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Abstract
This work describes and practically implements the method of leveling illumination in images of 
various origins. Insufficient or uneven lighting can result in loss of detail, low contrast, or incorrect  
color reproduction. Lighting that is too bright can result in areas where detail is lost due to excessive 
brightness.  Also,  during the formation and analysis  of  various medical  images,  the problem of 
insufficient illumination of the image arises, that is, the image looks dark, details are difficult to see,  
especially in the shadows. The practical part of the work contains a description of the mathematical 
model of the transition from the variational problem (in the optimization form) to the differential  
form. A comparative analysis of existing computational methods of mathematical physics was also 
conducted. The working time and the number of iterations for obtaining results that form images with 
uniform illumination for various images were experimentally determined.
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1. Introduction

The problem of image illumination refers to how light affects the quality and perception of an 
image. If the lighting is insufficient or uneven, it can result in loss of detail, low contrast, or 
incorrect color reproduction. Lighting that is too bright can result in areas where detail is lost 
due to excessive brightness. Also, during the formation and analysis of various medical images, 
the problem of insufficient illumination of the image arises, that is, the image looks dark, details 
are difficult  to see,  especially in the shadows.  One of  the special  problems is  the uneven 

1ITTAP’2024: 4th International Workshop on Information Technologies: Theoretical and Applied Problems, October 23–25, 
2024, Ternopil, Ukraine, Opole, Poland
∗ Corresponding author.
† These authors contributed equally.

 nastya.bekesheva@gmail.com (A. Bekesheva);  allif0111@gmail.com (V. Khaidurov);  vlad.romanenko.24@gmail.com 
(V. Romanenko); roman.yaroviy@e-u.edu.ua (R. Yarovoy)

 0009-0007-0479-5161 (A. Bekesheva);  0000-0002-4805-8880 (V. Khaidurov); 0000-0002-3227-4183 (V. Romanenko);  0000-0001-
8978-8137 (R. Yarovoy)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0001-8978-8137
https://orcid.org/0000-0001-8978-8137
https://orcid.org/0000-0002-3227-4183
https://orcid.org/0000-0002-4805-8880
https://orcid.org/0009-0007-0479-5161
mailto:roman.yaroviy@e-u.edu.ua


illumination of the object under study. Such a problem complicates the correct perception of this 
object.
Mathematical apparatus of varying complexity is used to analyze unevenly lit  images and 
correct the above-mentioned lighting problems. The methods of leveling lighting in images use 
a matrix filtering apparatus (based on the principles of convolution), which is known from the 
course of linear algebra  [1],  [2].  This device is simple from the point of view of software 
implementation, and the processor time required to implement the implemented approach is 
relatively small. The Laplace and Fourier transform apparatus is more complicated than the 
previous one, but it gives a better visual result of correcting uneven lighting in the image at the 
output [1], [3]. The processor time for image processing with this mathematical apparatus is 
significantly greater than the time for image processing with matrix filters. The most well-
known mathematical apparatus for solving the problem of processing unevenly lit images is the 
variational principle, which involves the transition from the optimization formulation of the 
minimization of a quadratic functional of a special form to finding the solution of the Poisson 
equation with the appropriate boundary conditions that correspond to the given problem. To 
date, there are many methods of solving the main classes of problems of mathematical physics, 
as well as optimization problems of mathematical physics, where functional constraints are 
equations describing a specific process [3]–[5]. The main computational methods for finding the 
numerical solution of the Poisson equation are the finite difference method and the finite 
element method [2], [5], [6]. It should be noted that the finite element method has an advantage 
over the finite element method for solving the problem of equalizing uneven illumination in the 
case of examining an image area that has a very complex geometric shape. This paper will 
describe the image analysis method based on the variational principle and the finite difference 
method.

2. Problem formulation

2.1. Technical formulation of the problem

The technical task of the work consists in conducting an analysis of unevenly lit images based 
on the field of the given field of gradients of these images, to obtain a visually improved image. 
To conduct an analysis of classical computational methods of elliptic equations of mathematical 
physics of the second order, which are the basis of the variational approach of Poisson image 
processing.

