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Abstract
This paper concerns the problem of hyperspectral imagery multi-class classification. A hybrid three 
step iterative method is proposed. The method consists of  pre-processing, training and proxy-labeling 
steps. During the pre-processing step the data is normalized and filtered to minimize the noise and 
smooth the  data.  The second step involves  training a  convolutional  neural  network to  train  a 
discriminator. Third step utilizes the discriminator from the second step to label high-confidence 
samples  from the  unlabeled  pool.  An overview of  each  component  is  given.  The  efficiency of 
dimensionality reduction is evaluated. Results indicate that dimensionality reduction step both speeds 
up the subsequent learning and improves the efficiency of semi-supervised learning.
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1. Introduction

Hyperspectral  imaging  is  an  advanced  remote  sensing  method  that  collects  detailed 
information about the earth's surface. It projects light waves in hundreds of narrow spectral 
ranges,  providing  a  rich  dataset  for  identifying  and  characterizing  materials,  assessing 
biophysical parameters and monitoring environmental conditions. A number of studies are 
devoted to the use of supervised learning for hyperspectral classification. The most common 
task  for  hyperspectral  image processing  is  multi-class  classification.  This  is  a  simple,  yet 
effective way to model connections between a discrete target variable and a set of input data. 
There are a number of problems associated with the use of data for hyperspectral classification:

 high dimensionality of hyperspectral data - hyperspectral data consists of hundreds of 
light spectrums, which complicates the development of accurate models, which leads to 
the curse of  dimensionality [1]  -  the accuracy of  machine learning models  can be 
reduced by increased data dimensions;
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 availability of labeled data - supervised learning algorithms require a large volume of 
labeled  data  to  be  effective.  However,  collecting  labeled  data  for  hyperspectral 
regression can be difficult and expensive;

In this work, a hybrid approach is used to alleviate these issues. Deep neural networks allow for 
the effective embedding of high-dimensional features into low-dimensional embeddings, but 
they  require  even  more  labeled  samples  to  learn  the  low-dimensional  representation.  To 
partially solve the curse of dimensionality, the number of hyperspectral bands is reduced during 
the pre-processing stage to decrease the number of parameters of our model and partially assist 
in solving the curse of dimensionality.
Semi-supervised learning, on the other hand, allows utilization of a combination of labeled and 
unlabeled data to train the model, achieving higher accuracy than a normal supervised learning.

2. Problem Statement

When considered under the semi-supervised framework, hyperspectral image classification in 
it’s  core  is  similar  to  other  multi-class  classification  tasks.  More  formally,  we  start  by 

introducing a labeled dataset L={(x0 , y0) ,…,( xn , yn )}, where x∈ X , y∈ Y , X  is the input 

space,  Y  is the label space, n is the size of labeled dataset. It is complemented by unlabeled 
dataset U={xn+1 ,…, xn+m }, x∈ X , m is the size of the unlabeled dataset. A combined dataset 

D=U ∪ L is used to train model parameters θ of an approximator function f (x ,θ )≈ y’. The 
approximator function is learnt to minimize a loss function and make predicted labels as close to 
the groundtruth labels as possible.
Training is an iterative process θi , Li ,U i=T (θi−1 , Li−1 ,U i−1), where i is the training iteration 
(or epoch), T is a training step. Depending on the internal implementation of the algorithm, 
labeled and unlabeled data sets can be updated between the training iterations.
Hyperspectral imagery has a lot in common with classic computer vision tasks – the data is  
represented as a 3-dimensional cube of data xH ×W ×C ∈ X , where x is the data sample, H is the 
image height, W is the image width, C is the number of channels. However, unlike conventional 
image recognition, however, the number of channels C is usually in the range of 100-500, instead 
of the normal 3-4 channels. This leads to increase in the input size, e.g. for an input with H = 48, 
W = 48 the normal configuration (C = 3) would result in 6912 features. Hyperspectral images of 
the same resolution with C = 100 would have 230400 features, an increase of ~ 33 times, which 
can be even larger in practice.
Semi-supervised framework with deep neural networks is able to address the issues of sample 
size  and  high  dimensionality,  however  the  problem  of  noise  is  still  present.  As  such, 
hyperspectral images must be pre-processed  to reduce noise and remove artifacts. The pre-

processing is modeled as a function P (xH ×W ×C )=x 'H ×W ×C , x X , x ' X , where x is the original 

input, x’ is pre-processed input.

