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Abstract
The integration of YOLOv5-based object detection into construction site management has emerged as 
a transformative approach to enhancing efficiency and safety. This study aimed to develop a model 
capable of real-time identification and tracking of construction resources, equipment, and vehicles 
using CCTV footage. By leveraging the power of computer vision and deep learning, the  model 
facilitates  optimized  resource  allocation,  equipment  utilization,  and  improved  safety  measures 
through the precise monitoring of tools, machinery, and vehicle movements. Utilizing a bespoke 
dataset, the YOLOv5 model underwent rigorous training, validation, and testing phases. The model 
was trained for 30 epochs with a dataset comprising 1,897 images of construction equipment, tools, 
and vehicles,  achieving a  final  precision of  0.852,  recall  of  0.723,  and mean Average Precision 
(mAP_0.5) of 0.792. These results underscore the model's high accuracy in detecting and classifying 
various construction-related objects, thereby demonstrating its potential to significantly enhance 
operational efficiency and safety on construction sites.
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1. Introduction

In recent years, the construction industry has witnessed a significant transformation, driven by 
technological advancements aimed at enhancing site efficiency and safety. The integration of 
artificial intelligence (AI) and machine learning (ML) technologies into construction operations 
has emerged as a pivotal strategy for addressing the perennial challenges of resource and 
equipment management. Among these technologies, the YOLOv5-based object detection model 
stands out for its potential to revolutionize the way construction sites operate, particularly in 
terms of equipment utilization, tool tracking, and vehicle recognition.

The global construction sector has long grappled with issues related to safety management, 
with accidents on construction sites posing serious risks to workers and project timelines. 
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Traditional methods of safety and resource management, often reliant on manual oversight and 
rudimentary tracking systems, have proven inadequate in mitigating these risks effectively. The 
advent  of  YOLOv5-based object  detection offers  a  promising solution to  these  challenges, 
leveraging deep learning algorithms to automate the detection and classification of construction 
equipment, tools, and vehicles in real-time.

Recent studies have underscored the efficacy of YOLOv5 in enhancing construction site 
safety and efficiency. For instance, Xue et al. developed an improved YOLOv5 multiscale object 
detection algorithm specifically tailored for track construction safety, demonstrating significant 
advancements in the detection of workers and tools with enhanced accuracy and reduced model 
convergence time [1]. Similarly, Zhou et al. proposed an object detection method based on an 
improved  YOLOv5  model  to  accurately  sort  construction  waste,  showcasing  the  model's 
superior performance over conventional models like Faster-RCNN and YOLOv4 [2].  These 
studies highlight the versatility and effectiveness of YOLOv5 in addressing diverse safety and 
management challenges on construction sites.

The integration of YOLOv5 into construction site operations not only improves safety by 
enabling the real-time detection of potential hazards but also enhances resource and equipment 
management  through  precise  tracking  and  utilization  monitoring.  By  automating  the 
identification  and  classification  of  construction  assets,  YOLOv5  facilitates  more  efficient 
allocation and use of resources, thereby optimizing project timelines and reducing costs.

This paper aims to explore the application of YOLOv5-based object detection in the context 
of construction site management, focusing on the model's impact on enhancing site efficiency 
and  safety.  Through a  review of  recent  literature  and  case  studies,  we  will  examine  the 
implementation of YOLOv5 in various construction scenarios, its benefits in terms of resource 
and  equipment  management,  and  the  challenges  associated  with  deploying  AI  and  ML 
technologies in the construction industry.

The  integration  of  YOLOv5-based  object  detection  into  construction  site  management 
represents a paradigm shift towards data-driven decision-making and operational efficiency. 
This innovative approach not only promises to enhance safety protocols but also to streamline 
the management of resources and equipment, a critical aspect of construction projects that 
directly impacts productivity and cost-effectiveness. The adaptability and precision of YOLOv5 
algorithms  in  identifying  and  tracking  various  objects  make  it  an  invaluable  tool  for 
construction site managers seeking to optimize equipment utilization and ensure the safety of 
workers.

The application of YOLOv5 in construction site management extends beyond mere object 
detection; it encompasses the analysis of equipment usage patterns, real-time monitoring of tool 
locations, and the identification of potential safety hazards. For example, Cai et al. demonstrated 
the effectiveness of an object detection framework based on YOLOv4, a precursor to YOLOv5, in 
autonomous driving scenarios, highlighting the model's balance between detection accuracy 
and real-time operation [3].  Although focused on autonomous vehicles,  the principles and 
methodologies  applied  in  their  research  are  directly  transferable  to  construction  site 
management,  where  the  detection of  equipment,  vehicles,  and personnel  in  real-time can 
significantly enhance operational safety and efficiency.

