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Abstract 
This study presents a comparative analysis of various artificial intelligence (AI) and machine learning 
(ML) algorithms for risk classification in idiopathic membranous nephropathy (IMN), a complex 
kidney  disease.  The  research  evaluates  seven  different  models,  including  K-Nearest  Neighbors, 
Decision Trees, Random Forests, Support Vector Machines, Adaptive Boosting, LightGBM, and Multi-
layer Perceptron. The results reveal that ensemble methods, particularly Random Forests, achieve the 
highest precision in classifying IMN risk levels, highlighting their potential in improving diagnostic 
accuracy and patient management in nephrology. The study underscores the importance of model 
selection and fine-tuning to optimize AI applications in clinical settings, providing a basis for future 
advancements in AI-driven nephrology. 
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1.Introduction 
Nephrology  is  a  critical  area  within  medical  sciences,  with  kidney  diseases  impacting 
approximately 850 million people worldwide, as indicated by recent registries [1]. Like other 
scientific disciplines, nephrology is currently experiencing a transformation driven by advanced 
technologies.  A  key  component  of  this  evolution  is  the  close  collaboration  between  IT 
engineering and medical professionals. This partnership is leading to an increase in research 
efforts and a growing interest in developing and implementing AI-driven systems, numerical 
and classification algorithms, as well as expert systems. These innovations have the potential to 
enhance,  automate,  and  refine  the  processes  of  diagnosing,  classifying,  and  ultimately 
improving the treatment outcomes for kidney diseases.
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Historically, nephrology has relied on manual analysis, which presents challenges when 
dealing with complex data sets, often leading to diagnostic errors and suboptimal treatment 
choices. The ongoing advancements in numerical algorithms and artificial intelligence offer new 
opportunities to enhance kidney health monitoring. This progress allows for greater diagnostic 
accuracy  and  more  precise  treatment  strategies.  The  synergy  between  expert  medical 
knowledge and the automation capabilities of algorithms is paving the way for systems that can 
effectively address complex nephrological challenges. 

Glomerular diseases, a subset of kidney conditions, specifically target the glomeruli— tiny 
structures in the kidneys that filter blood and produce urine. These diseases can arise from 
various causes, including infections, autoimmune disorders, hypertension, diabetes, and other 
metabolic conditions. 

 
Figure 1: General outline of the procedure for research and verification of the problem. 

This article provides a comparative approach to different AI algorithms that can be used in 
risk  classification  of  patients  with  a  nephrological  disease  called  idiopathic  membranous 
nephropathy (IMN). The concept is to create an extended and multi-task expert system that 
would be tasked with supporting nephrologists’ decisions in their daily work in treating patients 
with kidney diseases. The risk classification module is therefore crucial from the perspective of 
the domain expert, who can determine the further course of action based on the patient’s 
assignment to a specific group. The range of algorithms ranges from simple linear approaches to 
complex and advanced gradient solutions. The expertise of nephrologists is also leveraged along 
with advances in engineering. Focusing on specific applications, our goal is to show how these 
advances  can impact  the  standards  of  patient  care,  ultimately  improving the  outcomes of 



traditional approaches. Figure 1 provides a general outline of the methodology, scope of the 
study and the approach used to address the problem. 

The next section will provide a detailed literature review and an overview of the state of the 
art. 

2.State of the art and related works 

This literature review examines the use of automation, artificial intelligence, and classification 
systems in the field of nephrology. It delves into how these advanced technologies streamline 
processes,  increase diagnostic precision,  and improve patient outcomes.  Through a critical 
analysis of the current literature, the goal is to uncover trends and identify gaps, thereby guiding 
future research toward innovative solutions in the field of nephrology. 

Advancements in artificial intelligence, innovation, and transformative technologies are 
pivotal in nephrology and dialysis [2–4]. Additionally, the future prospects of AI and modern 
technologies in managing kidney diseases are extensively reviewed [5, 6]. Research focusing on 
numerical models and machine learning techniques also holds considerable importance [7–9]. 

A key area in nephrology research is the integration of acute kidney injury (AKI) with AI-
driven predictive algorithms [10, 11]. Another significant focus includes the development of 
predictive models in the context of personalized medicine [12]. AI-based clinical applications in 
nephrology  are  explored  in  works  by  [13]  and  [14].  Furthermore,  ethical  considerations 
surrounding AI applications are discussed in [15] and [16]. 