2.2. Mathematical formulation of the problem: transition from 
the variational formulation of the problem to the differential 
formulation

To correct  unevenly distributed lighting in the image,  you need to preserve all  boundary 
elements of the objects that are in the image under study. In order to distinguish one object from 
another, it is necessary to have data about the gradient of the entire image, which is presented in 
the form of two matrices for each channel, if the image is full-color and is presented in digital  
form in the RGB palette [7]. The Poisson approach involves saving this information on the basis 
of such a quadratic functional I 1 (u ), which must be minimized:



I 1 (u )=∬
G

❑

(ux' −v x
' )2ds+∬

G

❑

(u y
' −v y

' )2ds→min ,

where  u –  the  searched  image,  which  is  the  result  of  editing  by  saving,  moreover

ux
' =∂u /∂ x ,u y

' =∂u /∂ y , v – input image for which field gradients are known, presented as 

matrices based on formulas  v x
' =∂ v /∂ x , v y

' =∂ v /∂ y , G – the computational domain that 

defines the image itself.
It is obvious that in order to equalize the unevenly distributed illumination in the image, it is 

necessary to minimize another functional, which has the form:

I 2 (u )=∬
G

❑

(u−u )2ds→min ,

where  u – average value of illumination. The functional  I 2 (u ) consists in minimizing the 
variance. A reduction in dispersion implies a much more uniform distribution of the brightness 
of  the  pixels  of  the  entire  image.  In  this  case,  we have  the  functional  of  the  variational  
formulation of the problem of leveling uneven illumination in the image given by and:

I (u )=α1 I 1 (u )+α2 I 2 (u )=¿

¿α1(∬
G

❑

(ux' −v x
' )2ds+∬

G

❑

(u y
' −v y

' )2ds)+α2∬
G

❑

(u−u )2ds→min ,

α1+α2=1.
In functionality I (u ) parameters α1 and α2 є weighting factors that determine the strength of 

influence of functionals I 1 (u ) and I 2 (u ) respectively. It is obvious that the last functional I (u ) 
can also be written with one parameter:

I (u )=α1(1⋅ I 1 (u )+
α2
α1

⋅ I 2 (u )) I 1 (u )+ λ⋅ I 2 (u )=¿

¿∬
G

❑

(ux' −v x
' )2ds+∬

G

❑

(u y
' −v y

' )2ds+ λ∬
G

❑

(u−u )2ds→min ,

The  last  equivalence  transformation  “~”  is  true  given  that  the  extremal  of  the  initial 
functional and the resulting functional are the same function. It should also be noted that 
λ=α2/α1 , α1≠0. It is obvious that α1≠0, because at α1=0 all information about the initial 

image (field of image gradients) is lost. This means that at α1=0 the task loses any meaning.
In order to close the mathematical formulation of the variational problem, it is also necessary 

to mention the boundary conditions. Taking into account the fact that the boundary of the 
image objects is not tracked at the boundary of the entire image, and also that the minimization 
of variance for I 2 is better achieved with unfixed boundaries, then

∂u
∂ x|¿= ∂u

∂ x|¿= ∂u
∂ y|Up= ∂u

∂ y|Down= ∂u
∂n|Г=0 ,¿

where Г  – border of the investigated image.
Such a variational problem can be easily reduced to the differential formulation of the same 

problem by applying the Euler-Lagrange equation, which has the form:



∂ S (u ,ux' ,u y
' )

∂u
− ∂
∂ x (∂ S (u ,ux' ,u y

' )
∂ux

' )− ∂
∂ y (∂ S (u ,ux' ,u y

' )
∂u y

' )=0 ,
S (u ,ux' ,u y

' )=(ux' −v x
' )2+(u y

' −v y
' )2+ λ (u−u )2 .

In this case, we will get:

Su
' (u ,ux' ,u y

' )=
∂ S (u ,ux' ,u y

' )
∂u

=((ux' −v x
' )2+(u y

' −v y
' )2+ λ (u−u )2)u

'
=2 λ (u−u ) .

