
Method and tool of detecting software
architecture patterns in the process of
computer systems development

Vasyl Yatsyshyn1,†, Oleh Pastukh1,†, Victoria Kukharska1,†, Andriy Palamar1,† and Serhii
Kulikov1,†

1 Ternopil Ivan Puluj National Technical University, Ruska, 56, Ternopil, 46001, Ukraine

Abstract
In this paper a method and a tool for automatic detection of software architecture patterns are
proposed. The main idea of the developed method is to automatically identify design patterns using
artificial intelligence approach to software requirements and meta description of reuse software
component. The main value of the method is to increase accuracy of design pattern detection in the
process of computer systems development and to avoid developers subjective solutions.
This has been achieved by implementing a neural network with dynamic structure, which works
out with attributes of software requirements and architecture patterns' meta description.
The tool of detecting software architecture patterns is created like a web-service with C# and help
to automate the process of proposed method.

Keywords 1

detection, pattern, neural network, software, computer system

1. Introduction

Modern computer and information systems are characterized by a high level of functional
complexity and the processing of a large amount of diverse and complexly structured data. In
its turn, it requires from the developers of computer systems introducing new intelligent and
effective methods and tools of developing both hardware and software components of the
system. At the same time, formalized methods and CASE-tools must be integrated into the
general process of developing the system, in particular its software component.

The most complex and time-consuming processes for any system are the identification,
formulation and tracing (communication) of requirements at the stages of the life cycle. This
is due to the fact that the requirements are the "foundation" for the further development of the
system.

1ITTAP’2024: 4th International Workshop on Information Technologies: Theoretical and Applied Problems, October 23-
25, 2024, Ternopil, Ukraine, Opole, Poland
∗ Corresponding author.
† These authors contributed equally.

 vyatcyshyn@gmail.com (V. Yatsyshyn); oleg.pastuh@gmail.com (O. Pastukh); victoria_kukharska@tntu.edu.ua
(V. Kukharska); palamar.andrij@gmail.com (A. Palamar); kulikov.serhiy@gmail.com (S. Kulikov)

 0000-0002-5517-6359 (V. Yatsyshyn); 0000-0002-0080-7053 (O. Pastukh); 0000-0003-4763-0387 (V. Kukharska);
0000-0003-2162-9011 (A. Palamar); 0009-0003-3742-3568 (S. Kulikov)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oleg.pastuh@gmail.com
mailto:kulikov.serhiy@gmail.com
mailto:victoria_kukharska@tntu.edu.ua

From the point of view of the software product quality which is felt by the end user of the
system, it is advisable to use the recommendations of standards, in particular, ISO/IEC 25010
and ISO/IEC 14598 in the development process.

The quality characteristics of the software component of the computer system and the
processes of their provision are defined by the given standards. At the same time, there are
still a number of processes that require automation. This applies to the collection and storage
of requirements, the classification of attributes by quality characteristics, and a number of
others [1].

The next important stage of software development is designing the system architecture.
Architecture can be presented at different levels, starting from conceptual one and ending
with the structure of software modules.

To provide the reflection of the requirements defined at the first stage of software system
development at the architecture design stage it is worth using the approach proposed in [1, 2].
With this approach, system requirements from the end user's point of view are presented in
the form of a quality model in use of the standard [3], and architecture requirements are
presented in the form of the same standard external quality model.

The procedure of quality requirements display in external quality requirement using is
developed and given in [4]. However, for increasing the efficiency of the process of
developing software systems, it is necessary to additionally develop a method and tool for
automatic detection and optimal selection of an architectural template for the implementation
of a requirement or its part. Therefore, the article proposes a method and tool based on a
neural network approach for detection optimal architectural patterns in the implementation of
software components of computer systems.

2. Analysis of the software architecture design process
features

Software architecture is an important aspect of a quality software product that affects the
program's performance and its life cycle [5].

Software architecture is the structure of a program or computer system which contains
software components, externally visible properties of these components, as well as the
relationship between them [5]. This term also refers to the documentation of software
architecture. Documenting the software architecture simplifies communication between
interested parties and allows to capture high-level system design decisions made at the early
design stages and gives the possibility to reuse design components and patterns in other
projects.