Recent research underscores the integration of AI and machine learning within nephrology. 
For instance, [17] develops short-term prognosis prediction models for severe AKI patients 
undergoing PIRRT (Prolonged Intermittent Renal Replacement Therapy), utilizing algorithms 
such as Naive Bayes and Random Forest, and highlighting the critical role of serum electrolyte 
management. Another study [18], introduces Sugeno's fuzzy inference system for regression 
problems involving numerous variables and limited data, demonstrating superior performance 
over traditional methods. 

In addition, [19] presents health-disease phase diagrams (HDPDs) for visualizing disease 
onset probabilities, while [20] develops CKD.Net, a hybrid model that achieves high accuracy in 
predicting CKD stages. Other significant contributions include [21], which focuses on precise 
kidney volume measurement using AI, and [22], which addresses PRCC (Papillary Renal Cell 
Carcinoma)  stage  classification.  Furthermore,  [23]  showcases  the  importance  of  machine 
learning in predicting AKI and diagnosing PDAC (Pancreatic Ductal Adenocarcinoma). 

A study derived and validated an ML risk score for predicting diabetic kidney disease 
(DKD) progression using biomarker and electronic patient data [24]. Research into interpretable 
ML for early AKI prognosis emphasizes model interpretability benefits [25]. ML has also been 
utilized to predict primary nephrotic syndrome pathology without biopsy and identify hub 
genes in membranous nephropathy [26, 27]. A model for predicting idiopathic membranous 
nephropathy prognosis is discussed in [28]. ML models predicting rituximab underdosing in 
membranous nephropathy show high accuracy, sensitivity, and specificity [29]. Another study 
reports a machine learning framework for diagnosing membranous nephropathy from whole-
slide images, achieving a 97.32% F1-score [30]. 

A  belief  rule-based  system  for  diagnosing  primary  membranous  nephropathy  shows 
significant reliability with 98% sensitivity, 96.9% specificity, 97.8% accuracy, and an AUC of 0.93 
[31].  A predictive model  for long-term renal  function impairment post-minimally invasive 
partial nephrectomy has a concordance index of 0.75 [32]. The use of AI and ML in dialysis is 



reviewed, focusing on diagnostics, prognosis, and treatment optimization [33]. Guidelines for 
proper application and transparent reporting of ML models in biomedical research emphasize 
best practices [34]. Recent literature highlights the crucial role of clinical prediction models in 
modern healthcare, emphasizing challenges and the need for transparent reporting to assess 
their quality [35]. The literature underscores the importance of understanding diagnostic and 
prognostic prediction models, addressing issues such as model development, validation, and 
sample size considerations to improve clinical decision-making [36–38], as well as valuable 
research [39, 40]. 

3. Structure, research scope and methodology in the 
problem of automatic risk classification 

This  section  explores  the  development  of  an  expert  system  for  diagnosing  and  treating 
idiopathic membranous nephropathy, focusing specifically on the risk classification module. 
The system is structured as a hierarchical decision tree that integrates clinical data, diagnostic 
criteria, and therapeutic guidelines to assist nephrologists in managing IMN. 

3.1. General overview of system modules 
The expert system consists of several key components, which are shown in Figure 2 and briefly 
described below: 

1. Diagnostic Module – the diagnosis of (IMN) is confirmed through a combination of 
patient history, diagnostic tests, and kidney biopsy. The evaluation also considers the 
likelihood  of  progression  to  stage  5  chronic  kidney  disease  (CKD5)  by  analyzing 
glomerular filtration rate, levels of proteinuria, and serum albumin concentrations. 

2. Risk Stratification – patients  are classified into four distinct  risk categories  – low, 
intermediate,  high, and very high – based on factors such as estimated glomerular 
filtration rate (eGFR) and proteinuria levels. Each category is associated with specific 
management strategies tailored to the risk profile. 

3. Therapeutic  Module  –  treatment  recommendations  vary  from  conservative 
management to more aggressive immunosuppressive therapies, depending on the risk 
category. Options include ACE inhibitors or ARBs, rituximab, calcineurin inhibitors, 
cyclophosphamide, and corticosteroids. 

4. Treatment Effectiveness Assessment Module and Treatment Continuation Module – 
patient  response  to  treatment  is  re-evaluated  after  six  months.  Based  on  clinical 
indicators, the treatment plan may be continued, modified, or altered. Protocols are 
provided for deciding on the appropriate course of action. 