Sux
' (u ,ux' ,u y

' )=
∂ S (u ,ux' ,u y

' )
∂ux

' =((ux' −v x
' )2+(u y

' −v y
' )2+ λ (u−u )2)ux'

'
=¿

¿((ux' −v x
' )2)ux'

'
+0+0=2(ux' −v x

' ) .

Su y

' (u ,ux' ,u y
' )=

∂ S (u ,ux' ,u y
' )

∂u y
' =((ux' −v x

' )2+(u y
' −v y

' )2+ λ (u−u )2)u y
'

'
=¿

¿0+((u y
' −v y

' )2)u y
'

'
+0=2(u y

' −v y
' ) .

Let's substitute the obtained intermediate results into the Euler-Lagrange equation. We will 
have:

2 λ (u−u )− ∂
∂ x

(2(ux' −v x
' ))− ∂

∂ y
(2(u y

' −v y
' ))=¿

¿−2( ∂
∂ x

(ux' −v x
' )+ ∂

∂ y
(u y

' −v y
' )−λ (u−u )).

After simplification, we get the equation:

uxx
' ' +u yy

' ' −λu=v xx
' ' +v yy

' ' −λu .
The  last  equation  is  Poisson's  equation.  Taking  into  account  the  boundary  conditions 

(derivatives along the normal are equal to zero), it is obvious that if the solution of the equation 
is some function u¿ (x , y ), then the function will also be a solution u¿ (x , y )+C , where C  – an 
arbitrary constant. That is, we will prove:

(u¿+C )xx
' ' +(u¿+C )yy

' ' −λ (u¿+C )=v xx+v yy−λ (u¿+C )
based on

(u¿)xx
' ' +(u¿)yy

' ' −λu¿=v xx+v yy−λu¿ .
It is obvious that

(u¿+C )xx
' ' +(u¿+C )yy

' ' −λ (u¿+C )−(v xx+v yy−λ (u¿+C ))=¿

¿ (u¿)xx
' ' +(u¿)yy

' ' −λu¿−λC−v xx−v yy+ λu
¿+ λC=¿

(u¿)xx
' ' +(u¿)yy

' ' −λu¿+ λu¿−v xx−v yy=0
That is, this means that to solve the problem, you can put u=0 to fix the only solution of the 

problem, which will be easily pulled under the limits of the permissible pixel intensity values 
(for real numbers - from 0 to 1, or for integers numbers from 0 to 255), for example, according to 
the classic formula:



u=
u−umin
umax−umin

абоu=[255⋅ u−umin
umax−umin ].

Next, computational experiments will be conducted for the boundary value problem for the 
Poisson equation, which are known in classical mathematical physics.

3. Computational experiments

3.1. A numerical method for solving the problem

We have a mathematical model that contains a well-known linear equation of mathematical 
physics of the 2nd order [8], [9]:

λu−Δu=−Δ f , λ>0 (1)

where

Δu= ∂2u

∂ x2
+ ∂

2u

∂ y2
, Δ f= ∂2 f

∂ x2
+ ∂2 f

∂ y2
,

In (1), we assume that we have a known function f (x , y ). This means that Δf  is easily found 
by classical well-known difference schemes. Boundary conditions for equation (1) are equality 
of zero derivatives.

Suppose we need to write the difference equation for (1) [8]–[10]. Then we will use central 

difference  schemes  for  any  node  (xi , y j) , i=1 , N x+2 , j=1 , N y+2 . Steps  in  spatial 

coordinates x and y let's put equal hx , h y . Then:

∂2u

∂ x2|(x i , y j)
≈
u (xi−1 , y j)−2u (xi , y j)+u (xi+1 , y j)

(hx )
2 ,

∂2u

∂ y2|(x i , y j)
≈
u (xi , y j−1)−2u (xi , y j)+u (xi , y j+1)

(h y )
2 .

(2)

Similarly, we write the second derivatives in (1) for the known function f (x , y ) in the right-
hand side of equation (1).

