
Generation of camouflage based on the use
of generative-competitive neural networks

Victor Sineglazov1,*,†, Michael Zgurovsky 2, †, Dmytro Nikulin3 , Kyrylo Lesohorskyi2

1 Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
3 Faculty of Air Navigation, Electronics and Telecommunications, National Aviation University,
Kyiv, Ukraine

Abstract
This work is devoted to camouflage pattern generation using generative adversarial neural networks
(GANs). The problems of creating camouflage are identified: limited adaptability, the complexity of
development, the subjectivity of evaluation, and lack of individualization. It has been shown that
GANs are an effective means of creating visual camouflage despite the instability of their behavior
during training associated with the fall of the gradient and the appearance of "mode collapse". To
solve this problem, the following GAN architectures were analyzed: Progressive Growing GAN,
StyleGAN/StyleGAN2, CycleGAN, Pix2Pix, Deep Convolutional GAN, Wasserstein GAN,
Conditional GAN, Self-Attention GAN, Hybrid GAN. As a result, a new GAN architecture is
proposed, based on the use of U-Net as a generator, a simplified discriminator architecture, the use of
a combination of cross-entropy and MSE as a cost function, multiple angles, concatenation of features.
The proposed GAN architecture demonstrates the potential to create effective camouflage patterns
tailored to specific landscapes.

Keywords
camouflage, generative adversarial neural networks. structural-parametrical synthesis , generator,

discriminator1

1. Introduction

Camouflage is a collection of methods and means designed to disguise objects, such as
people, equipment, or structures, by visually merging them with the environment. The main
purpose of camouflage is to make an object difficult to see or recognize for an observer, which
can be achieved by using colors, patterns, shapes, and materials that mimic the natural
environment or create optical illusions [1]. Camouflage is an important tool used in various
fields of human activity to achieve a variety of purposes, from ensuring safety and survival to
creating aesthetic effects and entertainment. The development of new technologies and

1*ITTAP’2024: 4th International Workshop on Information Technologies: Theoretical and Applied Problems, October 23-
25, 2024, Ternopil, Ukraine, Opole, Poland
1∗ Corresponding author.
† These authors contributed equally.

 svm@nau.edu.ua (V. Sineglazov); mzz@kpi.ua (M. Zgurovsky); 6350583@stud.nau.edu.ua (D. Nikulin);
lesogor.kirill@gmail.com (K. Lesohorskyi);

 0000-0002-3297-9060 (V. Sineglazov); 0000-0001-5896-7466 (M. Zgurovsky); 0000-0003-2773-7398 (K.
Lesohorskyi);

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:6350583@stud.nau.edu.ua%20(D
mailto:mzz@kpi.ua

materials opens up new opportunities for creating more effective and versatile camouflage,
which can be used in an even wider range of applications.

Camouflage is used not only in the military sphere but also in many other fields of human
activity: cinema and television, art and design, fashion, architecture and interior design.

2. Related Works

Creating effective camouflage is a complex task that requires a comprehensive approach and
consideration of many factors. Among the main problems faced by camouflage developers, the
following can be distinguished [2]:

 limited adaptability: Traditional camouflage patterns are developed for specific types of
terrain and lighting. When the conditions (time of day, weather, season) change, their
effectiveness can significantly decrease. This makes them less effective in the dynamic
environment of the modern battlefield;

 design complexity: Creating an effective camouflage pattern requires a deep
understanding of the principles of camouflage, taking into account the peculiarities of
human and animal vision, as well as analyzing a large amount of environmental data.
This is a labor-intensive and time-consuming process that requires the involvement of
highly qualified specialists;

 subjectivity of assessment: Evaluation of the effectiveness of camouflage often depends
on the subjective opinion of experts, which can lead to ambiguous results and make it
difficult to choose the optimal solution;

 lack of individualization: Traditional camouflage patterns, as a rule, are universal and do
not take into account the individual characteristics of military personnel and equipment.
This can reduce their effectiveness in specific situations.

Solving these problems requires an integrated approach that combines knowledge from
different fields. Generative-competitive neural networks (GANs) are promising ways to create
visual camouflage[3]: GANs are a powerful machine learning tool that can be used to create
high-quality and adaptive visual camouflage. They consist of two neural networks: a
generator that creates images and a discriminator that evaluates their realism. These two
networks are trained in a competitive process where the generator tries to produce images
that the discriminator cannot distinguish from real photos [4, 5, 6, 7].