5. Follow-up  Module  –  guidelines  are  provided  for  the  long-term  monitoring  and 
management of patients who achieve partial or complete remission, including strategies 
for addressing treatment resistance and managing relapses. 

6. User Interface – the system includes a user-friendly graphical interface designed for ease 
of use by healthcare professionals. 



 
Figure 2: General diagram of the system with the module being the object of the study marked. 

In this article, we focus solely on the Risk Stratification Module (see Fig. 2) of the expert 
system, which plays a crucial role in assigning patients to specific risk groups for targeted 
management.  The  comparative  analysis  involves  various  AI  algorithms,  from basic  linear 
methods to advanced gradient-based solutions, alongside traditional expert approaches. 
The details will be explained in the following sections of the article. 

The remaining components of the system – such as diagnostic, therapeutic, and followup 
modules – will be explored in future research. This initial focus on risk classification aims to 
demonstrate  how  AI  advancements  can  enhance  traditional  nephrological  practices  and 
improve patient outcomes. 

3.2. Input-output model of the classification system 
This subsection details the process of modeling the classification system, presenting the input 
variables and their corresponding output classifications.  The classification model processes 
clinical parameters to categorize IMN patients into risk groups using a Multi Input Single Output 
(MISO) framework. The authors used the information provided in the guidelines in [41]. The 11 
inputs to this model, detailed below, include a range of variables: 

1. eGFR (Estimated Glomerular Filtration Rate) – a measure of kidney function estimating 
how well the kidneys filter blood. 

2. Proteinuria – the level of protein present in the urine. 
3. Serum Albumin Concentration – the concentration of albumin in the blood. 
4. Response to ACEi/ARB Treatment – the percentage reduction in proteinuria after 6 

months of treatment with ACE inhibitors or ARBs. 
5. Serum anti-PLA2R Concentration – the level of anti-PLA2R antibodies in the serum. 
6. Urinary α1-microglobulin Concentration – the concentration of α1-microglobulin in the 

urine. 
7. Urinary IgG Concentration – the concentration of IgG in the urine. 
8. Urinary β2-microglobulin Concentration – the concentration of β2-microglobulin in the 

urine. 
9. Selectivity Index – the ratio of different urinary protein components indicating the 

selectivity of proteinuria. 



10. Nephrotic Syndrome Symptoms – the presence of severe symptoms associated with 
nephrotic syndrome (binary value). 

11. Rapid Renal Function Impairment – a swift decline in kidney function not attributable to 
other diseases (binary value). 

The  classification  model  uses  machine  learning  to  provide  accurate  and  reliable  risk 
assessments. Risk categories are defined by specific clinical criteria, and integrating machine 
learning techniques significantly increases the model’s capabilities: 

1. Low Risk 
• eGFR > 60 ml/min/1.73 m² 
• Proteinuria < 3.5 g/d 
• Serum albumin > 30 g/l OR 
• eGFR > 60 ml/min/1.73 m² 
• Proteinuria < 3.5 g/d or a reduction > 50% after 6 months of ACEi/ARB treatment 
2. Moderate Risk 
• eGFR > 60 ml/min/1.73 m² 
• Proteinuria > 3.5 g/d and no reduction > 50% after 6 months of ACEi/ARB treatment OR 
• Does not meet high risk criteria 
3. High Risk 
• eGFR < 60 ml/min/1.73 m² and/or Proteinuria > 8 g/d for 6 months OR 
• eGFR > 60 ml/min/1.73 m² 
• Proteinuria > 3.5 g/d and no reduction > 50% after 6 months of ACEi/ARB treatment, plus 

one of the following: 
a. Serum albumin < 2.5 g/dl 
b. Serum anti-PLA2R > 50 RU/ml 
c. Urinary β2-microglobulin > 40 μg/min 
d. Urinary IgG > 1 μg/min 
e. Urinary β2-microglobulin > 250 mg/d 
f. Selectivity Index > 0.20 
g. Very High Risk 
h. Life-threatening nephrotic syndrome symptoms OR 

• Rapidly progressive renal impairment not caused by other diseases. 

Machine  learning algorithms are  excellent  at  identifying complex  interactions  between 
multiple input variables that may not be apparent with rule-based logic alone. This leads to a 
more  nuanced  understanding  of  a  patient’s  risk  profile.  The  guidelines  above  provide  a 
framework for categorizing data, but they cannot account for every possible combination of lab 
results and other factors. Nor could a rule-based system easily provide a way to determine which 
output category values fall into. This gives AI and ML methods an advantage in these types of 
tasks. 