∂2 f

∂ x2|(x i , y j)
≈
f (xi−1 , y j)−2 f (xi , y j)+ f (xi+1 , y j)

(hx )
2 ,

∂2 f

∂ y2|(x i , y j)
≈
f (xi , y j−1)−2 f (xi , y j)+ f (xi , y j+1)

(h y )
2 .

(3)

Let's enter the notation ui , j=u (xi , y j) , f i , j=f (xi , y j) , i=1 , N x+1 , j=1 , N y+1 . Then (2) 

and (3) will have the form:



∂2u

∂ x2|(x i , y j)
≈
ui−1 , j−2ui , j+ui+1 , j

hx
2 ,

∂2u

∂ y2|(x i , y j)
≈
ui , j−1−2ui , j+ui , j+1

h y
2 ,

∂2 f

∂ x2|(x i , y j)
≈
f i−1 , j−2 f i , j+ f i+1 , j

hx
2 ,

∂2 f

∂ y2|(x i , y j)
≈
f i , j−1−2 f i , j+ f i , j+1

h y
2 ,

i=2 , N x+1 , j=2 , N y+1 .

(4)

Using (4), we finally write down) the difference scheme for (1):

λui , j−(ui−1 , j−2ui , j+ui+1 , jhx
2 +

ui , j−1−2ui , j+ui , j+1
h y
2 )=¿

¿−( f i−1 , j−2 f i , j+ f i+1 , jhx
2 +

f i , j−1−2 f i , j+ f i , j+1
h y
2 ),

i=2 , N x+1 , j=2 , N y+1 .

(5)

Let's  transform  equation  (5),  collecting  all  the  coefficients  near  the  points 

(xi , y j) , (xi−1 , y j) , (xi+1 , y j) , (xi , y j−1) and (xi , y j+1), and we will see the 5-point difference 

scheme for equation (1) in the new notation.
ui−1 , j−2ui , j+ui+1 , j

hx
2 +

ui , j−1−2ui , j+ui , j+1
h y
2 −λui , j=¿

¿
f i−1 , j−2 f i , j+ f i+1 , j

hx
2 +

f i , j−1−2 f i , j+ f i , j+1
h y
2 , i=2 , N x+1 , j=2 , N y+1 .

1

hx
2 ui−1 , j+

1

hx
2 ui+1 , j+

1

h y
2 ui , j−1+

1

h y
2 ui , j+1−( 2hx2 +

2

h y
2 + λ)ui , j=¿

¿
f i−1 , j−2 f i , j+ f i+1 , j

hx
2 +

f i , j−1−2 f i , j+ f i , j+1
h y
2 , i=2 , N x+1 , j=2 , N y+1 .

(6)

We will introduce new notations in the difference equation (6):

 coefficient near ui−1 , j: A X i , j=1/hx
2;

 coefficient near ui+1 , j: C X i , j=1/hx
2;

 coefficient near ui , j−1: AY i , j=1/h y
2 ;

 coefficient near ui , j+1: CY i , j=1/h y
2 ;

 coefficient near ui , j: Bi , j=2/hx
2+2/h y

2+ λ;

 coefficient of the right side of the equation Di , j:

Di , j=
f i−1 , j−2 f i , j+ f i+1 , j

hx
2 +

f i , j−1−2 f i , j+ f i , j+1
h y
2 .



In this case, (6) will turn into the following differential equation:

A X i , jui−1 , j+C X i , jui+1 , j+AY i , jui , j−1+C X i , jui , j+1−Bi , jui , j=Di , j ,
i=2 , N x+1 , j=2 , N y+1 .

(7)

Equation (7) contains the unknown function u (ui , j) at each point of the calculation area 

(xi , y j) , i=2 , N x+1 , j=2 , N y+1.

For (7), you can apply any known computational method of linear algebra, or use multi-grid 
methods, which will significantly speed up the calculations, given that the number of unknowns 
in the calculation area is large (pixels of the image). Also, it should be noted that taking into 
account that λ>0, then the difference equation (7) has a diagonal advantage, which consists in 
the fact that in each row the module of each diagonal element of the SLAR is not less than the 
sum of the modules of the other elements of the row [8]–[10].

