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Abstract
This study explores the implementation of a computer vision system for automated quality control in 
manufacturing processes, leveraging transfer learning techniques. We compare the performance of 
YOLOv8, YOLOv9, and YOLOv10 models on a dataset of car dent images. The research demonstrates 
the efficacy of these advanced object detection models in identifying various types of vehicle damage, 
including dents, scratches, and accident-related damage. Our findings indicate that transfer learning 
significantly  enhances  the  accuracy  and efficiency of  defect  detection,  with  YOLOv10 showing 
promising results in terms of mAP and F1-score. This approach has potential to revolutionize quality 
control in automotive manufacturing, reducing human error and increasing throughput.
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1. Introduction

The  integration  of  computer  vision  systems  in  manufacturing  processes  has  become 
increasingly crucial in recent years, particularly in the domain of automated quality control. As 
industries strive for higher efficiency, consistency, and accuracy in their production lines, the 
need for sophisticated visual inspection systems has grown exponentially. This paper focuses on 
the implementation of an advanced computer vision system for automated quality control in 
manufacturing processes, with a specific emphasis on the automotive industry and the detection 
of vehicle damage.

The automotive manufacturing sector faces unique challenges in quality control, particularly 
in  the  identification  and  classification  of  various  types  of  vehicle  damage  such  as  dents, 
scratches, and accident-related defects. Traditional manual inspection methods are often time-
consuming, subjective, and prone to human error. Moreover, the increasing complexity and 
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volume of modern vehicle production necessitate more robust and efficient quality control 
mechanisms [1]. 

Recent advancements in deep learning, particularly in the field of object detection, have 
opened new avenues for addressing these challenges. The You Only Look Once (YOLO) family 
of models has been at the forefront of real-time object detection, offering a balance between 
speed and accuracy that is crucial for industrial applications [2]. In this study, we explore the 
latest iterations of YOLO models — YOLOv8, YOLOv9, and YOLOv10 — and their application in 
automated vehicle damage detection.

Transfer learning has emerged as a powerful technique in the realm of computer vision, 
allowing models pre-trained on large datasets to be fine-tuned for specific tasks with relatively 
small amounts of domain-specific data [3]. This approach is particularly valuable in industrial 
settings where large, labeled datasets may not be readily available or may be costly to produce. 
By leveraging transfer learning, we aim to enhance the performance of our vehicle damage 
detection system while minimizing the need for extensive data collection and annotation.

The primary objectives of this research are:

1. To  implement  and  compare  the  performance  of  YOLOv8,  YOLOv9,  and  YOLOv10 
models for automated vehicle damage detection.

2. To  evaluate  the  effectiveness  of  transfer  learning  techniques  in  improving  model 
performance for this specific application.

3. To  assess  the  practical  implications  of  deploying  such  a  system  in  a  real-world 
manufacturing environment.

Recent literature has shown promising results in applying deep learning to various aspects of 
manufacturing  quality  control.  For  instance,  Tabernik  et  al.  demonstrated  the  use  of 
segmentation-based deep learning for surface defect detection in manufacturing, achieving high 
accuracy in identifying various types of defects [4]. Similarly, Huang et al. applied saliency-
based methods for detecting surface defects on magnetic tiles, showcasing the potential of 
advanced computer vision techniques in manufacturing contexts [5].

In the automotive domain, Yang et al. explored the use of deep learning for crack detection in 
infrastructure,  employing  a  fully  convolutional  network  approach  to  enhance  detection 
accuracy [6]. Their work, while focused on infrastructure, provides valuable insights that can be 
applied to vehicle damage detection.

Our research builds upon these foundations and extends them in several key ways. Firstly, 
we provide a comprehensive comparison of the latest YOLO models (v8, v9, and v10) in the 
context  of  vehicle  damage  detection,  offering  insights  into  their  relative  strengths  and 
weaknesses  for  this  specific  application.  Secondly,  we  explore  the  application  of  transfer 
learning techniques to these models, aiming to optimize their performance with limited domain-
specific data. Finally, we evaluate the practical implications of deploying such a system in a real-
world manufacturing environment, considering factors such as processing speed, accuracy, and 
integration with existing quality control processes.