Machine learning models leverage historical patient data to identify patterns and correlations 
that enhance the precision of risk classification predictions. This approach, driven by data, 
refines decision boundaries and reduces the likelihood of misclassification. A key benefit of 



machine learning models is their capacity to adapt and become more accurate as new data is 
introduced. Furthermore, certain machine learning models offer insights into the probability of 
data belonging to specific classes. 

The next section will describe in detail the considered algorithms. 

4.Overview of algorithms used in the study 
In any problem where automatic classification of collected data is needed, selecting the right AI 
models and numerical algorithms is a key step in developing a robust classification system. 
Seven AI and ML-based models were selected and tested to provide the best solution to the task. 
The models feature different algorithms used, such as tree-based methods, ensemble techniques, 
support vector machines, and neural networks. By using different methods, a comprehensive 
evaluation and comparison is provided. It also provides researchers with an answer as to which 
model performs best in classifying the risk of IMN patients. Below is a brief description of each 
algorithm: 

1. K-Nearest Neighbors (KNN) is a straightforward, non-parametric method used for 
both classification and regression. It classifies a data point by considering the most 
common class among its 𝑘 nearest neighbors in the feature space. While KNN is simple 
to grasp and implement, it can become computationally heavy with larger datasets. 

2. Decision trees (DT) offer a flexible approach to machine learning for both classification 
and regression tasks. They partition data into subsets based on feature values, creating a 
tree-like structure of decisions. Though easy to interpret, decision trees can overfit the 
data if not properly managed through pruning. 

3. Random forests (RF) are an ensemble learning method that builds and combines 
multiple  decision  trees  to  achieve  more  accurate  and  stable  predictions.  By  using 
different subsets of data and features to construct each tree, random forests enhance 
generalization and help reduce overfitting. 

4. Support Vector Machines (SVMs) are effective classifiers that determine the optimal 
hyperplane  for  separating  classes  in  the  feature  space.  They  work  well  in  high-
dimensional settings and can address both linear and non-linear classification problems 
through kernel functions. 

5. Adaptive Boosting (AdaBoost) is an ensemble technique that merges several weak 
classifiers into a strong one. It adjusts the weights of misclassified instances during each 
iteration,  placing  greater  emphasis  on  harder-to-classify  examples.  Despite  its 
simplicity, AdaBoost can be sensitive to noisy data. 

6. LightGBM is a gradient boosting framework designed for efficiency and scalability, 
particularly with large datasets. It uses tree-based learning algorithms and includes 
optimizations to improve both speed and memory efficiency. 

7. The Multi-layer Perceptron (MLP) Classifier is a type of neural network with multiple 
layers of neurons. It is adept at capturing complex patterns in data and can be used for 
classification and regression. However, MLPs require careful tuning of hyperparameters 
and can involve lengthy training processes. 

This chapter briefly introduces seven different AI and ML models for their usefulness in 
classifying  the  risk  of  IMN  patients.  The  models  reviewed  include  K-Nearest  Neighbors, 



Decision Trees, Random Forests, Support Vector Machines, Adaptive Boosting, LightGBM, and 
the  Multi-layer  Perceptron  Classifier.  Each  model  offers  unique  strengths:  KNN  is 
straightforward but computationally intense, DTs are interpretable but prone to overfitting. RFs 
improve stability and generalization, SVMs excel in high-dimensional spaces and AdaBoost 
focuses on hard-to-classify examples but can be sensitive to noise. LightGBM provides efficiency 
and scalability for large datasets, and MLPs capture complex patterns but require extensive 
tuning. 

The next chapter will detail the training process of these models and provide a discussion of 
the results obtained from their application to the classification task. 

5.Training of models and discussion of achieved results 
 

In this section, we present the insights gained from the analysis and the results of classifying 
nephrology patient data using various machine learning models described in Section 4. 

The  original  dataset  included laboratory  results  relevant  to  IMN risk  classification.  To 
mitigate class imbalance and improve model performance, synthetic data augmentation was 
applied, generating new data points that mirror the distribution and features of the existing data. 
For model training, 200 datasets were used, evenly distributed among the four risk categories:  
low, medium, high, and very high, with 50 datasets in each category. An identical number of 
datasets were allocated for testing. This approach ensured that the models had ample data for 
training and a reliable set for evaluation. 