Furthermore, Peng et al. introduced CORY-Net, a variant of YOLOv5 tailored for intelligent 
safety monitoring on power grid construction sites [4]. Their work underscores the potential of 
customized YOLOv5 models to address specific challenges in construction safety management, 



such as the detection of workers in complex terrains and the identification of safety hazards. 
This  research  exemplifies  the  versatility  of  YOLOv5-based  models  in  adapting  to  diverse 
construction environments and safety requirements.

The deployment of YOLOv5-based object detection systems on construction sites facilitates a 
proactive approach to safety management and resource allocation. By enabling the real-time 
detection  and  classification  of  construction  assets  and  potential  hazards,  these  systems 
empower  site  managers  to  make  informed decisions  that  enhance  safety  and  operational 
efficiency. Moreover, the continuous improvement and customization of YOLOv5 models, as 
demonstrated by ongoing research, ensure their relevance and effectiveness in meeting the 
evolving needs of the construction industry.

The advent of YOLOv5-based object detection models has not only promised enhancements 
in  construction  site  safety  and  efficiency  but  also  opened  new avenues  for  research  and 
development within the construction industry. The ability of these models to accurately detect, 
classify, and track resources and equipment in real-time presents a significant leap forward in 
managing the dynamic and often hazardous environment of construction sites.

The application of YOLOv5 extends to the meticulous tracking of construction equipment 
and tools, a critical aspect for ensuring project timelines is met and reducing idle times. Yang et 
al. showcased the effectiveness of YOLOv5 in monitoring compliance with safety protocols, 
such as the wearing of helmets and masks, by construction workers [5]. Their work not only 
demonstrates the model's high accuracy and efficiency in real-world scenarios but also its 
potential to significantly reduce the risk of accidents and enhance overall site safety.

Moreover,  the  customization  and  improvement  of  YOLOv5  models  to  suit  specific 
construction site conditions have been a focus of recent studies. Zeng et al. introduced an 
enhanced YOLOv3 model for equipment detection and localization, which, while predating 
YOLOv5,  underscores the continuous evolution and refinement of  YOLO architectures  for 
construction site applications [6]. Their research highlights the importance of adapting object 
detection models to the unique challenges posed by construction sites, such as the detection of 
small or occluded objects and the need for real-time processing.

The  integration  of  YOLOv5-based  object  detection  into  construction  site  management 
systems represents a significant step towards automating safety and resource management 
processes. By providing site managers with real-time data on equipment location, usage, and 
worker safety compliance, these systems enable more informed decision-making, ultimately 
leading  to  improved  project  efficiency  and  reduced  costs.  Furthermore,  the  ongoing 
development and customization of YOLOv5 models ensure that these systems remain adaptable 
to the ever-changing landscape of construction site management.

The precision and efficiency of YOLOv5 in object detection have significant implications for 
the management of construction resources. By automating the tracking of tools and equipment, 
YOLOv5 models  minimize the likelihood of  loss  and misplacement,  thereby ensuring that 
resources are optimally utilized and readily available when needed. This capability is crucial for 
maintaining project schedules and reducing downtime. For instance, the work of Wan et al. on 
utilizing YOLOv5 for object detection in high-resolution optical remote sensing images, though 
focused on a different application,  underscores the model's  robustness and adaptability in 
detecting objects across various scales and conditions [7]. Such attributes are invaluable in the 
complex and ever-changing environment of construction sites.



Moreover, the application of YOLOv5 extends to enhancing safety measures on construction 
sites. Through real-time monitoring and detection of safety gear compliance, such as helmets 
and vests, YOLOv5 models play a pivotal role in preventing accidents and ensuring the well-
being of construction workers. The research by Zhou et al. on the detection of construction 
waste  using  an  improved  YOLOv5  model  illustrates  the  model's  versatility  and  high 
performance in identifying specific objects within cluttered scenes [2]. This capability is directly 
applicable to safety monitoring on construction sites, where the ability to accurately detect 
personal protective equipment (PPE) amidst the site's activity can significantly impact overall 
safety outcomes.

The  ongoing  development  and  customization  of  YOLOv5  models  for  construction  site 
management underscore the potential for further innovations in this field. As researchers and 
practitioners continue to explore new applications and enhancements of YOLOv5 technology, 
the construction industry stands on the cusp of a new era of digital  transformation. This 
transformation  is  characterized  by  increased  automation,  improved  safety  protocols,  and 
enhanced resource management, all of which contribute to the overall efficiency and success of 
construction projects.

As  the  construction  industry  continues  to  evolve,  the  integration  of  cutting-edge 
technologies like YOLOv5-based object detection into resource and equipment management 
practices has become increasingly vital. This technology's capacity to enhance construction site 
efficiency  and  safety  through  advanced  equipment  utilization,  precise  tool  tracking,  and 
accurate  vehicle  recognition  marks  a  significant  leap  forward  in  the  sector's  operational 
capabilities.