There are many ways to classify GANs, depending on their architecture, the type of data
they generate, and their specific applications [8], some of the most popular architectures are:

1. Progressive Growing GAN (PGGAN) [9]: This architecture allows you to gradually
increase the resolution of the generated images, starting with a low resolution and
adding new layers during the training process. This avoids problems with learning
instability and provides high-quality images. PGGAN can be particularly useful for
generating detailed camouflage patterns that must accurately represent terrain [28]
textures and colors;

2. StyleGAN/StyleGAN2 [10,11]: This architecture allows you to control the style of
generated images using latent vectors. This can be used to create camouflage patterns

with different styles to suit different lighting conditions or types of terrain. StyleGAN2 is
an improved version of StyleGAN that provides even more control over style and image
quality;

3. CycleGAN [12]: This architecture allows you to transform images from one domain to
another (for example, from a photo of a summer forest to a photo of a winter forest).
CycleGAN can be used to create camouflage patterns that adapt to different seasons or
weather conditions;

4. Pix2Pix [13]: This architecture is designed to convert images from one type to another
while preserving the content of the original. Pix2Pix can be used to create camouflage
patterns that closely match the shape and contours of the object being camouflaged;

5. Deep Convolutional GAN (DCGAN) [14]: This architecture is one of the simplest and
most efficient for image generation. It uses convolutional layers for image processing
and can be easily adapted to generate camouflage patterns;

6. Wasserstein BY (WGAN) [15,16,17]: WGAN solves the instability problem of GAN
training by using the Wasserstein metric to measure the distance between the
distributions of real and generated data. This avoids the problem of vanishing gradients
and provides more stable training;

7. Conditional GAN [18,19,20]: This type of GAN allows you to control the generation
process with additional conditional data. In the context of camouflage generation, this
can be data about the type of landscape, lighting conditions, or the type of object being
camouflaged;

8. Self-Attention GAN (SAGAN) [21]: SAGAN uses a self-attention mechanism to model
dependencies between different parts of an image. This allows for more detailed and
realistic images to be generated, which can be useful for creating high-resolution
camouflage patterns;

9. Hybrid generative adversarial network (HGAN): provides a way to avoid the mode
collapse problem. Using the hybridization approach both in the development of a new
topology and in training methods can significantly increase the efficiency of the neural
network [22,23,24]. In HGAN [25] provides data density estimation using an
autoregressive model and supports both adversarial and likelihood structures in the
form of joint learning, which diversifies the estimated density to cover different
modes;Drag and drop all .otf files to the Font Book window.

3. Method

3.1. GAN Architecture

During the development of the camouflage pattern generator, several neural network
architectures were considered, including traditional convolutional networks (CNNs) and
various variations of generative adversarial networks (GANs).[26]. After careful analysis, the U-
Net architecture was chosen as the most suitable for solving the given task. The U-Net
architecture was first proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brocks in
2015 [27] in the article "U-Net: Convolutional Networks for Biomedical Image Segmentation". It
was originally developed to solve biomedical image segmentation problems but quickly found

applications in many other areas of computer vision, including image generation. U-Net has a
number of advantages that make it an attractive choice for image generation:

 efficiency in image generation tasks: U-Net is widely used for image generation,
especially in medical imaging, where it exhibits high quality reconstruction of details
and structures. This feature is important for creating realistic camouflage patterns that
must accurately match the features of the landscape;

 skip connections: U-Net uses skip connections between the encoder and decoder layers.
These connections allow information from the early encoder layers to be passed directly
to the corresponding decoder layers. This helps preserve image detail, especially
important for rendering fine textures and contours to generate more accurate and
realistic images, which is critical for effective camouflage;

 symmetrical structure: The U-shaped structure of the network (Fig. 1) ensures the
symmetry of the encoding and decoding processes, which contributes to a better
understanding and interpretation of the model. Such a structure allows you to easily
modify and adjust the model to the specific requirements of the task;

 adaptability to different image sizes: U-Net can be easily adapted to work with images of
different sizes, which is important for creating camouflage patterns that can be applied
to objects of different sizes and shapes;

 effectiveness of learning: U-Net can be effectively trained even on limited data sets,
which is relevant for the task of military camouflage generation, where collecting a large
amount of representative data can be difficult;

 considering these advantages, the U-Net architecture was chosen as the basis for the
camouflage pattern generator in this work. It allows you to effectively use information
from multiple landscape images, preserve detail and structure, and create realistic and
adaptive camouflage patterns;

