reconstructed data :

      (8)

2. Kulbak-Leibler divergence (KL- divergence) between the posterior distribution  

and a priori distribution , which is usually assumed to be the standard normal distribution 

:

     (9)

Complete loss function:

     (10)

where  is the weighting factor that can be adjusted to control for the effect of KL-divergence 

(e.g. in the model -VAE).
After  training  VAE  to  produce  probabilistic  representations  of  the  data,  these 

representations can be used for clustering:
a) Obtaining latent representations: Skip the entire dataset  through the encoder to get 

the distribution parameters  and  and then sample the latent representations :

     (11)

b)  Clustering: We apply the clustering algorithm to the sampled hidden representations 

 for cluster tagging :

      (12)

where  is parameters of the clustering algorithm (e.g., K-means).



A variational  autoencoder  (VAE)  is  a  probabilistic  model  that  uses  latent  variables  to 
represent data. After training, it generates latent representations for clustering and effectively 
handles complex, multi-level data structures.

4.4. Internal Clustering Algorithms to Hidden Representations

The following algorithms were used to cluster the hidden representations: k-means, spectral 
clustering, Affinity Propagation and Gaussian Mixture Model.

k-means  [14].  K-means  clustering  is  a  vector  quantization  method  that  divides  n 
observations into  k  clusters by assigning each to the nearest centroid, which represents the 
cluster. This partitions the data space into Voronoi cells. The algorithm minimizes intra-cluster 
variance (sum of squared Euclidean distances), unlike the more complex Weber problem, which 
minimizes Euclidean distances. For greater accuracy in Euclidean distance minimization, k-
median or k-medoid methods can be used.

Explanation:
Step 1: Initialises the centroids by randomly selecting 𝑘 points from the data. Cycle While: 

Iteratively performs the following steps until convergence or until the maximum number of 
iterations is reached: Step 2: Assigns each data point to the nearest centroid, forming clusters.

Step 3: Updates the centroids by computing the average of all points assigned to each cluster. 
Step 4: Checks convergence by evaluating whether the change in centroids is less than a given 
tolerance 𝜖 If the change is small enough or the maximum number of iterations is reached, the 
loop terminates. Return: Outputs the final clusters and their corresponding centroids.

Spectral Clustering [15]. Spectral clustering transforms data into a lower-dimensional 
space using eigenvectors of the Laplace matrix derived from a similarity graph, then applies 
standard clustering methods like k-means.



Step 1: Constructs the Laplacian matrix from the similarity matrix.
Step 2: Computes the first k eigenvectors of the Laplacian matrix.
Step 3: Forms a matrix U from these eigenvectors.
Step 4: Normalizes the rows of U.
Step 5: Applies the k-means algorithm to cluster the rows of U.
While loop: Iteratively refines the clustering by recalculating centroids and reassigning 

points until clusters stabilize.
Gaussian  Mixture  Model  [16]. A  mixture  model  is  a  probabilistic  approach  for 

representing subpopulations in data without identifying their membership. In model-based 
clustering,  such  as  Gaussian  Mixture  Models  (GMMs),  data  are  modeled  as  a  mixture  of 
parametric distributions, with each cluster represented by a separate Gaussian distribution.

Explanation:
Step 1: Initializes the parameters of the Gaussian components:

Mixing coefficients  determine the proportion of each component.

Means  represent the center of each Gaussian component.

Covariance matrices  describe the spread of each component.
While  loop: Iteratively  performs  the  Expectation-Maximization  (EM)  steps  until 

convergence or the maximum number of iterations is reached.



E-Step: Calculates the responsibilities , which represent the probability that data point 

belongs to component .

M-Step: Updates the parameters  based on the current responsibilities.
Check Convergence: The algorithm checks if  the change in log-likelihood is below a 

certain tolerance 𝜖
Return: After convergence, returns the final parameters of the Gaussian components.

The Affinity Propagation (AP) clustering algorithm is a method that identifies cluster 
centers (exemplars) through message passing between data points. Unlike traditional methods 
such as K-means, AP does not require the number of clusters to be specified in advance.

The  Affinity  Propagation  (AP)  clustering  algorithm  automatically  finds  clusters  by 
determining exemplars (cluster centers) through message passing between data points. It uses a 
similarity matrix S, where S (i , j ) measures how similar points i and j are. The diagonal values 

S (i , j ) indicate the preference of each point to be chosen as an exemplar.