The adaptability and efficiency of YOLOv5 in various construction site scenarios have been 
demonstrated through numerous studies, each contributing to the model's ongoing refinement 
and application.  For instance,  the work by Peng et al.  on CORY-Net for intelligent safety 
monitoring on power grid construction sites exemplifies the potential of YOLOv5-based models 
to enhance worker safety and operational oversight [4, 8]. Similarly, the study by Yang et al. on 
the application of YOLOv5 for PPE compliance monitoring further underscores the model's 
utility in promoting construction site safety [5, 9]. These studies, among others, provide a solid 
foundation for exploring new avenues for applying YOLOv5 in construction site management.

The purpose of this research can be summarized as follows:

 To Evaluate the Effectiveness of YOLOv5-Based Object Detection in improving 
construction site efficiency by automating the tracking and management of resources 
and equipment.

 To Assess the Impact of YOLOv5 on Construction Site Safety through real-time 
detection of safety gear compliance and potential hazards, thereby reducing the risk of 
accidents and enhancing worker safety.

 To Explore the Customization and Adaptation of YOLOv5 Models for specific 
construction site environments, considering the unique challenges posed by diverse 
project sites and operational conditions.

 To Investigate the Integration of YOLOv5 with Other Technological Solutions 
such as drones and IoT devices, for comprehensive site monitoring and management.



 To Identify Challenges and Limitations associated with the deployment of YOLOv5-
based object detection systems in construction site management, including technical, 
operational, and regulatory considerations.

 To Provide Recommendations for Future Research and Development in the field 
of construction technology, with a focus on enhancing the capabilities and applications 
of YOLOv5-based object detection for improved site management practices.

By addressing these objectives, this research aims to contribute to the body of knowledge on 
the application of advanced object detection technologies in construction site management. 
Through a detailed analysis of current practices and future potentials, we seek to illuminate the 
path toward a more efficient, safe, and technologically advanced construction industry.

2. Main research

The proposed study aims to enhance construction site efficiency and safety through the 
implementation of a YOLOv5-based object detection model. This section outlines the materials 
and  methods  used  to  develop,  train,  and  deploy  the  model  for  resource  and  equipment 
management on construction sites.

Proposed Framework for Resource and Equipment Management System:

1. Data Collection.
1.1. Public  Datasets.  Initially,  public  datasets  containing  images  of  construction 

equipment, tools, and vehicles were utilized. These datasets offer a broad range of 
object types and scenarios, providing a solid foundation for the initial training of the 
YOLOv5 model. Public datasets (ACID [10], TTM [11]) are invaluable for introducing 
the model to a wide variety of objects and conditions it might encounter in real-
world construction environments.

1.2. Self-captured Images. To tailor the model more closely to the specific needs and 
conditions of construction sites, a significant portion of the dataset was composed of 
self-captured images and video footage.  This involved on-site data collection at 
various construction projects, capturing images and videos of resources, equipment 
in different operational states (e.g., idle, in use), and under diverse environmental 
conditions. This step was critical for incorporating real-world variability into the 
dataset, ensuring the model's effectiveness across different construction sites and 
conditions.

2. Preprocessing.
2.1. Data Cleaning. The first step involved filtering out irrelevant images and correcting 

any errors within the dataset. This process ensured that only pertinent and accurate 
data were included, enhancing the quality of the training material.

2.2. Resize/Adjust Brightness and Contrast. To standardize the dataset, all images 
were resized to a uniform dimension suitable for the YOLOv5 model. Additionally, 
adjustments to brightness and contrast were made where necessary to simulate 
various lighting conditions, further improving the model's robustness and accuracy.

2.3. Image Labeling. Using annotation tools like YOLO Label, each image in the dataset 
was meticulously labeled to identify and classify different types of construction 



resources and equipment, along with their operational states. This step is crucial for 
supervised learning, as it provides the model with the necessary information to learn 
from the visual data.

3. Model Training and Evaluation.
3.1. Train the Object Detection Model (YOLOv5). The YOLOv5 model is configured 

and  trained  using  the  prepared  dataset.  The  training  process  is  optimized  for 
accuracy in detecting various resources and equipment specific to construction sites.

3.2. Evaluate the Model. The trained model is evaluated on a separate set of images to 
assess its performance. Evaluation metrics include precision, recall, and mAP (mean 
Average Precision), providing insights into the model's effectiveness in real-world 
scenarios.

4. Integration and Deployment.
4.1. Object Detection Model Weights (YOLOv5). The trained model is deployed into 

the construction site management system, enabling real-time analysis and detection 
of resources and equipment.

4.2. Input Source. The model utilizes input sources such as CCTV footage, static images, 
or live video feeds for continuous object detection and monitoring.

5. Real-time Detection and Management.
5.1. Detecting  Resources  and  Equipment. The  system  identifies  and  classifies 

resources and equipment in real-time, distinguishing between different types (e.g., 
tools, machinery) and states (idle, in use), facilitating immediate action and decision-
making.