The implementation of  an  effective  automated quality  control  system has  far-reaching 
implications  for  the  automotive  manufacturing  industry.  By  reducing  reliance  on  manual 
inspection, such a system can potentially increase throughput, improve consistency in defect 
detection, and allow for more efficient allocation of human resources. Moreover, the ability to 



quickly and accurately identify various types of vehicle damage can lead to earlier intervention 
in the manufacturing process, potentially reducing waste and improving overall product quality 
[7].

As we delve deeper into the methodology and results of our study, we will explore how the 
latest advancements in object detection models, combined with transfer learning techniques, 
can be leveraged to create a robust and efficient automated quality control system for vehicle 
damage detection. This research not only contributes to the body of knowledge in computer 
vision  and  manufacturing  technology  but  also  provides  practical  insights  for  industry 
practitioners  looking  to  enhance  their  quality  control  processes  through  the  adoption  of 
advanced AI-driven solutions.

Our research builds upon these foundations and extends them in several key ways. Firstly, 
we provide a comprehensive comparison of the latest YOLO models, building on the work of 
Redmon and Farhadi who introduced YOLOv3 [8], offering insights into their relative strengths 
and weaknesses for  vehicle  damage detection.  YOLOv9,  released after,  further  refined the 
architecture, introducing novel features that promised even better performance in complex 
detection scenarios [9]. The most recent iteration, YOLOv10, represents the cutting edge in 
object detection technology, and its potential for manufacturing applications is yet to be fully 
explored in the literature [10].

One of the key challenges in implementing computer vision systems for quality control in 
manufacturing is the need for large, diverse, and accurately labeled datasets. This is particularly 
true in the automotive industry, where the variety of vehicle models, colors, and potential defect 
types can be vast. Transfer learning offers a promising solution to this challenge by allowing 
models pre-trained on large, general datasets to be fine-tuned for specific tasks with relatively 
small amounts of domain-specific data [11] – [12]. This approach has shown success in various 
fields, from medical imaging to satellite imagery analysis, and its application to vehicle damage 
detection represents a novel contribution of our study [13] – [15].

The  effectiveness  of  transfer  learning  demonstrated  in  this  study  aligns  with  the 
comprehensive survey by Tan et al.,  who provided an in-depth overview of deep transfer 
learning techniques and their applications [16]. Their work highlights the various approaches to 
transfer learning in deep neural networks, which is particularly relevant to our application of 
pre-trained YOLO models for vehicle damage detection. This understanding of different transfer 
learning strategies is crucial in the rapidly evolving automotive industry, where the ability to 
efficiently adapt models for new types of defects or different vehicle models is essential.

Another important aspect of our research is the consideration of real-world implementation 
challenges. While many studies focus solely on model performance metrics such as accuracy 
and precision, we also consider factors such as inference speed, hardware requirements, and 
ease of integration with existing manufacturing processes. This holistic approach is crucial for 
bridging the gap between academic research and practical industrial applications [17].

Furthermore, the automotive industry is increasingly moving towards smart manufacturing 
and Industry 4.0 principles, where data-driven decision making and automation play central 
roles [18]. An advanced computer vision system for quality control aligns perfectly with these 
trends, potentially serving as a key component in a larger ecosystem of interconnected smart 
manufacturing  technologies.  By  exploring  the  implementation  of  state-of-the-art  object 
detection models in this context, our research contributes to the broader discourse on the future 
of manufacturing and quality control in the age of AI and IoT [19].



The potential impact of this research extends beyond the immediate application of defect 
detection.  By  demonstrating  the  effectiveness  of  advanced  computer  vision  techniques  in 
quality control, we pave the way for further automation and optimization in the manufacturing 
process. This could lead to improvements in overall product quality, reduction in waste and 
rework, and ultimately, enhanced customer satisfaction and brand reputation. The success of 
our approach in adapting complex visual recognition techniques to industrial applications is 
reminiscent of  the work by X.  Xie and K.  Lam in face recognition [20],  showcasing how 
advanced image processing methods can be effectively applied to solve real-world problems in 
various domains.