The comparison of precision scores (see Fig. 3) across various machine learning models in the 
context of nephrology risk classification reveals important insights into their performance on 
the dataset prepared and described in the preceding sections.  

 
Figure 3: Precision results for tested models. 

By analyzing the results in Figure 3, we can discuss in detail the results and implications of 
each classifier: 



1. MLP Classifier – the MLP classifier achieved a high precision score of 0.96, indicating its 
robustness in accurately predicting the positive class in the IMN risk classification task. 
This model's  architecture,  which simulates the neural networks found in biological 
brains, has proven effective in capturing the complex, non-linear relationships inherent 
in the clinical dataset. 

2. LightGBM – in contrast, the LightGBM model exhibited a notably lower precision score 
of 0.11. This result is surprising given LightGBM's reputation for efficiency and high 
performance in many classification tasks. The poor performance may suggest that the 
specific characteristics of the nephrology dataset, or the hyperparameters used, do not 
align well with the strengths of this gradient boosting framework. Further investigation 
into  feature  importance  and  model  tuning  would  be  necessary  to  understand  this 
anomaly. 

3. AdaBoost – Adaptive Boosting yielded a precision score of  0.89,  demonstrating its 
capability  to  enhance  weak  classifiers  by  focusing  on  misclassified  instances.  This 
performance  indicates  that  AdaBoost  effectively  leveraged  the  synthetic  data 
augmentation and was able to generalize well across the test dataset. 

4. Support Vector Machine – the SVM classifier, with a precision score of 0.93, performed 
robustly,  confirming  its  strength  in  high-dimensional  spaces,  where  it  constructs 
optimal hyperplanes to segregate different risk classes. This suggests that the SVM is 
particularly well-suited to handle the complexity of the feature space derived from 
nephrology patient data. 

5. Random Forest  –  the  RF model  achieved the  highest  precision score  of  0.98.  This 
ensemble  method's  exceptional  performance  underscores  its  ability  to  manage  the 
variability within the dataset by combining the predictions of multiple decision trees, 
thereby enhancing overall predictive accuracy. 

6. Decision Tree – the single DT model also performed well, with a precision score of 0.96. 
Despite its simplicity compared to ensemble methods, the decision tree's interpretability 
and effectiveness in handling this particular dataset are evident from its high score. 

7. K-Nearest Neighbors – KNN classifier attained a precision score of 0.88. While KNN is 
often sensitive  to  the  local  structure  of  the  data  and can be  affected by noise,  its 
performance in this scenario indicates a reasonable degree of success in classifying risk 
levels among nephrology patients. 

In summary, the Random Forest model emerged as the most effective classifier in terms of 
precision,  followed  closely  by  the  Decision  Tree  and  MLP  classifiers.  The  unusually  low 
precision score of LightGBM warrants further exploration to identify potential  causes and 
corrective measures. These findings will inform future work in refining model selection and 
optimization for nephrology risk classification tasks. 



 
Figure 4: F1-score results for tested models. 

The F1-score evaluation of different classifiers (see Fig. 4), as presented in the nephrology risk 
classification study, provides deeper insights into the balance between precision and recall 
across various models. Here, we discuss the performance of each classifier in terms of its F1-
score, which is particularly useful in assessing the model's effectiveness in dealing with the 
complexities of an imbalanced dataset: 

1. MLP Classifier – F1-score of 0.96 confirms strong capability in managing complex, non-
linear classification, balancing precision and recall effectively 

2. LightGBM – low F1-score of 0.16, suggesting significant struggles with both precision 
and recall, making it less suitable for this task. 

3. Adaptive  Boosting  –  F1-score  of  0.84  reflects  good  performance,  particularly  in 
enhancing classification of difficult instances in imbalanced data. 

4. Support Vector Machine – SVM scored 0.89 in F1, indicating strong performance with 
well-balanced precision and recall, effectively separating risk classes. 

5. Random Forest – excelled with an F1-score of 0.99, showcasing superior performance by 
combining multiple decision trees to minimize errors. 

6. Decision  Tree  –  DT  achieved  a  high  F1-score  of  0.94,  demonstrating  effective 
classification by accurately partitioning the feature space. 

7. K-Nearest  Neighbors  –  F1-score  of  0.79  indicates  moderate  performance,  reflecting 
challenges in balancing precision and recall, particularly with imbalanced data. 