5.2. Environmental  Conditions. The  model  optionally  integrates  environmental 
condition detection to adjust resource management strategies in response to weather 
changes, enhancing operational adaptability.

6. Resource and Equipment Status Dashboard.
6.1. Visualization  and  Alerts. A  dashboard  presents  detected  resources  and 

equipment, highlighting their status, location, and usage. Alerts are generated for 
underutilized resources or when equipment maintenance is due, ensuring optimal 
resource management.

6.2. Decision Support. The system provides actionable insights for resource allocation, 
maintenance scheduling, and equipment usage optimization based on real-time data, 
supporting informed decision-making.

7. Feedback Loop for Continuous Improvement.
7.1. Model Retraining. New data and feedback are periodically collected to retrain the 

model, improving its accuracy and adapting to new types of resources or changes in 
the construction site environment.

7.2. System  Updates.  The  management  dashboard  and  decision  support  tools  are 
updated  based  on  insights  gained  from model  performance  and  user  feedback, 
ensuring the system's continuous improvement and relevance.

This comprehensive framework leverages YOLOv5 for object detection to manage resources 
and equipment on construction sites effectively and is represented as a model in Figure 1. By 
emphasizing the detection and classification of resources and integrating this information into 



actionable insights for site managers, the system ensures resources are used efficiently and 
effectively, enhancing overall site safety and operational efficiency.

Figure 1: Image processing workflow for construction site resource management.

2.1. Dataset of the Study

Training an object detector is fundamentally a supervised learning problem that requires a well-
curated dataset to inform and refine the model's learning process. The dataset serves as the 
foundation upon which the object detection model, in this case, YOLOv5, is trained, validated, 
and tested. The construction of a comprehensive and representative dataset is crucial for the 
success  of  the  model  in  accurately  identifying  and  classifying  various  objects  within 
construction sites [12]. The following outlines the meticulous process undertaken to build the 
dataset for this study.

2.2. Data Collection

The data  collection  process  for  enhancing construction site  efficiency and safety  through 
YOLOv5-based object detection focuses on gathering a diverse array of images representing 
various states of equipment utilization, tool and machinery tracking, and vehicle recognition. 
This comprehensive approach ensures the model is well-equipped to accurately identify and 



classify a wide range of objects under different conditions, crucial for real-world application on 
construction sites.

2.2.1. Equipment Utilization

For the category of equipment utilization, images were collected to represent both idle and 
active states of essential construction machinery:

 Idle  Bulldozer.  Approximately  150  images  of  bulldozers  with  no  movement  or 
operation, capturing them with engines off or in a state of rest.

 Active Bulldozer. Around 200 images of bulldozers engaged in activities like pushing 
earth or debris, highlighting their operational state.

 Idle Concrete Mixer.  Collected 120 images of concrete mixers stationary with no 
mixing activity, emphasizing their idle state.

 Active Concrete Mixer. Secured 180 images of concrete mixers in operation, with a 
focus on capturing the rotating drum.

 Idle Generator. Gathered 100 images of generators that are turned off or not providing 
power, showcasing various models and sizes.

 Active Generator.  Compiled 150 images of generators in operation, identifiable by 
noise or operational indicators.

2.2.2. Tool and Machinery Tracking

This category involved collecting images of  handheld tools  and machinery,  differentiating 
between their usage states:

 Hand Drill. 200 images were collected, distinguishing between drills in use and those 
stored.

 Power Saw. Around 170 images differentiating between power saws in operation and 
those turned off.

 Jackhammer. Secured 160 images identifying jackhammers, noting if they are being 
used on the site.

 Welding  Machine.  Collected  140  images  of  welding  machines,  with  a  focus  on 
capturing them in active use for metal joining tasks.

2.2.3. Vehicle Recognition

For vehicle recognition, the dataset includes images representing both the operational and idle 
states of key construction vehicles:

 Crane (Loading). Approximately 190 images of cranes lifting or moving materials, 
indicating activity.

 Crane (Idle). Around 150 images of cranes with no load and not in operation, showing 
inactivity.



 Dump Truck (Loaded). Collected 180 images of dump trucks filled with materials, 
ready for transport or just arrived.

 Dump Truck (Empty). Secured 160 images of empty dump trucks, possibly returning 
for another load.

 Excavator (Digging). Gathered 210 images of excavators in the process of digging or 
moving earth.

 Excavator (Idle). Compiled 170 images of excavators at rest, with the digging arm 
stationary.

 Cement Truck (Pouring). Around 190 images of cement trucks in the process of 
pouring concrete.

 Cement Truck (Idle). Collected 150 images of cement trucks on site but not currently 
pouring concrete.