K. Lavrishcheva, P. Andon, T. Korotun, G. Koval, O. Kharchenko, I. Sommerville, E. Braude,
M. McCall, B. Boehm and other scientists devoted their scientific papers to researching the
processes of designing the software systems architecture, their optimization, as well as
methods and tools of ensuring and controlling the quality of software systems at the life cycle
stages.

An important contribution to the development and application of software design patterns
was made by such IT giants as Google, Microsoft, Hewlett Packard, Amazon and others.

Among the important tasks that are solved both by scientists and private companies it is
worth noting the tasks related to determining and ensuring the balance between the cost,

quality and duration of software development. In other words, setting and solving problems
are aimed at achieving an acceptable level of quality of software systems with minimal
expenditure of time, labor and financial resources. Although many of these problems have
been solved at the moment, the problems in the field of designing software systems, namely,
the process that directly affects the the final product quality, still remain incompletely solved.

Taking into account the fact that considerable practical experience has been accumulated
in the field of software engineering, it is economically and technically expedient to reuse
components that have shown the effectiveness and quality of their application in the software
products operation. While building integration platforms such as Onlizer, component reuse is
especially important.

At the current stage of software engineering and computer engineering, so many different
design patterns with similar functions have been developed that it is quite difficult to choose
the optimal one among them. This is due to the fact that the procedures for the optimal
selection of architectural patterns are still weakly formalized, they are based on the empirical
judgments of system architects and do not ensure the complete implementation of
requirements for software systems. And this does not make it possible to make an optimal
decision regarding the choice of a design pattern.

Therefore, the development of a method and tool of automated detection and selection of
the optimal architectural pattern are the urgent tasks in the software architecture design as a
component of a more complex computer system. This will minimize the subjective influence
of experts or system architects and ensure the full realization of the customer's needs in the
software systems properties.

3. Method of detecting patterns of software
architecture based on a neural network approach

The pattern detection process is proposed to be implemented on the automatic analysis of
requirements models and design patterns models (architectural patterns). Models of
requirements and patterns can be formed by an expert based on development goals, specifics
of the development process, or accepted agreements. For example, the requirements model
can be based on the recommendations of the standard [3] and on the internal quality model,
and the pattern model can use the classification presented in [7].

Figure 1: Conceptual diagram of the design pattern detection process.

Since the existing standards and approaches to the formation of requirements models are
of a recommendatory and general nature, the obtained models require adaptation for use in
the specific conditions of the PS development process, which are determined by the subject
area, software type and development goals.

The requirement model is a collection of attributes forming a set R {A1 ,…, An }where the
attribute value is determined according to the metric scale for the given attribute.

The scale for attribute values can be of any type but its projection on the interval scale
SAi→S∫¿{S1 ,…, Sk }, Si∈ [0 ;1]¿ must exist. The set of software requirements forms the matrix R:

R=[A11 … A1n
… … …
Am1 … Amn], (1)

where A ij∈ SA ij is an attribute of Ri requirement.
Respectively the architectural pattern design model is a collection of attributes forming the

set P {A1
' ,…, Ak

' }. Regarding the scale of metric values of the attributes of the design pattern

model, a similar requirement of the existence of a projection on the interval scale is put

forward: S∫¿ :SA i'→S∫¿¿¿ A set of pattern models forms a matrix P:

P=[A11
' … A1k

'

… … …
A t 1
' … A tk

'] (2)

where A ij
' ∈ SA ij' is an attribute of the design pattern Pi.

After adapting the models for the specific requirements of the software development

process the mapping of matrix elements R and P to the S∫¿ .¿ scale is formed:

R
∫¿=[I 11 … I 1n

… … …
Im1 … Imn

]¿ (3)

where I ij is the mapping of the A ij attribute to the S∫¿¿ scale:

P
∫¿=[F11 … F1k

… … …
F t k … F tk

]¿ (4)

where F ij is the mapping of the Pij attribute to the S∫¿¿ scale.

The main component of the process of detecting design patterns is a multi-level neural
network which is schematically shown in Figure 2. The dimensionality of the neural network
is determined by the dimensionality of the matrices R and P.

Figure 2: The structure of the neural network of the requirements model analyzer.