3. Related Works

A general framework for hyperspectral multi-class classification consists of two stages: data 
pre-processing  and  discrimination.  Pre-processing  steps  may  vary  depending  on  the 



discriminator used. Recent research uses the variety of discriminator models, such as SVM, 
matched filters, and neural networks. Among these methods, neural networks is the most robust 
as  it  allows  to  efficiently  learn  the  low-dimensionality  embeddings  from  the  high-
dimensionality dataset.

3.1. Approaches to mine detection

Despite widely acknowledged danger and economic damage mines are known to posses [2], 
landmine discovery and removal operations are still widely performed with the same tools that 
were developed during WW2, namely a magnetic detector and a probe. This leads to increase 
risk to the operators performing a survey. This lead to an increased interest in leveraging remote 
sensing technologies to detect mines and create precise maps of the minefields.

As  such,  a  variety  of  techniques  were  considered  for  remote  probing.  Hyperspectral 
imagery[3] is an emergent technology that allows to capture a broader band of light than 
normal cameras do, allowing for reach features to be extracted from the data. One of the first 
projects to study mine detection using infrared wavelengths was conducted at Defence Research 
& Development Canada (DRDC). DRDC began its research in support of the Canadian Army on 
mine and unexploded ordnance detection in 1978 and in collaboration with Itres Research on 
hyperspectral imaging for mine detection in 1989. The algorithms developed during this project 
can be applied to pre-processed images from hyperspectral imagers. An early project proposed a 
hierarchical image processing algorithm to detect a sparsely distributed bright region a few 
pixels wide in a monochromatic image [4]. Fusion of visible and SWIR bands can provide better 
detection results. Basic fusion of two spectral bands provides acceptable segmentation of objects 
from the background, regardless of the illumination conditions. In other words, choosing a set of 
two or three spectral bands from an image has been shown to be as effective in differentiating 
artificial objects from the background as using all spectral bands simultaneously [5]. Such fusion 
has the potential to detect mine-like objects in an image using an integrated camera with visible 
and SWIR sensors and more sophisticated and specialized detection algorithms. [6] describes a 
Defense  Advanced  Research  Projects  Agency  (DARPA)-sponsored  experiment  to  test  the 
feasibility of detecting buried mines using midwave infrared (MWIR) (3 to 5 μm) and longwave 
infrared (LWIR) (8 to 12 μm) hyperspectral bands. The project focuses on detecting surface 
disturbances caused by buried mines. . Previous experiments have shown the ability of VNIR 
and SWIR imagers to detect surface disturbances [7], [8]. However, the problem was the high 
rate of false alarms caused by surrounding vegetation and rocks. According to the authors, the 
main rationale for detecting buried mines using spectral properties is that the surface properties 
are somewhat different from the properties of the subsurface soil. The impact of soil on the 
surface changes some of its physical and chemical properties.