Now, to close the issue of the model, consider the consideration of the zero derivative at all 
boundaries of the calculation area [10].

Let our calculation area be in a rectangle [ xa ; xb ]× [ ya ; yb ] . To begin with, consider the zero 

derivative on the left boundary:

∂u
∂ x|(xa ; y )

=0.

Based on this, we need to adjust equation (7) on the left boundary:

A X 2 , ju1 , j+C X 2 , ju3 , j+AY 2 , ju2 , j−1+C X 2 , ju2 , j+1−¿
−B2 , ju2 , j=D2 , j , j=2 , N y+1 .

(8)

Given that

∂u
∂ x|(xa ; y )

≈
u2 , j−u1 , j

hx
=0 ,u1 , j=u2 , j , j=2 , N y+1 . (9)

Substitute the obtained boundary condition (9) on the left into (8):

A X 2 , ju2 , j+C X 2 , ju3 , j+AY 2 , ju2 , j−1+¿
+C X 2 , ju2 , j+1−B2 , ju2 , j=D2 , j , j=2 , N y+1 .

(10)

Finally, let's transform (10) into the form:

C X 2 , ju3 , j+AY 2 , ju2 , j−1+C X 2 , ju2 , j+1−¿
−(B2 , j−A X 2 , j)u2 , j=D2 , j , j=2 , N y+1 .

(11)

In equation (11), it should be noted that the coefficients are adjusted:
B2 , j=B2 , j−A X 2 , j , A X 2 , j=0 , j=2 , N y+1 .

Now we need to correct equation (7) on the right boundary:



A X N x+1 , j
uN x , j

+C X N x+1 , j
uN x+2 , j

+AY N x+1 , j
uN x+1 , j−1

+¿
+C X N x+1 , j

uN x+1 , j+1
−BN x+1 , j

uN x+1 , j
=DN x+1 , j

, j=2 , N y+1 .
(12)

Given that

∂u
∂ x|(xb ; y )

≈
uN x+2 , j

−uN x+1 , j

hx
=0 ,uN x+1 , j

=uN x+2 , j
, j=2 , N y+1 . (13)

Substitute into (12) the obtained boundary condition (13) on the right:

X N x+1 , j
uN x , j

+C X N x+1 , j
uN x+1 , j

+AY N x+1 , j
uN x+1 , j−1

+¿
+C X N x+1 , j

uN x+1 , j+1
−BN x+1 , j

uN x+1 , j
=DN x+1 , j

, j=2 , N y+1 .
(14)

Finally, let's transform (14) into the form:

X N x+1 , j
uN x , j

+AY N x+1 , j
uN x+1 , j−1

+C X N x+1 , j
uN x+1 , j+1

−¿
−(BN x+1 , j

−C X N x+1 , j)uN x+1 , j
=DN x+1 , j

, j=2 , N y+1 .
(15)

In equation (15), it should be noted that the coefficients are adjusted:
BN x+1 , j

=BN x+1 , j
−C X N x+1 , j

,C X N x+1 , j
=0 , j=2 , N y+1 .

We adjust equation (7) at the lower limit:

A X i ,2ui−1,2+C X i ,2ui+1,2+AY i ,2ui ,1+C X i ,2ui ,3−¿
−Bi ,2ui ,2=Di ,2 , i=2 , N x+1 .

(16)

Given that

∂u
∂ y|(x ; ya)≈

ui ,2−ui ,1
h y

=0 ,ui ,1=ui ,2 , i=2 , N x+1 . (17)

Substitute into (16) the obtained boundary condition (17) on the right:

A X i ,2ui−1,2+C X i ,2ui+1,2+AY i ,2ui ,2+C X i ,2ui ,3−¿
−Bi ,2ui ,2=Di ,2 , i=2 , N x+1 .

(18)

Finally, let's transform (18) into the form:

A X i ,2ui−1,2+C X i ,2ui+1,2+C X i ,2ui ,3−¿
−(Bi ,2−AY i ,2)ui ,2=Di ,2 , i=2 , N x+1 .