In conclusion, the Random Forest classifier once again proved to be the most effective model 
in  terms of  the  F1-score,  closely  followed by the  MLP and Decision Tree  classifiers.  The 
consistently low performance of LightGBM, as reflected in both precision and F1-score, warrants 
further  exploration.  Overall,  these  results  provide  clear  guidance on the most  appropriate 
machine learning models for nephrology risk classification tasks, with a particular emphasis on 
the effectiveness of ensemble methods and neural network-based approaches. 



 
Figure 5: Recall results for tested models. 

The recall scores (see Fig. 5) across various classifiers in the context of nephrology risk 
classification provide key insights into each model's ability to identify relevant cases within the 
dataset. Below is a summary of the performance for each classifier: 

1. MLP Classifier – the MLP achieved a high recall score of 0.96, confirming its strong 
ability to identify nearly all relevant cases, making it one of the most effective models in 
this study. 

2. LightGBM –  the  LightGBM model  exhibited  a  low recall  score  of  0.25,  indicating 
significant  issues  with sensitivity  and a  tendency to  miss  a  substantial  number  of 
relevant cases. 

3. Adaptive Boosting – AdaBoost scored 0.85 in recall, suggesting good sensitivity, as it 
effectively identified most of the relevant instances in the dataset. 

4. Support Vector Machine – the SVM achieved a recall score of 0.88, showing strong 
sensitivity  and  a  solid  ability  to  correctly  identify  relevant  cases,  with  few  false 
negatives. 

5. Random Forest – with an exceptional recall score of 0.99, the Random Forest model 
nearly  perfectly  identified  relevant  instances,  making  it  highly  reliable  in  this 
classification task. 

6. Decision Tree – the DT model recorded a high recall score of 0.93, demonstrating its 
effectiveness in capturing most relevant cases and minimizing false negatives. 

7. K-Nearest Neighbors – KNN classifier achieved a recall score of 0.81, indicating decent 
sensitivity but missing some relevant instances, reflecting moderate recall performance. 

In summary, the Random Forest model again demonstrated the highest reliability with its 
near-perfect recall score, followed closely by the MLP and Decision Tree classifiers. The low 
recall score of LightGBM, similar to its performance in other metrics, suggests that it struggled 
significantly with this specific task.  



 
Figure 6: Example results of the confusion matrix for models. 

The  confusion  matrices  (see  Fig.  6)  presented  in  the  provided  figure  summarize  the 
performance of four different machine learning algorithms – KNN, LightGBM, RF, and DT. 
The results presented in Figure 6 clearly indicate that the RF algorithm in the classification 
model achieved the best results in the course of the study. On the other hand, LightGBM, 
similarly to the graphics presented in Figures 3-5, performed the worst, which is confirmed by 
the result on the confusion matrix. In the case of the other two algorithms – KNN and DT, their 
efficiency in the task of risk classification of patients with IMN is confirmed to be decent, but not 
as good as for RF. 

6.Conclusions 
The comparative analysis of various artificial intelligence and machine learning algorithms for 
the classification of idiopathic membranous nephropathy risk demonstrates the potential of 
these technologies in enhancing traditional nephrological practices. The study evaluated seven 
different AI models, including K-Nearest Neighbors, Decision Trees, Random Forests, Support 
Vector Machines, Adaptive Boosting, LightGBM, and Multi-layer Perceptron Classifier. 

The  results  indicate  that  ensemble  methods  such as  Random Forests  outperform other 
models, achieving a precision score of 0.98, demonstrating their robustness in handling the 
variability within nephrological data. The MLP Classifier and Decision Tree also showed high 
precision scores (0.96), suggesting their capability in capturing complex relationships within the 
clinical dataset. In contrast, LightGBM's performance was unexpectedly low, with a precision 
score  of  0.11,  indicating  that  further  tuning  and  investigation  into  model  parameters  are 
required for this specific application. 

The  study  highlights  that  AI  models,  particularly  ensemble  methods,  can  significantly 
improve the accuracy of risk classification in nephrology, potentially leading to better patient 



outcomes. However, the results also underscore the importance of selecting appropriate models 
and fine-tuning them to the specific characteristics of medical datasets. Future research should 
focus on optimizing these models and exploring their integration into clinical decision support 
systems to assist nephrologists in managing kidney diseases more effectively. 

Overall, this work provides a foundation for the continued exploration and application of AI 
in nephrology, emphasizing the need for further validation and refinement to achieve reliable 
and clinically applicable tools. 
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