More  recent  approaches  leverage  artificial  neural  networks  to  detect  landmines  more 
reliably.  In  India,  researchers  proposed a  hierarchical  algorithm for  mine  detection using 
infrared  images,  which  consists  of  pre-processing  (contrast  enhancement  -  filtering  - 
smoothing), segmentation, feature extraction, and ANN-based classification [9]. The authors 
tested the algorithm on surface mines in two soil types: black cotton and sand. During pre-
processing, the image is converted to gray color. The two most important preprocessing steps 
are contrast enhancement and noise removal. During the tests, the authors used a small NN with 
1 hidden layer and 4 neurons. The results obtained on a simple dataset are good, but it is not 
expected that the algorithm will work well on another field or soil type, since the data used in 



the training stage is not complete enough. In 2015, TELOPS, a Canadian research company 
specializing in infrared and hyperspectral imaging, demonstrated the feasibility of detecting 
buried objects  using an airborne LWIR hyperspectral  imager [10].  From the aircraft,  they 
obtained thermal hyperspectral images of areas that contain previously buried artificial objects. 
They  found  that  the  disturbed  soil  directly  above  the  buried  target  is  warmer  than  the 
undisturbed  soil  area  next  to  it.  Comparing  the  emissivity  data  obtained  by  decoupling 
temperature and emissivity, buried targets are displayed as part of the hottest ground region 
within the scene, but additional classification or information is needed to distinguish buried 
objects from other naturally hot regions.

It is worth noting that most of the works reviewed pay much attention to the quality of 
electro-optical sensors and pre-processing, but the classifier itself is quite simple. The use of 
modern artificial intelligence technologies, namely convolutional neural networks (CNN), will 
have a positive effect on both the overall accuracy and specificity of the classifier. Another 
common problem is the limited training dataset. Semi-supervised learning methods are used to 
solve this problem.

3.2. Pre-processing

Data preprocessing is an important step in the data analysis process to ensure its accuracy, 
reliability, and readiness for further analysis. In this work we use a 4-stage pre-processing 
framework to minimize the impact of the noise and decrease the dimensionality of the input.

Normalization is the basic technique [11] aimed at adjusting the flow of changes in lightning, 
atmospheric conditions and other factors on the spectral data. The first step is to align the values 
of different bands as their reflectance values can be highly different. This is achieved by applying 
a min-max[12] normalization. Min-max normalization is a common technique to normalize 
multi-band images, be it hyperspectral or simple RGB and is defined as:

x ' i , j=
xi , j−min

xH ,W

x

max
xH ,W

x−min
xH ,W

x
, (1)

where  x ' i , j is  the normalized pixel  value,  xi , j is  the original pixel  value,  max
xH ,W

x is  the 

maximum intensity value and min
xH ,W

x is the minimal intensity value within the channel. Another 

common  normalization  technique  to  stabilize  the  training  is  spectral  normalization  [13]. 
Although it is a powerful tool, it’s primary use case is the stabilization of generative models[14], 
and as such it is ill-suited for discriminator training. The removal of noise may result in the 
influx of unwanted signals and artifacts that may interfere with the results of the analysis[15]. A 
variety of filters, such as a median filter [16] for removing impulse noise:

x ' i=median [ xi−n , xi−n+1 ,…, xi ,…, xi+n−1 , xi+n], (2)
where x '  is filtered signal,  x is the original signal, median is the median operation. Median 
filters are linear, and often are defined via kernels in case of multidimensional data. A Gaussian 
filter [8] is used for smoothing data  to decrease the interference (in this work we utilize a two-
dimensional version of the filter):

G (i , j )= e−( i2+ j2)/2σ 2

2π σ 2
, (3)



where i,j are dimensions along which the filtering is performed, σ  is the standard deviation of 
the distribution. This filter is also used only in one band to decrease the inference. 

Depending on the approach, the next step is often skipped, however it can have a great 
impact on the discriminator’s performance, as it is shown that higher dimensionality leads to 
rapid decrease in discriminator’s accuracy and exponential increase in model’s parameters [17]. 
As such, dimensionality techniques are often applied, especially for higher-dimensional data. 
Some of the bands may not be important for the analysis, and as such can be discarded to 
decrease the dimensionality. Principal component analysis (PCA) is a common technique [18], 
used to decrease the dimensionality of the data and identify the main components, which allows 
for the largest portion of information to be reduced and the influx of noise.