Moreover,  the  methodologies  and  insights  derived  from  this  study  have  potential 
applications in other industries where visual inspection plays a crucial role. From electronics 
manufacturing to infrastructure inspection, the principles of automated defect detection using 
advanced AI models could be adapted and applied, contributing to a broader transformation of 
quality control practices across various sectors. This is exemplified by the work of Tao et al. in 
metallic surface defect detection [21].

As we proceed with our investigation, we aim to address several key research questions:

1. How do YOLOv8, YOLOv9, and YOLOv10 compare in terms of accuracy, speed, and 
resource requirements when applied to vehicle damage detection?

2. To  what  extent  does  transfer  learning  improve  the  performance  of  these  models, 
particularly when working with limited domain-specific data?

3. What are the practical considerations and challenges in implementing such a system in 
a real-world manufacturing environment?

4. How  does  the  performance  of  an  AI-driven  quality  control  system  compare  to 
traditional  manual  inspection  methods  in  terms  of  accuracy,  consistency,  and 
efficiency?

By addressing these questions, our study aims to provide a comprehensive evaluation of the 
latest advancements in object detection technology for manufacturing quality control, with a 
specific focus on the automotive industry. The findings of this research have the potential to 
inform future developments in AI-driven quality control systems and contribute to the ongoing 
digital transformation of manufacturing processes.

2. Main Research

In this section, we present a detailed account of our research methodology, experimental setup, 
and results analysis. Our study focuses on implementing and comparing state-of-the-art object 
detection models for automated quality control in automotive manufacturing, with a specific 
emphasis on detecting and classifying vehicle damage. We explore the capabilities of YOLOv8, 
YOLOv9,  and  YOLOv10  models,  leveraging  transfer  learning  techniques  to  optimize  their 
performance for our specific use case.

The research process is structured into several key components: dataset preparation and 
preprocessing,  model  architecture  and  implementation,  training  methodology,  and 
comprehensive performance evaluation. Through this systematic approach, we aim to provide 



insights into the effectiveness of these advanced computer vision techniques for enhancing 
quality control processes in the automotive industry.

2.1. Dataset and Preprocessing

For this study, we utilized the Car Dents Computer Vision Project dataset [22], which is 
specifically designed for the detection and classification of vehicle damage. This dataset consists 
of 7,258 images, split into training (6,855 images), validation (377 images), and test (26 images) 
sets.  The images in the dataset  capture various types of  vehicle damage,  including dents, 
scratches, and accident-related damage, across a diverse range of vehicle models and colors.

The dataset was prepared using the following preprocessing steps: 

1. Resizing.  All  images  were  resized  to  640x640  pixels  using a  stretch  method.  This 
standardization is crucial for maintaining consistent input sizes for the YOLO models 
while preserving aspect ratios.

2. Augmentation. To enhance the robustness of our models and increase the effective size 
of our training set, we applied several data augmentation techniques:
 90° Rotation. Images were rotated clockwise, helping the model learn rotational 

invariance.
 Shear. A shear transformation of ±15° was applied both horizontally and vertically, 

simulating different viewing angles.
 Brightness  Adjustment.  The  brightness  of  the  bounding  boxes  was  randomly 

adjusted between -15% and +15%, helping the model cope with varying lighting 
conditions.

2.1.1. Dataset Analysis

Figure 1 presents the analysis of the class distribution in the Car Dents dataset, revealing 
significant imbalance (some images contain several classes at once):

 Dent: 3391 samples;
 Accident: 1927 samples;
 Scratch: 2072 samples.

This imbalance in class distribution may affect the models' ability to accurately detect and 
classify different types of damage. In particular, the prevalence of "Dent" samples may lead to 
better model performance in detecting dents compared to other types of damage.



Figure 1: The visualization of the class distribution in the Car Dents dataset (Author’s work).

2.1.2. Bounding Box Analysis

Analysis of the distribution of bounding box sizes and positions provided valuable information 
about damage characteristics in the dataset:

1. Overlay of all bounding boxes in the dataset (Figure 1, top right plot).
2. Distribution of bounding box centers (x, y) (Figure 1, bottom left plot):

 A concentration of damage is observed in the central part of the images.
 Lower density of damage near the edges of images.

3. Distribution of bounding box sizes (width, height) (Figure 1, bottom right plot):
 Most damages have relatively small sizes (less than 0.4 of the image size).
 A  positive  correlation  between  width  and  height  is  observed,  indicating  an 

approximately square shape for most bounding boxes.