The L1 input layer contains artificial neurons with a linear transform function, which

prevents the input signal from degenerating. Values from the rows of the matrix R∫¿¿ are

applied to the input of neurons of the L1 level.

The neuron layer L2 contains artificial neurons with a sigmoid activation function and is
the first level of the hidden layer of the neural network.

Neurons of levels L3−LN are artificial neurons with a sigmoid activation function.

The LN+1 level is composed of artificial neurons with a sigmoid activation function and is
the last level of the hidden layer.

The LN+2 level is composed of artificial neurons with a sigmoid activation function and is

the initial level of the neural network. The values of the signals at the output of the LN+2 layer
form the probable values of the model attributes of the design patterns P.

Based on the analysis of the values of the resulting vector at the output of the neural
network using the simple moving average method, the probability of the Pi pattern entering
the set of requirements R is formed.

4. Software implementation of a neural network for
detecting architectural patterns

The NeuronDotNet library was used for the software implementation of the neural network
which allows using the C# language flexibly construct various neural networks.

The NeuralNetworkBuilder module containing the static method BuildAndTrainNetwork has
been developed for the formation and training of a neural network. In the process of forming a
neural network, input and output levels of neurons and neurons of hidden levels are constructed
and connections between them are established, as shown in Figure 3.

Figure 3: Listing of a neural network construction.

A pre-formed set of requirements and detected design patterns is used for training the
neural network (the text of the requirements and the meta-description of the architectural
patterns are used in agreement with the Onlizer company), the training is conducted without
a teacher. A fragment of the neural network training listing is given in Figure 4.

Figure 4: Listing of neural network training.

After training the neural network can be used to find patterns using the Run method the
code of which is shown in Figure 5. The input of the method is given by is a set of attribute
values of the requirements model.

Figure 5: Listing of finding patterns using a neural network.

The resulting vector of values is analyzed using a simple moving average method to find
the likely design pattern and is shown in Figure 6.

Figure 6: Listing of analysis of the resulting vector and pattern finding.

The proposed conceptual model and software implementation for detecting design patterns
based on requirements models allows to change flexibly approaches to the formation of
requirements models and templates, adjust the requirements analysis parameters by changing
the configuration of the neural network or its training conditions. In addition, the use of a
neural network as the main component of the analyzer allows to ensure the progressiveness
of the search parameters, increase the accuracy of detection and automate the process of
design templates searching.

5. A tool for automated detection of software
architectural patterns

The user interface of the software system for choosing an architectural pattern should provide
convenient entry, editing and viewing of information, be intuitive, and ensure the correctness
of data entry. To implement the algorithm of the program, it is proposed to use a multi-
window interface with main and subsidiary forms. UML graphical notation was chosen for
system analysis and design. Figure 7 shows a use case diagram with an administrator actor.

Figure 7: Use Case Diagram "Administrator".

Figure 8 provides a diagram of the use cases for users of the software system architecture
design pattern selection system.

Figure 8: Use case diagram "End user".

The template catalog is a part of the website database that stores all information about
architectural design patterns. The catalog has a hierarchical, tree-like structure that will
reflect the way templates are classified. The directory structure directly depends on which
templates are available on the site.

Figure 9 shows a sequence diagram of actions when working with the system for selecting
architectural patterns of software systems.

Figure 9: Sequence diagram.

The sequence diagram shows 4 main components (objects): user, dialog component,
intelligent module, DBMS.

 the user selects the type of information and answers the questions of the dialog
component;

 the dialog component forms parameters that must be obtained from the user and
passes the data to the administrator;

 after that the dialog component forms requirements for the intelligent module which
in turn transforms the data to be issued to the dialog component;

 the intelligent module generates requests to the DBMS;
 DBMS sends data to the intelligent module to make recommendations based on the

collected statistical data which are displayed to the user.

As a result of the analysis of the subject area, the following classes are defined for the
implementation of the design pattern detection automation tool: user, web page, web server,
intelligent component, database and interface - user interface. In Figure 10 the class structure
of the design pattern detector according to the established software requirements is presented.

Figure 10: Class diagram.

It is worth paying attention to the presence of an interface. This is a type of class that does
not contain attributes but interacts with other classes through it.

The activity diagram for the template selection system is shown in Figure 11.

Figure 11: Activity diagram.