In  this  work  we  explore  a  class  of  problems  that  can  be  classified  based  on  narrow, 
independent bands of data, as such linear methods are preferable due to their specificity. In these 
scenarios, linear dimensionality reduction methods are preferable as they are simpler and have 
comparable effect as nonlinear methods. However, for certain types of problems, it is beneficial 
to use non-linear dimensionality reduction methods, such as, Isomap[19], that perform better 
when noise forms non-linear cross-band structures.

3.3. Discriminator

Multiple  types  of  discriminators  are  considered  applied  to  the  hyperspectral  data 
classification. Several methods were used historically to process hyperspectral images, however 
neural networks are considered the state-of-the art approach. They are able to efficiently learn 
low-dimensional embeddings for hyperspectral data. Convolutional neural networks (CNN) are 
the most common approach to processing high-dimensional data, as convolutional layers are 
the  most  effective  approach  to  reducing  dimensions  while  minimizing  the  number  of 
parameters. There are two types of convolutional layers - 3d and 2d convolutions which operate 
on the same principle:
A discrete convolution on a finite set of values is determined using the formula

( f∗g ) [n ]= ∑
m=−M

M

f [n−m ] g [m], (4)

where f and g are some discrete functions,  M is a matrix size,  n,  m are matrice’s values. If  I 
(image) and K (kernel) are matrices, the two-dimensional convolution is determined using the 
formula

( I∗K ) [m,n ]=∑
i=0

k1

∑
j=0

k2

I [m+i , n+ j ] K [i , j ] , (5)

where m and n are the current position of the upper left corner of the kernel relative to the upper 
left corner of the image; k1 is the kernel’s height; k2 is the kernel’s width.

The three-dimensional convolution is defined similarly to the two-dimensional convolution 
with the addition of an additional dimension for the image, kernel, and sum in formula (4). 
Conv2D and Conv3D convolutional layers are defined using the formula:

out (N i ,Coutj)=bias (Coutj)+∑
k=0

C¿−1

weight (Coutj , k )∗input (N i , k ), (6)



where input (N i , k ) is the k-th channel of the i-th training sample of size H, W for Conv2D and 
H, W, D for Conv3D; W – image width, H – image height, D – is the image depth (number of 
channels);  C¿– number of input channels;  N is the number of training samples in the batch; 

weight (Coutj , k ) - convolution weights (kernel) between the  k-th channel of the input and 

Coutth channel  at  the output  of  the layer;  bias(Coutj ) is  convolution shift for  the  Coutjth 

channel’s at the output of the layer, Cout is the number of channels at the output of the layer. 
However, apart from using the correct layers, it is also important to pick the appropriate 

architecture. ResNet [20] is state-of-the art architecture that utilizes classical CNN architecture 
with residual connections, which assist in gradient propagation along the network. ResNet is 
arranged as a series of blocks called bottlenecks. For hyperspectral data processing, we utilize a 
3D version of ResNet [21], and introduce a more detailed architecture in section 4.

3.4. Loss function

Loss functions play a key role in training deep neural networks because they determine 
exactly how the model evaluates its performance and adjusts its parameters.The loss function is 
a key component in the process of developing machine learning models, as it measures how well 
the model matches the given data. In this work, we use a hybrid method based on semi-
supervised learning, however we use a classical proxy labeling approach, and as such our loss 
does not have a semi-supervised term. Categorical cross-entropy loss is commonly used in 
training multi-class classifiers [22]:

CE=−∑
i=0

C

t i log2 si,  (7)

where C is the number of classes, t iis the predicted probability, si is the groundtruth probability.

3.5. Semi-supervised learning

Semi-supervised learning allows the use of a combination of labeled and unlabeled data. In 
our case, proxy labeling [23] is the most straightforward approach that is easy to utilize as it 
defines all the parameters implicitly, with the minimal confidence threshold being the only 
hyperparameter of the algorithm.