The process involves updating two matrices: the "responsibility" matrix R, which shows how 
suitable point j is as a center for point i, and the "availability" matrix A , which reflects how 

appropriate point  j is as a center considering all other points. These matrices are updated 
iteratively until convergence.  The number of clusters is determined automatically based on the 
data, making AP useful for tasks where the number of clusters is not known in advance.

4.5. Clustering Quality Assessment

Silhouette Score. The silhouette index evaluates cluster compactness and separation, ranging 
from -1 (misclassified) to 1 (well-separated), with 0 indicating overlap. It is defined for each 
object i as:



(1) Average internal distance :

This is the average distance from the object  to all other objects in the same cluster .

(13)

where is object spacing  and  (for example, the Euclidean distance).

(2) Average inter-cluster distance :

This is the average distance from the object  to all facilities in the nearest cluster , into 

which the object  is not included.

(14)

Silhouette index :

For each object  its silhouette is defined as:

(15)

If  close to 1, then the object  is well categorised if   is close to 0, then the object is on the 

boundary between clusters. If  close to -1, then the object was probably misclassified.
(3) Average silhouette index for the entire dataset:

The overall silhouette for the entire clustering is calculated as the average of the  across 
all facilities:

(16)

where is the total number of objects in the dataset.
The Silhouette Plot evaluates clustering quality by showing silhouette values for objects 

within clusters. Positive values (close to 1) indicate well-separated clusters, while negative 
values suggest misclassified objects.

Davis-Bouldin Index, ( DBI)  is a metric for assessing the quality of clustering [18]. This 
index measures the average "similarity" of each cluster to its most similar cluster, and the 
smaller the DBI value, the better separated the clusters are. The Davis-Bouldin index is based on 
two key concepts: the spread within a cluster and the distance between clusters. 

(1) Scatter intra-cluster :



Cluster spread  measures the average distance between all points within a cluster and its 

centroid .

,

(17)

where is distance (e.g., Euclidean) between the point  and the centroid .

(2) Cluster Distance :

This is the distance between the centroids of the two clusters  and .

(18)

(3) Similarity Index between two clusters :
It is defined as the ratio of the sum of the spreads of two clusters to the distance between  

them.

(19)

(4) Davis-Bouldin index for the cluster :

This is the maximum of the similarity index  with any other cluster.

(20)

(5) Davis-Bouldin Index (DBI) for the entire clustering:

This is the average  across all clusters.

,

(21)

where  is total number of clusters.
Adjusted  Rand  Index  (ARI).  The  Rand  Index  (RI)  evaluates  clustering  quality  by 

comparing predicted clusters to true labels. Adjusted for random matches, RI ranges from -1 to 1, 
with 1 indicating perfect clustering [19].

The Adjusted Rand Index (ARI) corrects for this shortcoming by providing a normalized 
value that accounts for random matches.

Formal definition of adjusted Rand index

1. Matching Matrix is Suppose we have two partitions of a dataset:  - true cluster labels 

(ground truth) and is predicted cluster labels.



2.Let's construct a matching matrix, where each element of  shows the number of points 

falling simultaneously into the cluster  partitioned  and cluster  partitioned .2. Rand 
Index (RI) Formula: The Rand index measures the proportion of point pairs that either belong 
to the same clusters or different clusters in both partitions [21].

(22)

Adjusted Rand Index (ARI):

(23)

ARI accounts for the probability of random matches by normalizing the Rand index. The 

formula is as follows: where:  is total number of data points;   is line amount  matching 

matrix (i.e. the number of points in the cluster  partitioned ;  is sum on the column of the 

matching matrix (i.e. the number of points in the cluster  partitioned ;  is total number 
of object pairs.
ARI = 1: Complete correspondence between predicted and true partitioning (perfect clustering); 
ARI = 0: Clustering is no better than random partitioning;  ARI < 0: The result is worse than 
random clustering.

Mutual Information (MI) and its  corrected version,  Adjusted Mutual Information 
( AMI),   are metrics used to assess the quality of clustering. They measure how well one 
partitioning of data (clustering) agrees with another, taking into account information common 
to both partitions [16].