U-Net consists of two main parts – encoder and decoder. Contracting path ,or encoder, is a
sequence of convolutional layers (Conv2D) that reduce the spatial dimensions (height and
width) of the input image and increase the number of channels (depth). Each convolutional layer
is usually accompanied by an activation layer (for example, ReLU or LeakyReLU) and a batch
normalization layer (Batch Normalization). Encoder responds for removing features from the
image.

Expansive path, or decoder, is a sequence of transposed convolutional layers (Conv2D
Transpose), which increase the spatial dimensions of the image and reduce the number of
channels. Each transposed convolutional layer is also usually accompanied by an activation
layer and a batch normalization layer. The decoder is responsible for generating the image based
on the extracted features (Fig. 1).

Figure 1: U-net generator architecture.

In our implementation of the camouflage generator, a modified U-Net architecture that takes
into account the specifics of the task is proposed. In particular, we feed 10 images of the same
landscape taken from different angles to the input of the generator.

Each image is processed by a separate encoder, which extracts a set of features from it. These
features are then combined using the Concatenate layer, creating a single tensor that contains
information about all angles of the landscape. This tensor is then passed to a decoder that
generates an image of the camouflage pattern. Input data consists of a batch of 10 landscape
images of 256×256×3 dimensons. Encoder path gradually reduces dimensionality and
extracts features. Encoder consists of blocks, namely 2D convolutional layer (Conv2d), followed
by a ReLu activation function that introduces non-lineriality, and then followed by BatchNorm
to normalize layer outputs to enable more stable learning. After the feature extraction, the
whole batch is concatenated together into a single tensor to combine multi-angle information.
After concatenation, the tensor is passed into the decoder pathway that consists of 2D
transposed convolutions that extends the dimensions to the original input size. Last layer is the
output layer that produces the 256×256×3 camouflage pattern patch. Advantages of such
approach are:

 taking into account the variety of visual characteristics of the landscape: The landscape
can significantly change its appearance depending on the viewing angle, lighting and
other factors. Using 10 photos from different angles allows the generator to take this
diversity into account and create a camouflage pattern that will be effective when
viewed from different positions;

 creating more realistic and adaptive patterns - each photo contains unique information
about the landscape, such as textures, colors, shapes, and shadows. Combining this
information allows the generator to create more realistic and adaptive camouflage
patterns that blend in better with the environment.

 prevention of overfitting - using 10 photos instead of one helps prevent generator
overfitting. The model learns not just to reproduce specific details from a single image,
but to detect general patterns and structures inherent in a given landscape.

 increasing the effectiveness of masking - a camouflage pattern created on the basis of 10
photos will be more effective in masking an object on a given landscape because it takes
into account its visual characteristics from different angles. This makes it possible to
reduce the probability of detecting the object when observing from different positions.

 Versatility - generator model trained on 10 images of one landscape can be easily
adapted to create camouflage for other landscapes. To do this, it is enough to replace the
input images with photos of a new landscape and retrain the model.;

Thus, using 10 photos at the input of the generator is an effective approach to create a
versatile and adaptable military camouflage. It allows you to take into account the variety of
visual characteristics of the landscape, prevent overtraining of the model and increase the
effectiveness of camouflage.

Discriminator architecture is not significantly changed in comparison to classic image GANs.
A standard CNN architecture, derived from the encoder pathway with binary classification head
is used.

3.2. Loss Function

Loss functions play a key role in training generative adversarial networks (GANs) because
they determine exactly how the model evaluates its performance and adjusts its parameters [30,
31]. In the context of GANs, two main loss functions are used: one for the generator and one for
the discriminator.

We start by outlining the loss functions that are commonly used in the generator.
Binary Cross Entropy (BCE) is widely used in GANs to evaluate how well the generator can

fool the discriminator. It calculates the difference between the probability distributions
predicted by the discriminator for real and generated images.