These observations are important for understanding damage characteristics and can be used 
to optimize model architectures and training strategies.



2.2. Model Architecture and Transfer Learning

In this study, we implemented and compared three state-of-the-art object detection models: 
YOLOv8, YOLOv9, and YOLOv10. These models represent the latest advancements in the YOLO 
(You Only Look Once) family of object detectors, known for their speed and accuracy in real-
time object detection tasks.

The general architecture of YOLO models can be described by the following equation:

Y=F (X ;θ ) , (1)

where Y is the output prediction (bounding boxes and class probabilities); X is the input image; F 
is the YOLO model function; θ represents the model parameters.

Each version of YOLO introduces architectural improvements and novel features:

1. YOLOv8. Introduced anchor-free detection and a new backbone network for improved 
feature extraction.

2. YOLOv9. Enhanced the model with a more efficient neck structure and advanced loss 
functions.

3. YOLOv10.  Further  refined  the  architecture  with  a  dynamic  attention  mechanism, 
optimized anchor boxes, and a novel hybrid backbone that integrates convolutional and 
transformer layers, resulting in improved accuracy and efficiency in object detection 
across diverse datasets.

To leverage the power of transfer learning, we utilized pre-trained weights for each model, 
which were originally trained on the COCO dataset.  The transfer learning process can be 
represented by the following equation:

θnew=θ pre+∆θ , (2)

where θnew are the new model parameters after fine-tuning; θ pre are the pre-trained parameters; 

∆θ represents the parameter updates during fine-tuning.

2.3. Training Methodology

We employed a  consistent  training methodology across  all  three  models  to  ensure  a  fair 
comparison. The key aspects of our training process were:

1. Optimizer. We used the Adam optimizer with a cosine learning rate schedule. The 
learning rate can be described by the equation:

lr (t )=lrmin+0.5 ∙( lrmax−lrmin )∙(1+cos ( t ∙
π
T

)) ,
(3)

where t is the current epoch; T is the total number of epochs; lrmin is the minimum learning rate; 

lrmax is the maximum learning rate.

2. Training Parameters:



 Batch size: 64;
 Number of epochs: 100;
 Image size: 640x640;
 Data augmentation: As described in section 2.1.

3. Early Stopping. We implemented early stopping with a patience of 20 epochs to prevent 
overfitting.

2.4. Evaluation Metrics

To comprehensively assess the performance of our models, we utilized the following evaluation 
metrics:

1. Mean Average Precision (mAP). We calculated mAP at different Intersection over Union 
(IoU) thresholds:
 mAP@0.5. Average Precision at 50% IoU’
 mAP@0.5:0.95. Average Precision over multiple IoU thresholds from 50% to 95%.

2. Precision and Recall. These metrics were calculated for each class and overall.
3. F1-Score. The harmonic mean of precision and recall, providing a balanced measure of 

the model's performance.
4. Confusion Matrix. To visualize the model's performance across different classes.
5. Inference Time. The average time taken to process an image, crucial for real-time 

applications.

The precision and recall can be calculated using the following equations:

Precision= TP
TP+FP

,
(4)

Recall= TP
TP+FN

,

where TP is True Positives; FP is False Positives; FN is False Negatives.
The F1-score is then calculated as:

F 1=2 ∙ Precision ∙ Recall
Precision+Recall

,
(5)

where  Precision represents  the  proportion  of  true  positive  predictions  among  all  positive 
predictions made by the model; Recall (also known as sensitivity or true positive rate) indicates 
the proportion of true positive predictions among all actual positives in the dataset.

2.5. Experimental Setup

Our experiments were conducted using PyTorch on a system equipped with NVIDIA GeForce 
RTX 4080 Super GPUs. We implemented the models using the Ultralytics YOLO framework, 
which provides a consistent API for training and evaluating different YOLO versions.



For  each  model  (YOLOv8,  YOLOv9,  and  YOLOv10),  we  followed  this  experimental 
procedure:

1. Model Initialization. Load the pre-trained weights and adapt the model architecture for 
our specific number of classes.