As can be seen from Figure 11, after choosing a category of templates, the principle of
working with the tool for automated selection of design templates is the same: forming a
query - selecting data from the database – outputting the result. This diagram shows the steps
that are performed before and after the system accesses the database.

The user, regardless of whether he is authorized or not, must first choose which operation
he is going to perform, set the search criteria immediately or view the catalog of template
categories.

According to the selected actions, a request is generated to the system. The intelligent
component processes the request and transfers control to another component which forms a
request to the database (DB) based on the received parameters.

DBMS executes the query and returns the result in the form of data which is formatted in a
way that is convenient for the end user.

For authorized users, it is allowed to use the template selection system in accordance with
the requirements set for the software. An unauthorized user must specify the analysis criteria.

The developed software design pattern detector prototype is positioned as a web service, so
the main hardware is a web server and a database server.

The web server contains the following artifacts:

 web-interface which is an ordinary web page responsible for the tool's dialogue with
the user;

 intelligent component that is responsible for the correct interpretation of requests
from the user, issuance and data processing;

 database interface forms a request to DBMS based on the criteria obtained from the
intelligent component.

The DBMS artifact is the MongoDB management system. This component is responsible
for storing and accessing data.

An example of the formation of software requirement attributes is presented in Figure 12.

Figure 12: Formation of software requirement attributes.

The result returned by the intelligent component for the set of requirements formulated for
the project named "Project1" is shown in Figure 13.

Figure 13: The result of choosing the optimal design pattern for the project.

Data from the data set provided by the Onlizer company as part of cooperation and
conducting joint scientific research were used for experimental research.

As a result, as can be seen from Figure 9, the distribution of probabilities regarding the
optimal choice of software architecture design patterns is obtained.

Conclusion

The article proposes a method and a tool for detecting and optimally choosing software
architecture design patterns depending on the requirements for the system. The requirements
for the software system are presented in the form of quality models of the ISO/IEC 25010

standard. The needs of end users are reflected in the structure of the quality in use model, and
the requirements for the system architecture are in the form of an external quality model,
according to the procedures proposed in [1].

To implement the method of detection and optimal selection of design patterns, a neural
network was built and implemented using the C# language, which takes into account the
requirements for the system and the meta description of existing design patterns.

The tool for detection and optimally selecting design patterns of software architecture of
computer systems makes it possible to ensure the efficiency of management of the system
development process, and due to automation it provides high productivity and accuracy of
decision-making regarding the use of reusable components.

References

[1] Kharchenko O., Yatsyshyn V. Rozrobka ta keruvannya vymohamy do prohramnoho
zabezpechennya na osnovi modeli yakosti. Visnyk TDTU. 2009. Tom 14. №1. S. 201-207.

[2] Yatsyshyn V, Kharchenko А, Galay І. The Method of Quality Management Software.
Proceeding of the VIIth International Conference "Perspective technologies and methods
in MEMS design" 11-14 May 2011 - Polyana, Ukraine: Publishing House Vezha&Co. 2011.-
p. 228-230.

[3] ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models.

[4] ISO/IEC 14598: Information Technology – Software product evaluation. Parts 1 to 6: 1999
-2001, International Organization for Standardization, Geneva, 1999-2001.

[5] Martin R. Clean Architecture: A Craftsman's Guide to Software Structure and Design.
Pearson. 2017. 420 p.

[6] Clean Architecture Solution Template. URL: https://github.com/jasontaylordev/
CleanArchitecture.

[7] Yatsyshyn V., Pastukh O., Zharovskyi R., Shabliy N. Software tool for productivity
metrics measure of relational database management system. Mathematical Modeling. No
1 (48). 2023. P. 7-17.

[8] Pastukh O., Yatsyshyn V. Development of software for neuromarketing based on artificial
intelligence and data science using high-performance computing and parallel
programming technologies. Scientific Journal of TNTU. Tern.: TNTU, 2024. Vol 113. No
1. P. 143–149.

	1. Introduction
	2. Analysis of the software architecture design process features
	3. Method of detecting patterns of software architecture based on a neural network approach
	4. Software implementation of a neural network for detecting architectural patterns
	5. A tool for automated detection of software architectural patterns
	Conclusion
	References