Mean Squared Error (MSE) measures the root mean square difference between generated and
real images at the pixel level. This lossy function can be useful for improving the visual quality
of the generated images, ensuring that they resemble the original photographs.

Wasserstein Loss is used in Wasserstein GAN (WGAN) and provides more stable training
compared to BCE. It measures the distance between the distributions of real and generated data,
which makes it less sensitive to the problems of vanishing gradients and mode collapse. This is
especially important when there is a limited amount of training data, as in our case.

Perceptual Loss: This loss function estimates the difference between the generated image and
the real image based on high-level features extracted from a pre-trained neural network (eg
VGG). It helps the generator create images that are not only pixel-like, but also in content and
style, which can be useful for creating realistic camouflage patterns:

PL=∑
i=0

N

λi ∙‖φi (y)−φi (y ')‖2
2
, (1)

where N is the number of layers in the network, which are used to calculate losses, i are
weighting factors for layers λi; φi (y) is a feature function that extracts features from a layer i for

the target image y; ‖‖2
2is the L2 norm.

Discriminator can use some of the loss functions outlined above, however usually it uses
either of the following options. Binary Cross Entropy - as with the generator, BCE is used to

evaluate the ability of the discriminator to distinguish between real and generated images.
Wasserstein Loss - in WGAN, the discriminator also uses Wasserstein loss, but with the
opposite sign compared to the generator.

In the proposed approach, mean squared loss (MAE) is used as a generator loss. This loss
function is used to compare the generated image with the concatenated image from 10 angles.
This helps the generator to create a pattern that will be similar to all input images, taking into
account different angles of the landscape:

MSE= 1
N∑

i=0

N

(y i− y i
')2, (2)

where N is the number of samples; y iis the actual value for the sample i, y i
' is the predicted value

for the sample i.
For discriminator, binary cross entropy loss is used. It causes the discriminator to correctly

classify real images as genuine and generated ones as fakes. This helps the discriminator become
better at its task, which in turn forces the generator to produce more realistic images:

BCE=−1
N ∑

i=0

N

¿¿, (3)

where N is the number of samples, y i is the actual label (0 or 1) for the sample i, pi is the
predicted probability for the sample i.

3.3. Hyper-parameter tuning

Setting hyperparameters is an important step in the process of developing and training a
GAN, as they significantly affect the quality and stability of the model. In the case of our GAN,
the key hyperparameters are:

Batch size (batch_size): Defines the number of images processed per training iteration.
Increasing the batch size can speed up training, but requires more memory. In our case,
batch_size = 10 (number of angles).

Number of epochs: Specifies the number of passes over the entire training data set. More
epochs can lead to better learning, but can also lead to overtraining. In our case, epochs = 1000.

Learning rate (learning_rate): Determines how much the model weights change after each
iteration. Too high a learning rate can lead to instability, and too low a slow learning rate. In our
case, learning_rate = 0.005 for the generator and learning_rate = 0.0001 for the discriminator.

Adam optimizer beta parameters (beta_1, beta_2): Defines how the Adam optimizer takes
first-order and second-order moments into account. The values of beta_1 = 0.5 and beta_2 = 0.5
are used.

3.4. Metrics for evaluating the quality of generated images

Both qualitative and quantitative metrics are used to evaluate the quality of the generated
camouflage patterns. Quantitative metrics allow you to objectively assess the variety and
realism of images, while qualitative metrics are based on the subjective assessment of experts.
Inception Score (IS) and Fréchet Inception Distance (FID) metrics were used to quantify the
quality of generated camouflage patterns. The Inception Score (IS) is a metric used to evaluate
the quality and diversity of images generated by models such as Generative Adversarial

Networks (GANs). It evaluates both the information diversity and the plausibility of the
generated images.

To calculate the IS, a pre-trained Inception model is first used, which classifies images into
different classes. The probabilities of the images belonging to each class are obtained. For each
generated image , the Inception model gives the probability (∣) as well – class.𝑥 𝑦 𝑥 𝑦

Inception Score is calculated through the ratio between (∣) and ():𝑦 𝑥 𝑦
The Inception Score (IS) is a metric used to evaluate the quality and diversity of images

generated by models such as Generative Adversarial Networks (GANs). It evaluates both the
information diversity and the plausibility of the generated images.