2. Training.  Fine-tune  the  model  on  our  Car  Dents  dataset  using  the  methodology 
described in section 2.3.

3. Validation.  Regularly evaluate the model on the validation set to monitor training 
progress and prevent overfitting.

4. Testing.  After  training,  evaluate  the  model  on  the  held-out  test  set  to  assess  its 
generalization performance.

5. Analysis. Compare the performance of each model across the various metrics described 
in section 2.4.

To ensure reproducibility, we set a fixed random seed across all experiments. This allowed us 
to  make fair  comparisons  between the  different  YOLO versions  while  controlling  for  the 
stochastic nature of neural network training  as in works [23] – [24]. 

3. Results and Analysis

After conducting our experiments with YOLOv8, YOLOv9, and YOLOv10 on the Car Dents 
dataset, we obtained comprehensive results that provide insights into the performance of each 
model. In this section, we will present and analyze these results in detail.

3.1. Training Performance

Figure 2 shows the training curves for all three models, illustrating the progression of various 
metrics over the course of training epochs.



Figure 2: The training result plots for YOLOv8, YOLOv9, and YOLOv10 (Author’s work).

Key observations from the training curves:



1. All three models showed consistent improvement over the training period, with losses 
decreasing and mAP scores increasing. YOLOv10 exhibited the fastest convergence, 
reaching its peak performance around epoch 80, while YOLOv8 and YOLOv9 continued 
to show slight improvements until later epochs.

2. Loss Metrics:
 Box Loss. YOLOv10 achieved the lowest final box loss (1.1842), followed closely by 

YOLOv9 (1.1744) and YOLOv8 (1.2006).
 Classification Loss. YOLOv10 significantly outperformed the other models with a 

final cls_loss of 0.80735, compared to 1.7822 for YOLOv8 and 1.6911 for YOLOv9.
 DFL Loss. All models showed similar performance, with final values around 1.5.

3. YOLOv10 demonstrated the highest mAP50(B) throughout training, reaching a peak of 
0.65077, compared to 0.62968 for YOLOv9 and 0.59692 for YOLOv8.

3.1.1. Model Performance on Test Images

Figure 3 illustrates the analysis of detection results on test images, highlighting the following 
key aspects of model performance:

1. Detection Accuracy:
 Models successfully detect various types of damage with high confidence (scores 

ranging from 0.3 to 0.9).
 High  accuracy  is  observed  in  determining  the  type  of  damage  (dent,  scratch, 

accident).
2. Multiple Detections:

 Models are capable of detecting multiple damages on a single vehicle, which is 
crucial for comprehensive vehicle condition assessment.

3. Scenario Diversity:
 Models demonstrate robustness to various lighting conditions and shooting angles.
 Damages are successfully detected on different parts of the vehicle (doors, fenders, 

bumpers).
4. Problematic Areas:

 In some cases, missed damages or inaccuracies in classification are observed (e.g., 
confusion between dent and scratch).



Figure 3: The visualization of detection results on test images (Author’s work).

These results  confirm the effectiveness  of  the developed models  for  automated quality 
control in automotive manufacturing, while also indicating areas for potential improvement.

3.2. Model Performance Comparison

Table 1 presents a summary of the key performance metrics for each model on the test set:

Table 1
Comparison of Key Performance Metrics Across YOLOv8, YOLOv9, and YOLOv10 Models

Metric YOLOv8 YOLOv9 YOLOv10



Key findings from the performance comparison:

1. YOLOv10 consistently outperformed the other models in both mAP50 and mAP50-95 
metrics, indicating superior accuracy across various IoU thresholds.

2. YOLOv10 achieved the highest  precision and recall  scores,  demonstrating a  better 
balance between false positives and false negatives.

3. The F1-score, which provides a single measure balancing precision and recall,  was 
highest for YOLOv10 (0.64934), representing a 5.7% improvement over YOLOv8 and a 
3.1% improvement over YOLOv9.

4. While YOLOv10 showed the best detection performance, it also had a slightly longer 
inference time. However, the difference in inference time (1.6ms slower than YOLOv8) 
is relatively small considering the significant performance gains.