Mutual  Information  between  two  partitions   and   (e.g.,  true  partitioning  and 
predicted partitioning) measures the amount of information common to both partitions.

Definition: Reciprocal information measures the extent to which knowledge of partitioning 

 reduces the uncertainty about the partitioning .

(24)

where:   is probability that a randomly selected object belongs simultaneously to the 

cluster  to  and cluster  to ;  and  is marginal probabilities that the object 

belongs to the cluster  to  and cluster  to  respectively.



MI takes values from 0 to .The value 0 means that the partitions  and  
are independent (no common information). Higher MI values mean more dependence between 
partitions, i.e. better cluster matching.

Adjusted Mutual Information (AMI)
AMI — is a corrected version of MI that accounts for the probability of random matches 

between partitions. It is a normalized metric that removes the positive bias of MI. AMI is 
calculated as follows:

(25)

where:   is  mathematical  expectation  of  mutual  information  between random 

partitions;  и  is partition entropies  and  respectively.
AMI takes values from -1 to 1.
AMI = 1: Full correspondence between the partitions.
AMI = 0: Conformity is no better than casual conformity.
AMI < 0: Conformity is worse than random (which is extremely rare).

5. Experiments and Results
Experimental results obtained on clustering when applying autoencoders

Table1. 
When applying internal clustering algorithms 

Autocoders

Index name k-means AP SP GMM

Silhouette Score 0,5869039 0,5779381 0,5832608 0,3563197

Davis-Bouldin 
Index, (DBI)

1,097961 0,967877 1,009742 0,9561066

Adjusted Rand 
Index (ARI)

0,8681109 0,839829 0,8342589 0,3622746

Mutual 
Information, (MI)

0,9330692 0,8971948 0,9043042 0,4296664

Adjusted Mutual 
Information (AMI)

0,8681109 0,8339829 0,8342589 0,3933723



Silhouette Score:The values range from 0.3563 to 0.5869.The best result is for k-means 
clustering  algorithm,  indicating  good  cluster  separation.The  lowest  result  is  for  Gaussian 
Mixture Model (GMM), indicating weaker separation.
Davis-Bouldin Index (DBI): The values range from 0.9561 to 1.0979.GMM has the lower value 
which indicates better clustering.
Adjusted Rand Index (ARI): he values range from 0.3622 to 0.8681.The best result is again for 
k-means, which confirms the high quality of clustering compared to true labels.
Mutual information indices (MI) and AMI: MI: 0.4296 до 0.9331. AMI: 0.3933 до 0.8681. The 
in-house k-means algorithm performs better on both MI and AMI.

Experimental  results  obtained  on  IRISDATA  clustering  using  VAE  variational 
autoencoders

Table 2. 
When applying the internal clustering algorithm of the variational autoencoder

Variational Autoencoders (VAE)
Silhouette Index:The values range from 0.0149 to 0.6951 Affinity Propagation has the best 
value which shows good cluster separation.
Davis-Bouldin Index:  Values from 0.0415 to 1.1864. Affinity Propagation has the best DBI 
value indicating better clustering results.
Adjusted Rand Index (ARI): Values from 0.0408 to 0.6813. k-means and Affinity Propagation 
show the best results.
Mutual Information Index (MI) and AMI:MI: 0.0459 to 0.7901. AMI: 0.0432 to 0.6813.  k-
means shows the best score for MI and AMI.
Autoencoders show better clustering performance, especially when using k-means, as shown 
by high Silhouette Score, ARI, MI and AMI values.

Index name k-means AP SP GMM

Silhouette Score 0,6732217 0,1494412 0,6951292 0,1494412

Davis-Bouldin 
Index, (DBI)

0,9988075 0,9601669 0,4153072 1,1864

Adjusted Rand 
Index (ARI)

0,6813073 0,3901078 0,6516407 0,4078

Mutual 
Information, (MI)

0,7900837 0,4664558 0,7766257 0,4599

Adjusted Mutual 
Information (AMI)

0,6813073 0,4253811 0,7272799 0,4323



Variational  autoencoders  show  competitive  results,  especially  when  using  Affinity 
Propagation, although in some cases (e.g., GMM) the quality of clustering is lower, as indicated 
by the low values of the metrics. Thus, when comparing the two approaches, autoencoders 
(especially when combined with k-means) show more stable and better results in clustering 
tasks compared to variational autoencoders.