The proxy labeling is an iterative process, where during each iteration a labeled dataset is 
extended by using the trained model to label unlabeled samples, extend the labeled dataset, and 
repeat the same process until either all of the labels are labeled or iteration limit is reached. More 
formally, proxy labeling consists of two stages - train (8) and update (9) that are repeated in the 
loop:

θi , bi=train ( f ,θi−1 , bi−1 , Li−1) , (8)

where θ are model weights, b are model biases, f is the approximator function, L is the labeled 
dataset, train is the training function. During the semi-supervised learning, datasets are updated 
between the training iterations as well as follows:

Li=Li−1∪ Si ,U=U i−1∩S , S={u|f (u ,θi , bi)≥ ϵ ,u∈ U i−1}, (10)

where L is the labeled dataset, U is the unlabeled dataset, f is the discriminator model, ϵ  is the 
minimum confidence threshold, Wi,  bi are discriminator’s parameters learnt on i-th iteration. 



This approach is based on the smoothness assumption (for two points x and x’ that are close to 
each other in the input space, their labels y and y’ should match), but does not require an explicit 
definition of distance metric, as it is instead replaced by the embeddings of the discriminator and 
confidence of the discriminator.

4. Method

In  this  work  we  propose  an  iterative  three  stage  approach  to  hyperspectral  image 
classification. The first stage consists of image pre-processing, followed by the iterative proxy-
labeling approach to learn the features. The overall training flow is shown in Fig. 1.

Figure 1: Simplified training flow diagram.

In the first stage data is pre-processed by normalizing and filtering the original dataset. This 
stage sets  up the dataset  for future processing.  The next step is  dimensionality reduction 
through PCA. This step analyzes normalized data, identifies important bands and decreases 
dimensionality. Then, the training loop is engaged with continuous proxy-labeling training.

In this work we use a custom CNN architecture that is optimized[24, 25] to handle a large 
number of channels by squashing them in the first few convolutional layers with 3D layers. The 
network  architecture  is  pruned  using  methods  outlined  in  [26,  27]  to  ensure  the  best 
performance during both inference and training. The exact model architecture is shown in Fig. 
2.



Figure 2: CNN architecture 

Semi-supervised learning utilizes a common proxy-label framework - we use 90% as the 
confidence for unlabeled samples to be transferred to the labeled pool. This update is performed 
once in 5 epochs of training. Once added to the labeled pool, the samples are removed from the 
unlabeled samples and treated as ground truth for all of the following training iterations.

It  should be noted, that the proposed discriminator architecture is somewhat simplistic 
compared to the state-of-the-art networks, such as ResNet. The reason for that is twofold. On 
the one hand, is that the proposed approach only has to classify a fairly modest number of 
classes (either binary for mine - no mine, or multi-class with up to 20 classes if mines should be 
classified  by  their  type).  As  such,  the  architecture  can  be  simplified  to  decrease  the 
computational capacity needed during the inference stage. The second reason is that decreased 
computational cost allows to run the system in a real-time capacity, which is useful for real-time 
surveying.

As such, the system can be operated in two modes – real-time and batch processing. In the 
batch mode, the agent first surveys a full  area of interest with hyperspectral camera. The 
collected hypercube is then sliced with a sliding algorithm into a subareas that can be processed 
by the CNN. Each subarea is pre-processed and passed through the discriminator. Label data is 
then  combined  with  the  telemetry  collected  by  the  agent  to  create  the  geoinformational 
database that contains the information about the mines in the area. Unmanned aerial vehicle 
(UAV) is proposed as the agent, as it offers superior mobility and scanning throughtput [24]

In the realtime mode the data is available in the live feed from the agent. Inference is  
performed on the agent itself and can be stored on board and broadcasted to ground control 
station during the survey. In this case, the geoinformational database can be recovered once the 
mission is compelte to obtain a full map of the minefield. The general flow of both approaches is 
outlined in Fig. 3



Figure 3: Batch (a) and realtime (b) inference schemas for proposed method.