(19)

In equation (19), it should be noted that the coefficients are adjusted:
Bi ,2=Bi ,2−AY i ,2 , A Y i ,2=0 , i=2 , N x+1 .

We adjust equation (7) at the lower limit:



A X i , N y+1
ui−1 , N y+1

+C X i , N y+1
ui+1 , N y+1

+AY i , N y+1
ui , N y

+C X i , N y+1
ui , N y+2

−¿
−Bi , N y+1

ui , N y+1
=Di , N y+1

, i=2 , N x+1 .
(20)

Given that

∂u
∂ y|(x ; yb)≈

ui , N y+2
−ui , N y+1

h y

=0 ,ui , N y+1
=ui , N y+2

, i=2 , N x+1 . (21)

Substitute into (20) the obtained boundary condition (21) on the right:

A X i , N y+1
ui−1 , N y+1

+C X i , N y+1
ui+1 , N y+1

+AY i , N y+1
ui , N y

+¿
+CY i , N y+1

ui , N y+1
−Bi , N y+1

ui , N y+1
=Di , N y+1

, i=2 , N x+1 .
(22)

Finally, let's transform (22) into the form:

A X i , N y+1
ui−1 , N y+1

+C X i , N y+1
ui+1 , N y+1

+AY i , N y+1
ui , N y

−¿
−(Bi , N y+1

−CY i , N y+1)ui , N y+1
=Di , N y+1

, i=2 , N x+1 .
(23)

In equation (23), it should be noted that the coefficients are adjusted:
Bi , N y+1

=Bi , N y+1
−CY i , N y+1

,C Y i , N y+1
=0 , i=2 , N x+1 .

For a rectangular area, the values at the corners of this area also raise questions. Here, too, 
everything is simple. As an option, you can make "stubs" as the arithmetic mean of two known 
nearest neighboring limit values:

u1,1=
u1,2+u2 ,1
2

,uN x+2 , N y+2
=
uN x+1 , N y+2

+uN x+2 , N y+1

2
,

u1 , N y+2
=
u1 , N y+1

+u2 , N y+2

2
,uN x+2 ,1

=
uN x+1,1

+uN x+2 ,2

2
.

(24)

It  should be noted that the boundary nodes of the region (24) do not take part in the 
calculation procedures, since the 5-point difference scheme does not pass through these nodes.

3.2. Testing the numerical method on various images

The resulting algorithm was tested on 30 different images. The timing results for the first six  
images are shown in Tables 1–4. It should be noted that the block sweep algorithm performed 
better than all others for solving the discrete analog for the set task of equalizing the uneven 
distribution of pixel intensity in the image. The algorithm of the Scipy library of the Python 
programming  language  also  performed  well  [11]–[13].  It  should  also  be  noted  that 
computational methods of linear algebra more effectively solve systems of linear algebraic 
equations when the matrices of this system have a diagonal advantage [14], [15]. The greater the 
difference between the modulus of the diagonal element and the sum of the modules of the other 
elements of the row (and for each row), the faster the iterative method or algorithm converges. 



The calculation error of the iterative methods, the results of which are given in the above tables, 
is equal to ε=10−7 .
Table 1
Time characteristics  of  finding a solution to the problem using the Seidel  method for six 
different images

Table 2
Time characteristics of finding a solution to a problem (for six different images) using built-in 
Python tools, namely the Scipy library for solving a system of linear equations

Next, we test the same algorithm based on the already known approximate algorithm of 
longitudinal-transverse running (the results are shown in Table 3).