2.2.4. Annotation Process

Each image within the dataset was meticulously annotated to provide the YOLOv5 model with 
clear, diverse examples of each state or type of equipment, tool, and vehicle. This diversity is 
crucial for helping the model learn the nuances of each category, thereby improving its ability to 
accurately identify and classify objects in real-world construction site scenarios. The annotation 
process included labeling images from various angles, lighting conditions, and distances to build 
a  robust  and  versatile  dataset,  ensuring  the  model's  effectiveness  across  a  wide  range  of 
construction environments.

Table 1 shows the number of cases across different classes.

Table 1
Number of instances across the different classes

Object number Class name
Number of 
instances

1 IB 150

2 AB 200

3 ICM 120

4 ACM 180

5 IG 100

6 AG 150

7 HD 200

8 PS 170

9 J 160



The 

fundamental idea is to analyze a sequence of images to identify whether an object, such as a 
concrete mixer, remains in the same state (indicating inactivity) or transitions between states 
(indicating activity). This determination is made by observing changes in the object's features or 
position across the image sequence.

Object Does Not Change Its State – Not Active. When a sequence of images is fed into a 
detection system where the object does not change its state, the object is classified as not active. 
For a concrete mixer, this would mean that across multiple frames, there is no visible change in 
its  position,  orientation,  or  any  operational  components  (e.g.,  the  mixing  drum  remains 
stationary). The lack of change suggests that the concrete mixer is idle. Detecting inactivity 
involves  analyzing  the  object's  features  across  the  sequence  and  noting  the  absence  of 
significant variation.

Object Changes Its State – Active. Conversely, if the object changes its state across the 
sequence of images, it is classified as active. For the concrete mixer example, this would be 
indicated by visible changes such as the rotation of the mixing drum, movement of the mixer 
from one location to another, or other signs of operation. Detecting activity involves identifying 
variations in the object's features, such as changes in texture (rotation patterns of the drum), 
position, or other operational indicators that signify the mixer is in use. An example of an active 
equipment recognition system is shown in Figure 2.

10 WM 140

11 CL 190

12 CI 150

13 DTL 180

14 DTE 160

15 ED 210

16 EI 170

17 CTP 190

18 CTI 150



Figure 2: Active equipment recognition system.

The detection of object activity typically involves the following steps:

 Feature Extraction. Identifying and extracting relevant features from each image in 
the sequence that can indicate the state of the object. For a concrete mixer, features 
might include the position of the drum, its orientation, and any visible movement.

 Temporal Analysis. Comparing these features across the sequence to detect changes 
over time. This can be achieved through various methods, including frame differencing, 
optical flow, or more sophisticated temporal modeling techniques.

 State Classification. Based on the analysis, classifying the object's state as active or not 
active. If significant changes in the extracted features are detected, the object is classified 
as active; otherwise, it is considered not active.

 Contextual  Information. Incorporating  contextual  information  can  enhance 
accuracy. For instance, understanding the typical operation cycle of a concrete mixer 
can  help  differentiate  between  minor  movements  (noise)  and  significant  activity 
(operation).

This principle of object activity detection is not limited to concrete mixers but can be applied 
to a wide range of objects and scenarios where understanding the operational state is crucial. 
Implementing such a system requires careful consideration of the features to be extracted, the 
method for temporal analysis, and the criteria for classifying the state of the object.

2.3. Data Cleaning

Data cleaning is a critical step in preparing the dataset for training a YOLOv5-based object 
detection model, especially when the goal is to enhance construction site efficiency and safety. 
This process involves meticulously reviewing the dataset to remove any irrelevant, duplicate, or 
poor-quality images that could potentially hinder the model's learning and performance. The 



objective is to ensure that the dataset is as accurate and representative of real-world scenarios as 
possible [13].

The first step in the data cleaning process involved identifying and removing images that do 
not contribute to the model's learning objectives. For instance, images that do not clearly depict 
construction equipment, tools, or vehicles in the specified states (idle or active) were considered 
irrelevant. This step is crucial for maintaining the focus of the model on the target objects and 
scenarios relevant to construction site management.

Duplicate images can skew the model's learning process, leading to overfitting on specific 
examples. Therefore, the dataset was carefully scanned to identify and remove any duplicates. 
This  ensures  a  diverse  range  of  examples  for  each  class,  promoting  a  more  generalized 
understanding and detection capability within the model.

Mislabelled images present a significant challenge in supervised learning models. Incorrect 
labels can confuse the model, leading to inaccuracies in object detection and classification. A 
thorough review of the dataset annotations was conducted to correct any mislabelled images, 
ensuring that each image accurately represents the intended class and state of the construction 
equipment, tools, or vehicles.

Quality control measures were implemented to remove images that are blurry, poorly lit, or 
obstructed,  which could  compromise  the  model's  ability  to  learn  effectively.  Images  were 
evaluated for clarity, lighting, and visibility of the target objects, with substandard images being 
removed from the dataset. This step is essential for ensuring that the model is trained on high-
quality images that accurately reflect the conditions under which it will operate on construction 
sites.