Experimental results obtained on IRISDATA clustering using autoencoders

Figure1: When applying the internal k-means clustering algorithm

Figure 2: When applying the internal spectral clustering algorithm



Figure 3: When applying Affinity Propagation's internal clustering algorithm

Figure 4: When applying the Gaussian Mixture Model internal clustering algorithm

Experimental  results  obtained  on  IRISDATA  clustering  using  VAE  variational 
autoencoders

Figure  5: When  applying  the  internal  k-means  clustering  algorithm  of  the  variational 
autoencoder



Figure  6: When applying  the  internal  algorithm of  spectral  clustering  of  the  variational 
autoencoder

Figure 7: When applying the internal Affinity Propagation clustering algorithm of the 
variational autoencoder

Figure 8: When applying the internal Gaussian Mixture Model clustering algorithm of the 
variational autoencoder

Evaluation  of  clustering  results  based  on  Silhouette  Index  on  graphical 
representations Autocoders:
Figure  1:  k-means.  The  k-means  silhouette  index  indicates  well-separated,  high-quality 
clusters, with most samples showing high positive values and balanced cluster sizes.
Figure 2:  Spectral clustering.  Spectral  clustering shows less distinct separation and less 
balanced cluster sizes than k-means, with a lower Silhouette Index but still good quality.
Figure 3: Affinity Propagation.  Clustering results using Affinity Propagation show a low 
Silhouette Index, indicating less clear separation of clusters. The clusters overlap, making them 
difficult to interpret.
Figure 4: Gaussian Mixture Model (GMM). The GMM silhouette index is lower than k-means 
and spectral clustering, indicating poor separation with significant overlap and many negative 
values, particularly in one cluster.
Variational autoencoders (VAE):



Figure 5: k-means. The VAE with k-means silhouette plot shows moderate clustering quality, 
with less distinct separation than autoencoders, though the clusters are relatively balanced in 
size.
Figure 6: Spectral clustering.  Spectral clustering using VAE shows low Silhouette Index 
values. Demonstrates very poor cluster separation. Graphical representation shows significant 
overlap of clusters, indicating poor clustering quality.
Figure. 7: Affinity Propagation.  The silhouette index for Affinity Propagation using VAE 
shows  the  lowest  quality  among  all  the  methods  considered.  The  graph  shows  strong 
overlapping of clusters, indicating poor data separation.
Figure  8:  Gaussian Mixture  Model  (GMM).  The GMM with  VAE graph shows a  low 
Silhouette Index, indicating poor clustering with weak, overlapping clusters and many negative 
values.
Autocoders k-means  and  Spectral  Clustering  show the  best  results  on  Silhouette  Index, 
showing clear and qualitative separation of clusters. While GMM and Affinity Propagation 
show less clear separation.
c Variational  autoencoders  (VAE)  VAE-based  methods  generally  perform  worse  than 
classical  autoencoders,  especially  with Affinity Propagation and GMM, where clusters  are 
almost indistinguishable. GMM gives the poorest results for both. Autoencoders offer more 
stable, better cluster separation, while VAE shows extreme results, excelling with some methods 
(e.g., Affinity Propagation) and struggling with others (e.g., spectral clustering). 

6. Conclusion

Classical autoencoders (AE) generally perform more stably and yield better clustering results 
than  variational  autoencoders  (VAE).  K-means  is  most  effective  with  AE,  while  Affinity 
Propagation works best with VAE, particularly for cluster separation. GMM shows the worst 
performance for both. Silhouette Score graphs confirm AE's better separation, especially with k-
means and spectral clustering, while VAE shows more variability, performing well with some 
algorithms (e.g., Affinity Propagation) and poorly with others (e.g., spectral clustering). The 
study  highlights  the  need  for  tailored  choices  of  autoencoder  and  clustering  algorithm, 
especially for small datasets like Iris, and underscores the importance of using multiple metrics 
for a comprehensive evaluation.

7. FUTURE RESEARCH

Ours will be directed toward researching ref data and problems. In particular, we plan to use 
these algorithms to predict  the toxic  properties  of  different  pesticides depending on their 
structural 3D formulas.
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