Table 3
Time characteristics of finding a solution to the problem using longitudinal-transverse running 
method for six different images

Image
Vertical 
Pixels

Horizontal 
Pixels

Total 
Pixels

Time for 
λ=0.0001,

sec

Time for 
λ=0.0005,

sec

Time for 
λ=0.001,

sec

Time for 
λ=0.01,

sec

1 216 197 42552 0,210937312 0,089896336 0,056801848 0,01207815

2 450 297 133650 0,389937561 0,136101551 0,081752021 0,02127122

3 216 218 47088 0,225398738 0,123498702 0,067352707 0,01153639

4 249 186 46314 0,076201501 0,042581451 0,031306698 0,00780742

5 192 256 49152 0,255173569 0,191466012 0,100008831 0,01471437

6 341 404 137764 0,589075354 0,301040809 0,196141768 0,03152153

Image
Vertical 
Pixels

Horizontal 
Pixels

Total 
Pixels

Time for 
λ=0.05,

sec

Time for 
λ=0.1,

sec

Time for 
λ=0.15,

sec

Time for 
λ=0.2,

sec

1 216 197 42552 0,003438 0,002027 0,00184 0,00128

2 450 297 133650 0,006911 0,004971 0,00313 0,00261

3 216 218 47088 0,002791 0,001621 0,00123 0,00091

4 249 186 46314 0,003047 0,001878 0,00159 0,00095

5 192 256 49152 0,004353 0,002112 0,00171 0,00131

6 341 404 137764 0,008112 0,005327 0,00345 0,00262



We will do the same for the analytical block sweep algorithm, which makes it possible to 
obtain an exact solution to the problem, taking into account the fact that the discrete analogue of 
the Poisson equation has a clear sparse and block structure. (results are shown in Table 4).

Table 4
Time characteristics of finding a solution to the problem using the matrix run method for six 
different images

The visual results of the program are shown below.

Image
Vertical 
Pixels

Horizontal 
Pixels

Total 
Pixels

Time for 
λ=0.0001,

sec

Time for 
λ=0.0005,

sec

Time for 
λ=0.001,

sec

Time for 
λ=0.01,

sec

1 216 197 42552 0,13429230 0,09056245 0,08532415 0,09177863

2 450 297 133650 0,01377897 0,01531005 0,01567527 0,01533334

3 216 218 47088 0,01409682 0,01637427 0,01681701 0,01563258

4 249 186 46314 0,09475455 0,07616487 0,06050883 0,06152226

5 192 256 49152 0,06123956 0,06735462 0,04519732 0,04193212

6 341 404 137764 0,13429230 0,09056275 0,08513215 0,09177863

Image
Vertical 
Pixels

Horizontal 
Pixels

Total 
Pixels

Time for 
λ=0.05,

sec

Time for 
λ=0.1,

sec

Time for 
λ=0.15,

sec

Time for 
λ=0.2,

sec

1 216 197 42552 0,078135991 0,07168536 0,068275028 0,069264852

2 450 297 133650 0,013946464 0,016654 0,013836376 0,018284613

3 216 218 47088 0,016022084 0,01541467 0,013604557 0,017517877

4 249 186 46314 0,065097637 0,060555248 0,050360774 0,051381867

5 192 256 49152 0,039356135 0,03993877 0,044371414 0,042931808

6 341 404 137764 0,078135991 0,07168536 0,068275028 0,069264852



Figure 1: An example of the described algorithm for two different images:
on the left – the original image, on the right – the result of algorithm processing

As can be seen from Figure 1, all images have a better pixel intensity distribution as a result 
of applying the algorithm.

4. Conclusions

The practical result of this work is a comparative analysis of unevenly lit images based on the 
field of the given field of gradients of these images, to obtain a visually improved image.

In the work, mathematical dependencies are obtained for constructing an approximate 
solution to the set problem of equalizing the uneven distribution of pixel intensity. An analysis 
of classical computational methods of second-order elliptic equations of mathematical physics, 
which are the basis of the variational approach of Poisson image processing, was carried out. 
Seidel's method performed the worst in terms of time, the block run method using the built-in 
Python library Scipy gave the best result in terms of time.



In order to obtain better time indicators for a specific accuracy, it is best to use multi-grid 
approximate methods, which make it possible to significantly reduce the number of iterations, 
which means to reduce the time to execute the program.

It should also be noted that the speed of iterative methods and algorithms will be higher if 
calculations are performed in the normal system (from 0 to 1) and not in the classic system (from 
0 to 255).
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