Upon completion of the data cleaning process, the dataset underwent a final review to 
confirm its readiness for model training. This involved a comprehensive assessment of the 
dataset's diversity, representativeness, and alignment with the study's objectives of improving 
construction site efficiency and safety through YOLOv5-based object detection.

The meticulous data cleaning process undertaken in this study ensures that the dataset is 
optimized for training a highly effective and accurate YOLOv5 model. By focusing on relevance, 
diversity, accuracy, and quality, the cleaned dataset lays a solid foundation for developing a 
robust object detection system capable of enhancing resource and equipment management on 
construction sites.

2.4. Image Preprocessing

Data cleaning is Image preprocessing is a pivotal phase in preparing the dataset for the training 
of a YOLOv5-based object detection model, aimed at enhancing construction site efficiency and 
safety [14]. This stage involves several key processes designed to improve the quality of the 
images and their suitability for model training. The goal is to standardize the dataset, enhancing 
the model's ability to learn from the images and accurately detect and classify various objects 
under different conditions on construction sites.

To ensure consistency and optimize processing efficiency, all images in the dataset were 
resized to a uniform dimension recommended for YOLOv5 training. This standardization is 
crucial for maintaining computational efficiency and ensuring that the model receives input 
images  of  a  consistent  size,  which  is  vital  for  the  internal  architecture  of  the  CNN 
(Convolutional Neural Network) used in YOLOv5.



Given the variability of lighting conditions on construction sites, images in the dataset were 
adjusted for brightness and contrast to simulate a wide range of environmental conditions. This 
step is essential for training the model to perform reliably in different lighting scenarios, from 
bright sunlight to overcast or poorly lit conditions. By adjusting the brightness and contrast, the 
model  is  better  equipped  to  recognize  and  classify  objects  regardless  of  the  lighting 
environment.

Image normalization was applied to scale pixel values to a standard range, typically between 
0  and  1.  This  process  helps  in  reducing  the  variance  among  images  and  speeds  up  the 
convergence of the model during training. Normalization ensures that the model treats each 
image uniformly, improving the learning efficiency and stability of the YOLOv5 model.

To  further  enhance  the  robustness  of  the  model,  data  augmentation  techniques  were 
employed.  These  included  rotations,  translations,  flipping,  and  scaling  of  images.  Data 
augmentation introduces variability into the training dataset, simulating a broader range of 
scenarios that the model might encounter in real-world applications. This approach helps in 
preventing overfitting and improves the model's generalization capabilities.

Considering the importance of color information in identifying and classifying construction 
equipment, tools, and vehicles, some images were converted into different color spaces (e.g.,  
HSV or LAB) as part of the augmentation process. This conversion allows the model to learn 
from a wider variety of color distributions, enhancing its ability to detect objects across different 
environmental conditions and backgrounds [15].

After completing the preprocessing steps, the dataset was compiled into a format suitable for 
training the YOLOv5 model.  This involved organizing the images and their corresponding 
annotations (labels) into training, validation, and test sets. The division of the dataset allows for 
comprehensive training and evaluation of the model's performance, ensuring its effectiveness in 
enhancing construction site efficiency and safety.

Through meticulous image preprocessing, the study ensures that the dataset is optimized for 
training the YOLOv5 model. By focusing on image quality, consistency, and variability, the 
preprocessing steps lay a solid foundation for developing an object detection system capable of 
accurately identifying and classifying objects in diverse conditions encountered on construction 
sites.

2.5. Image Labeling

Image labeling is a critical step in the development of a YOLOv5-based object detection model 
for improving construction site efficiency and safety. This process involves annotating images 
with labels that accurately describe the objects present, their categories, and their states (e.g., 
idle or active). For this study, Label Studio, a versatile tool for annotating images for machine 
learning applications, was employed to facilitate the labeling process.

Label Studio was chosen for its user-friendly interface and flexibility in handling various 
types of annotations, including bounding boxes, which are essential for object detection tasks. 
Its compatibility with a wide range of data types and export formats makes it an ideal choice for 
projects requiring detailed and accurate annotations.

Based on the study's focus on construction site management, specific classes and states were 
defined for labeling:



 Equipment Utilization. Classes included bulldozers, concrete mixers, and generators, 
with states designated as idle or active.

 Tool  and  Machinery  Tracking.  Classes  encompassed  hand  drills,  power  saws, 
jackhammers, and welding machines, with annotations indicating whether they were in 
use or stored.

 Vehicle Recognition.  Classes covered cranes, dump trucks, excavators, and cement 
trucks, with states reflecting loading activities, digging, pouring concrete, or being idle.