To calculate the IS, a pre-trained Inception model is first used, which classifies images into
different classes. The probabilities of the images belonging to each class are obtained. For each
generated image , the Inception model gives the probability (∣) as well – class.𝑥 𝑦 𝑥 𝑦

Inception Score is calculated through the ratio between (∣) and ():𝑦 𝑥 𝑦
IS=eE x [DKL(P(y∨x)∨¿P(y))], (4)

where DKL stands for Kullback-Leibler divergence, which calculates the distance between two
distributions:

DKL(P (x)∨|P (y))=∑
y

❑

P(x) log2(
P(x)
P(y)

). (5)

Fréchet Inception Distance (FID) is a metric used to evaluate the quality of generated images
compared to real images. FID takes into account not only the diversity of images, but also how
well their distribution approximates the distribution of real images.

FID calculation is based on the comparison of the statistical characteristics of the images
extracted using the pre-trained Inception model. In particular, FID compares the mean vectors
and covariances of two sets of images in feature spaces that are obtained from a certain
intermediate layer of the Inception model. FID is calculated by the formula:

FID=¿∨μr−μg∨¿2+√Tr (Σr+Σg−2Σr Σg), (6)

where, N (μr , Σr), N (μg , Σg)are multivariate normal distributions for real and generated

images, respectively, where μrand Σr are average and covariance for real images, and μg and

Σg is the mean and covariance for the generated images, Tr is the trace of the matrix (the sum of
its diagonal elements).

4. Results

As an example, consider the problem of generating camouflage patterns (Fig. 2) based on
realistic images (Fig. 3). Table 1 shows that the value of the Inception Score (IS) increases with
each learning epoch. This indicates that the generated images are becoming more diverse and
clear. At the beginning of training (100 epochs), the IS is 1.28, which indicates low image quality.
However, as the number of epochs increases, the IS increases to 2.23 per 1000 epochs, indicating
a significant improvement in the quality of the generated images. Fréchet Inception Distance
(FID) values decrease with each training epoch. This means that the feature distribution of
generated images becomes closer to the feature distribution of real images. At the beginning of
training (100 epochs), the FID is 148.3, indicating a significant difference between the generated
and real images. However, as the number of epochs increases, the FID decreases to 56.2 per 1000
epochs, indicating a significant improvement in the quality and realism of the generated images.

Figure 2: Generated images.

Figure 3: Real images from the training dataset.

Table 1
Quality assessment results

Epoch Inception Score (IS) Fréchet Inception Distance (FID)

100 1.28 148.3

200 1.42 132.1

300 1.58 116.9

400 1.71 102.4

500 1.85 88.7

600 1.92 79.5

700 1.98 71.2

800 2.05 63.8

900 2.12 57.1

1000 2.23 56.2

Quality evaluation results based on IS and FID metrics confirm that the proposed GAN model
is capable of learning and improving the quality of generated camouflage patterns over time. An
increase in IS and a decrease in FID mean that images become more diverse, sharp and realistic.

5. Conclusions

The proposed GAN architecture demonstrates the potential to generate effective camouflage
patterns adapted to specific landscapes. It takes into account different terrain angles, uses
effective training methods and can be easily adapted for different types of data. Further research
and experimentation may lead to even more impressive results in camouflage generation.

Batches of 10 images of the same landscape from different angles to the input of the
generator allow us to take into account the diversity of its visual characteristics. This helps
create more realistic and adaptive camouflage patterns that effectively mask objects when
viewed from different angles. Combining the features extracted from each image provides the
generator with more complete information about the landscape, allowing it to create more
complex and varied patterns that better match the characteristics of the terrain.

Using a simplified discriminator architecture with fewer layers and neurons helps prevent
overtraining and maintains a balance between the generator and the discriminator. This is
especially important when there is a limited amount of training data. The combination of these
loss functions allows to simultaneously improve the quality of the generated images (MSE) and
the ability of the generator to deceive the discriminator (BCE).

The proposed GAN architecture can be easily adapted to generate camouflage patterns for
different types of landscapes. To achieve this, it is enough to replace the input images with
photos of a new landscape and retrain the model.

Future research involves using more complex architectures (e.g. StyleGAN2-ADA),
additional loss functions (e.g. perceptual loss), as well as regularization methods (e.g. spectral
normalization).