3.3. Class-wise Performance Analysis

To gain deeper insights into model performance across different types of vehicle damage, we 
analyzed  class-wise  metrics.  Figure  4  presents  the  F1-Confidence  curves  for  each  class 
(Accident, Dent, Scratch) across all three models.

mAP50(B) 0.59692 0.62968 0.65077

mAP50-95(B) 0.30884 0.33261 0.34918

Precision 0.6335 0.65514 0.67517

Recall 0.55621 0.57303 0.62411

F1-Score 0.59246 0.61864 0.64934

Inference Time (ms) 12.5 13.2 14.1



Figure 4: The F1-Confidence curves for YOLOv8, YOLOv9, and YOLOv10 (Author’s work).

Observations from class-wise analysis:

1. Dent  Detection  (orange  line).  All  models  performed best  in  detecting  dents,  with 
YOLOv10 achieving the highest F1-score of 0.719 for this class. This could be attributed 
to the distinct visual characteristics of dents and their potentially higher representation 
in the dataset.

2. Scratch Detection (green line). YOLOv10 showed significant improvement in scratch 
detection compared to its predecessors, with an F1-score of 0.689. This suggests that the 
architectural improvements in YOLOv10 are particularly effective for detecting fine, 
linear defects.

3. Accident Detection (blue line). This category proved to be the most challenging for all 
models, likely due to the diverse nature of accident-related damage. However, YOLOv10 
still outperformed the other models with an F1-score of 0.637 for this class.

3.4. Confusion Matrix Analysis

Figure 5 presents the normalized confusion matrix for each model, providing insights into 
classification errors and inter-class confusion.

Figure 5: The normalized confusion matrix (Author’s work).



Key insights from confusion matrix:

1. YOLOv10  showed  the  lowest  rate  of  misclassifications  across  all  classes,  with 
particularly noticeable improvements in distinguishing between dents and scratches 
compared to earlier versions.

2. All models had some difficulty in correctly classifying accident-related damage, often 
confusing it with dents or scratches. This suggests that more refined feature extraction 
or additional training data for accident scenarios could be beneficial.

3. The background class (no defect), a default feature in YOLO models even when not 
explicitly defined in the dataset,  was most accurately identified by YOLOv10. This 
demonstrates  YOLOv10's  enhanced ability  to  distinguish objects  from background, 
crucial for improving the overall  accuracy of damage detection and reducing false 
positives.

3.5. Precision-Recall Curve Analysis

Figure 6 illustrates the Precision-Recall curves for each model, providing a comprehensive view 
of their performance across different confidence thresholds.

Figure 6: The Precision-Recall curves for YOLOv8, YOLOv9, and YOLOv10 (Author’s work).

Observations from Precision-Recall curves:

1. YOLOv10 demonstrated the largest Area Under the Curve (AUC), indicating better 
overall performance across various precision-recall tradeoffs.

2. In the high precision region (>0.8), YOLOv10 maintained higher recall compared to 
YOLOv8 and YOLOv9, suggesting its superiority in applications where false positives 
are particularly costly.

3. YOLOv10 achieved a recall of 0.82 at 0.5 precision, compared to 0.78 for YOLOv9 and 
0.75 for YOLOv8, indicating its ability to detect a higher proportion of defects while 
maintaining acceptable precision.



3.6. Transfer Learning Effectiveness

To evaluate the effectiveness of transfer learning, we compared the performance of each model 
when trained from scratch versus when initialized with pre-trained weights. Table 2 presents 
this comparison:

Table 2
Performance Comparison of Models Trained from Scratch vs. Transfer Learning

Relative Improvement represents the percentage increase in mAP50 when using transfer 
learning compared to training from scratch.

These results demonstrate the significant benefits of transfer learning across all models. 
Interestingly, while YOLOv10 showed the highest overall  performance, it  had the smallest 
relative improvement from transfer learning. This suggests that its architectural improvements 
allow it to learn more effectively even from limited data.

3.7. Computational Efficiency

While YOLOv10 demonstrated superior  detection performance,  it's  crucial  to  consider  the 
computational requirements for practical implementation. Table 3 compares the model sizes and 
average inference times:

Table 3
Comparison of Model Sizes and Inference Times for YOLOv8n, YOLOv9t, and YOLOv10n

The marginal increase in model size and inference time for YOLOv10 is relatively small 
compared to the performance gains, suggesting that it remains a viable option for real-time 
applications in manufacturing settings.