To ensure consistency and accuracy in the labeling process,  comprehensive annotation 
guidelines were developed. These guidelines provided detailed instructions on how to identify 
and label each class and state, including how to draw bounding boxes around objects and the 
level of detail required in annotations. The guidelines emphasized the importance of precision in 
bounding box placement to ensure the model learns the exact dimensions and features of each 
object.

A team of annotators was trained using the developed guidelines to ensure a uniform 
understanding of the labeling task. This training included practical exercises in Label Studio, 
focusing on accurately identifying objects, selecting the correct labels, and drawing bounding 
boxes. Regular review sessions were held to address any inconsistencies and refine the labeling 
process.

To maintain high-quality annotations, a two-step review process was implemented. Initially, 
each labeled image was reviewed by a senior annotator for accuracy and adherence to the 
guidelines. Following this, a random sample of the annotations was audited by the project lead 
to ensure overall quality and consistency across the dataset.

Upon completion of the labeling process, the annotated data were exported from Label 
Studio in a format compatible with YOLOv5 training requirements. This included the images 
and their corresponding labels (bounding box coordinates and class identifiers), organized in a 
manner that facilitates efficient model training and evaluation.

Through  meticulous  image  labeling  using  Label  Studio,  this  study  established  a 
comprehensive and accurately annotated dataset for training the YOLOv5 model. The detailed 
annotations provide the model with the necessary information to learn the characteristics of 
various construction site  objects,  enabling effective detection and classification crucial  for 
enhancing site safety and resource management.

2.6. Splitting Data

In our study, the comprehensive dataset was meticulously divided using a random selection 
process into three distinct subsets: 70% for training, 20% for validation, and 10% for testing. This 
division resulted in a training set comprising 1,897 images of construction equipment, tools, and 
vehicles in various operational states, including 1,610 images of active and idle machinery 
instances and 287 images highlighting tool and machinery tracking scenarios. The validation set 
included 542 images,  with 460 images  dedicated to  equipment  and vehicle  recognition in 
different states and 82 images focusing on tool and machinery tracking. Lastly, the test set 
consisted  of  271  images,  with  230  images  showcasing  equipment  and  vehicles  in  diverse 
operational  conditions  and  41  images  for  the  evaluation  of  tool  and  machinery  tracking 
performance. This structured approach to dataset allocation ensures a balanced representation 



of  all  classes  and  states,  facilitating  a  comprehensive  assessment  of  the  YOLOv5 model's 
capability to enhance construction site efficiency and safety through advanced object detection.

2.7. Testing and Evaluation

To  rigorously  test  and  evaluate  the  performance  of  the  proposed  YOLOv5-based  object 
detection model for enhancing construction site efficiency and safety, imagery data collected 
from a local  construction site  using CCTV cameras were utilized.  The evaluation process 
focused on measuring the accuracy and reliability of the model in detecting and classifying 
various construction-related objects, employing Intersection over Union (IoU) and a confusion 
matrix as the primary metrics.

2.7.1. Intersection over Union (IoU)

IoU is a critical metric in object detection that quantifies the accuracy of the predicted bounding 
box against the ground truth (actual) bounding box. It is calculated as the area of overlap 
between the predicted and actual bounding boxes divided by the area of their union. The IoU 
value ranges from 0 to 1, where 0 indicates no overlap and 1 signifies perfect alignment between 
the predicted and actual bounding boxes. The equation for IoU is given by:

IoU=areaof overlap
areaof∪¿ ,¿

(1)

where areaof overlap is the area where the predicted bounding box and the actual (ground 
truth)  bounding  box  overlap;  areaof∪¿ is  the  total  area  covered  by  both  the  predicted 
bounding box and the  actual  bounding box,  minus  the  area  of  overlap.  It  represents  the 
combined area of both boxes where either box has coverage.

2.7.2. Confusion Matrix

The confusion matrix is a tool that helps visualize the performance of the object detection 
model. It categorizes the predictions into four types: true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN). From the confusion matrix, several performance 
metrics can be derived, including precision, recall, and mean average precision (mAP).

Precision measures the model's accuracy in predicting positive observations and is defined as 
the ratio of TP to the sum of TP and FP. It indicates the reliability of the model's positive 
detections. The equation for Precision is given by:

Precision= TP
TP+FP

= TP
all detections

,
(2)

where TP are the true positive predictions; FP are the false positive predictions.
Recall assesses the model's sensitivity or its ability to correctly identify all relevant instances. 