5. Results

The model was trained with the help of a stochastic gradient descent (SGD) optimizer with 
an input speed of 0.001, a batch size of 32, and a categorical cross-entropy loss function.

The main evaluation metric used to evaluate the classification efficiency of the model was 
accuracy.

The Indian Pines dataset is a hyperspectral dataset collected by the AVIRIS sensor over the 
Indian Pines test site in the southern state of Indiana. The University of Pavia dataset is a 
hyperspectral dataset collected by the ROSIS sensor over the University of Pavia, Italy.

Results from running the convolutional neural network (CNN) model on the Indian Pines 
and Pavia University datasets demonstrate the high efficiency of the model. For the Indian Pines 
data set, accuracy reached 85%, indicating that the model is good at recognizing different classes 
in folded hyperspectral images. For the University of Pavia data set, the accuracy was 87%, 
which  is  also  a  significant  achievement  due  to  the  complexity  of  the  data  set.  Results 
visualizations are present in the Fig. 4 and 5, tabulated data is presented in Table 1.

It is worth noting, that removing the dimensionality reduction step has a limited effect on the 
average accuracy, however, extra training epochs were required as not all of the unlabeled data 
was used and the classifier has not reached its peak discrimination capacity.



The model was tested in the batch mode, and the results were patched together to provide a 
view of the minefield. In batch mode we were able to achieve an average of 63.26 ms per 
inference,approximately 17 FPS, which makes the method applicable to real-time problems.

Figure 4: Classification results (Indian Pines dataset). Source data (left) and classification results 
(right).

Figure 5: Classification results (Pavia University). Source data (left) and classification results 
(right).
Table 1
Accuracy results

Dataset Average 
Accuracy

Loss PCA Epochs

Pavia University 87.32% 0.0019 Yes 200

Indian Pines 85.35% 0.0028 Yes 200

Pavia University 87.25% 0.002 No 300



Indian Pines 85.17% 0.0031 No 300

6. Conclusion

The proposed multi-step hybrid semi-supervised neural network approach is efficient in 
processing of hyperspectral imagery. The approach is able to efficiently reduce the dimensions 
of the input data by discarding low-information bands in the pre-processing step via a PCA or 
other dimensionality reduction tools and then applying a neural network-based discriminator to 
the processed data to solve the problem of hyperspectral multi-class classification. A semi-
supervised learning loop based on proxy-labeling is used to augment the learning capacity, 
decrease  the  amount  of  labeled  data  needed,  and  minimize  the  number  of  the  model’s 
hyperparameters.

The research has several limitations. Firstly, the PCA is a linear dimensionality reduction 
algorithm, which might remove information, especially in hyperspectral data, as non-linear 
structures are likely to be lost in the dimensionality reduction procedure. Additionally, used 
CNN architecture is fairly simplistic and might not have enough learning capacity. Lastly, 
proxy-labeling  threshold  is  constant  during  the  training  process,  which  might  lead  to 
suboptimal labeling as the number of classes grows.

The approach is comparable to the state-of-the-art methods, however it is faster to train and 
adapt  as  it  has  fewer  parameters  to  tune.  The  drawback  of  this  approach,  however,  is 
vulnerability to poorly labeled data. It is also sensitive to non-linear noise structures, as PCA is 
more likely to remove informative bands in its presence. Further research includes two primary 
directions: improving pre-processing and optimizing semi-supervised learning. Pre-processing 
can be improved by sacrificing learning speed for non-linear dimensionality reduction methods, 
such as Isomap or Laplacian eigenmaps. Semi-supervised learning aspect would benefit greatly 
from defining an explicit  distance metric.  As such, autoencoders could be used to learn a 
distance metric between two samples from the input space, unlocking the application of semi-
supervised algorithms with stricter prerequisites.
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