Model
mAP50 

(Scratch)
mAP50 (Transfer)

Relative 
Improvement

YOLOv8 0.48735 0.59692 +22.5%

YOLOv9 0.52314 0.62968 +20.4%

YOLOv10 0.55682 0.65077 +16.9%

Model Parameters (M) Model Size (MB)
Inference Time 

(ms)

YOLOv8n 3.2 6.2 12.5

YOLOv9t 2 4.7 13.2

YOLOv10n 2.3 5.6 14.1



4. Conclusion

Our comprehensive study on implementing a computer vision system for automated quality 
control  in  manufacturing  processes,  focusing  on  vehicle  damage  detection,  has  yielded 
significant insights into the capabilities of state-of-the-art object detection models. Through a 
systematic  comparison  of  YOLOv8,  YOLOv9,  and  YOLOv10,  we  have  demonstrated  the 
potential  of  these  advanced  models  in  revolutionizing  quality  control  processes  in  the 
automotive industry.

YOLOv10 consistently outperformed its predecessors across all key metrics, achieving a 
mAP50 of 0.65077 and an F1-score of 0.64934. This represents a significant improvement over 
YOLOv8 (5.7% increase in F1-score) and YOLOv9 (3.1% increase in F1-score), indicating its 
superior capability in detecting and classifying vehicle damage.

The application of transfer learning techniques proved highly beneficial, with all models 
showing  substantial  improvements  when  initialized  with  pre-trained  weights.  YOLOv8, 
YOLOv9,  and  YOLOv10  demonstrated  mAP50  improvements  of  22.5%,  20.4%,  and  16.9% 
respectively,  highlighting the value of transfer learning in scenarios with limited domain-
specific data.

All models showed varying performance across different types of vehicle damage, with dent 
detection  being  the  most  accurate  and  accident-related  damage  detection  being  the  most 
challenging.  This  underscores  the  need  for  balanced  datasets  and  potential  class-specific 
optimizations in practical applications.

Despite its superior performance, YOLOv10 only required marginally more computational 
resources compared to its predecessors. The slight increase in inference time (14.1ms compared 
to 12.5ms for YOLOv8) is negligible in the context of the significant performance gains, making 
it a viable option for real-time applications in manufacturing settings.

YOLOv10 demonstrated a superior ability to maintain high recall at high precision levels, 
making it particularly suitable for quality control applications where minimizing both false 
positives and false negatives is crucial.

The  findings  of  this  study  have  several  important  implications  for  the  manufacturing 
industry, particularly in the context of automotive production:

1. Enhanced Quality Control. The high accuracy and efficiency of these models, especially 
YOLOv10, suggest that they can significantly enhance the quality control process in 
automotive manufacturing. By automating the detection of various types of vehicle 
damage, these systems can reduce human error, increase consistency, and potentially 
identify defects that might be missed by manual inspection.

2. Increased Efficiency. With inference times of around 14ms per image, these models are 
capable of real-time defect detection. This could dramatically increase the speed and 
throughput of quality control processes,  allowing for 100% inspection of produced 
vehicles without creating bottlenecks in the production line.

3. Cost Reduction. By minimizing the need for manual inspection and potentially reducing 
the number of defective products that reach later stages of production or customers, 
these systems could lead to significant cost savings for manufacturers.

4. Adaptability. The effectiveness of transfer learning demonstrated in this study suggests 
that these models can be quickly adapted to new types of defects or different vehicle 



models with relatively small amounts of additional training data. This flexibility is 
crucial in the rapidly evolving automotive industry.

5. Data-Driven Insights. Beyond mere defect detection, the deployment of such systems 
could generate valuable data on defect patterns and trends. This information could be 
used to identify and address root causes of defects in the manufacturing process, leading 
to continuous improvement in product quality.

This  study demonstrates  the  significant  potential  of  advanced object  detection models, 
particularly  YOLOv10,  in  revolutionizing  quality  control  processes  in  automotive 
manufacturing, highlighting the success of transfer learning techniques and paving the way for 
widespread adoption of AI-driven solutions in industrial quality control.
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