It is calculated as the ratio of TP to the sum of TP and FN. The equation for Recall is given by:

Recall= TP
TP+FN

,
(3)



where FN  are the false negative predictions.
Mean Average Precision (mAP) is used to evaluate the model's accuracy across all classes 

within the dataset. It is the mean of the average precision (AP) scores for each class, where AP is 
computed as the weighted sum of precisions at each threshold, with the increase in recall from 
the previous threshold used as the weight. The equation for mAP is given by:

mAP=1
n
∙∑
k=1

n

APk ,
(4)

where  n is the total number of classes in the dataset;  AP is calculated for each class and 
represents  the  precision  at  different  recall  levels.  It  takes  into  account  the  order  of  the 
predictions, rewarding models that return true positives earlier. The equation of AP is given by:

AP=∑
k=0

n−1

[Recall (k )−Recall(k+1)] ∙ Precision(k ) ,
(5)

where k  is the index used to sum over a sorted list of objects, thresholds, or intervals.
The proposed model was evaluated using the described metrics on the dataset split into 

training, validation, and test sets. The IoU threshold was set to 0.5, a common practice in object 
detection tasks, to determine whether a detection is considered a true positive. The precision, 
recall,  and  mAP values  were  calculated  based  on  the  outcomes  of  the  confusion  matrix, 
providing a comprehensive assessment of the model's performance in accurately detecting and 
classifying objects on construction sites.

This rigorous testing and evaluation process ensures that the YOLOv5-based model is not 
only accurate in identifying construction site objects but also reliable and effective in real-world 
scenarios,  contributing  significantly  to  the  improvement  of  construction  site  safety  and 
efficiency.

3. Results

The model underwent training for 30 epochs on the dataset comprising construction equipment, 
tools,  and  vehicles,  with  a  batch  size  set  at  16.  The  training  process  was  completed  in 
approximately  23  minutes  utilizing  a  Google  Colab  GPU.  Figure  3  illustrates  the  model's 
performance  across  the  training  phase  for  the  construction  equipment  and  tools  dataset, 
showcasing the metrics of precision, recall, and mAP at the 50 IoU threshold.

Figure 3: Performance of YOLOv5 during the training phase with the Vehicle Recognition 
dataset: (a) precision, (b) recall, and (c) mAP at the 50 IoU threshold.



The performance of YOLOv5 on the validation dataset, which included images of classes, is 
summarized in Table 2. The model achieved an overall precision of approximately 88%, a recall 
of 79%, and a mAP at the 50 IoU threshold of 85%.

Table 2
Validation results on the different classes



4. 

Conclusion

Thus,  the  implementation  of  the  YOLOv5-based  object  detection  model  for  enhancing 
construction site efficiency and safety has demonstrated significant potential in revolutionizing 
the management of resources and equipment. Through meticulous training, validation, and 
testing processes, the model has shown high accuracy in detecting and classifying various 
construction-related objects, including equipment in idle and active states, tools, and vehicles, 

Object number Class name Precision Recall mAP-05

1 IB 0.871 0.756 0.814

2 AB 0.884 0.722 0.802

3 ICM 0.851 0.705 0.781

4 ACM 0.866 0.747 0.825

5 IG 0.842 0.712 0.797

6 AG 0.898 0.734 0.832

7 HD 0.811 0.696 0.751

8 PS 0.838 0.725 0.777

9 J 0.852 0.746 0.802

10 WM 0.828 0.709 0.766

11 CL 0.872 0.757 0.828

12 CI 0.864 0.739 0.818

13 DTL 0.886 0.720 0.845

14 DTE 0.844 0.714 0.785

15 ED 0.855 0.742 0.793

16 EI 0.832 0.702 0.761

17 CTP 0.892 0.761 0.850

18 CTI 0.807 0.681 0.743



directly contributing to improved operational efficiency and safety measures on construction 
sites. 

The model's training over 30 epochs, utilizing a dataset meticulously prepared with images of 
construction equipment, tools, and vehicles, resulted in a final precision of 0.852, a recall of 
0.723, and a mAP_0.5 of 0.792. These metrics underscore the model's capability to accurately 
identify  and  classify  objects,  which  is  crucial  for  real-time  monitoring  and  management 
applications. The high performance across different classes, particularly in vehicle recognition 
and equipment utilization, highlights the model's versatility and effectiveness in addressing the 
dynamic needs of construction site management.

The validation and testing phases further affirmed the model's reliability, with precision and 
recall rates consistently above 85% and 79%, respectively, across various object categories. This 
level of accuracy ensures that the model can serve as a dependable tool for construction site 
managers, enabling them to make informed decisions based on real-time data regarding the 
status and location of tools, machinery, and vehicles.

In  conclusion,  the  YOLOv5-based  object  detection  model  represents  a  significant 
advancement in leveraging computer vision and deep learning technologies for construction 
site management. By providing a robust solution for real-time detection and classification of 
construction resources and equipment, the model paves the way for smarter, safer, and more 
efficient construction site operations. Future work will focus on further refining the model's 
accuracy,  exploring  its  integration  with  other  technological  solutions,  and  expanding  its 
application to a broader range of construction site scenarios, ultimately contributing to the 
ongoing digital transformation of the construction industry.
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