References

[1] Talas L, Baddeley RJ, Cuthill IC. 2017 Data from: Cultural evolution of military camouflage.
DataDryad Repository. (http://dx.doi.org/10.5061/dryad.n511h)

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680, 2014.

[3] [Salimans et al., 2016] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, Xi Chen, and Xi Chen. Improved techniques for training gans. In Advances in
Neural Information processing Systems 29, pages 2234–2242. 2016

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems, pages 6626–6637,
2017.

[5] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. In Advances in Neural
Information Processing Systems, 2020.

[6] V.M. Sineglazov, K.D. Riazanovskiy, O.I. Chumachenko, (2020). Multicriteria conditional
optimization based on genetic algorithms. In: System research and information
technologies, No. 3 (2020) . DOI: https://doi.org/10.20535/SRIT.2308-8893.2020.3.07 - 3

[7] Ming-Yu Liu, Xun Huang, Jiahui Yu, Ting-Chun Wang, and Arun Mallya. Generative
adversarial networks for image and video synthesis: Algorithms and applications. arXiv
preprint arXiv:2008.02793, 2020.

[8] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progressive Growing of GANs
for Improved Quality, Stability, and Variation”. In: International Conference on Learning
Representations. 2018

[9] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture for
Generative Adversarial Networks”. In: Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019, pp. 4401–4410

[10] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
“Analyzing and Improving the Image Quality of StyleGAN”. In: Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2020

[11] Jun-Yan Zhu. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks URL: https://arxiv.org/pdf/1703.10593.pdf

[12] Joyce Henry, Terry Natalie, Den Madsen, “Pix2Pix GAN for Image-to-Image Translation”,
2021

[13] Alec Radford & Luke Metz. Unsupervised Representation Learning With Deep
Convolutional Generative Adversarial Networks URL:
https://arxiv.org/pdf/1511.06434.pdf

[14] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in
International conference on machine learning, pp. 214–223, PMLR, 2017

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, Improved training of
wasserstein gans, arXiv preprint arXiv:1704.00028, 2017.

[16] H. Ni, L. Szpruch, M. Sabate-Vidales, B. Xiao, M. Wiese, and S. Liao, Sig-wasserstein gans
for time series generation, arXiv preprint arXiv:2111.01207, 2021

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation
with Conditional Adversarial Networks URL: https://arxiv.org/pdf/1611.07004.pdf

[18] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier GANs. In Proceedings of the 34th International Conference on
Machine Learning, pages 2642– 2651, 2017

[19] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[20] Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena, “Self-Attention
Generative Adversarial Networks”, 2018

[21] Sineglazov , V., & Kot, A. (2021). Design of hybrid neural networks of the ensemble
structure. Eastern-European Journal of Enterprise Technologies, 1(4 (109), 31–45.
https://doi.org/10.15587/1729-4061.2021.225301

[22] Zgurovsky, M., Sineglazov, V., Chumachenko, E. (2021). Formation of Hybrid Artificial
Neural Networks Topologies. In: Artificial Intelligence Systems Based on Hybrid Neural
Networks. Studies in Computational Intelligence, vol 904. Springer, Cham.
https://doi.org/10.1007/978-3-030-48453-8_3

[23] Zgurovsky, M., Sineglazov, V., Chumachenko, E. (2021). Classification and Analysis
Topologies Known Artificial Neurons and Neural Networks. In: Artificial Intelligence
Systems Based on Hybrid Neural Networks. Studies in Computational Intelligence, vol 904.
Springer, Cham. https://doi.org/10.1007/978-3-030-48453-8_1

[24] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan:Combining maximum
likelihood and adversarial learning ingenerative models. arXiv preprint arXiv:1705.08868,
2017.2, 4

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4401–4410, 2019.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation”, 2015

[27] V. Sineglazov, “Main features of terrain-aided navigation systems,” 2014 IEEE 3rd
International Conference on Methods and Systems of Navigation and Motion Control
(MSNMC), Kiev, Ukraine, 2014, pp. 49-52, doi:10.1109/MSNMC.2014.6979728.

	1. Introduction
	2. Related Works
	3. Method
	3.1. GAN Architecture
	3.2. Loss Function
	3.3. Hyper-parameter tuning
	3.4. Metrics for evaluating the quality of generated images

	4. Results
	5. Conclusions
	References

