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Abstract 
This study investigates the performance of Continuous Processing mode in Apache Spark 
Structured Streaming, with a focus on its application in scenarios where low latency is a key 
requirement (such as traffic incident reporting or stock price prediction). Unlike the traditional 
micro-batching method, which processes data in intervals, the Continuous Processing mode allows 
for near-real-time data analysis by handling streams as they arrive. This approach significantly 
reduces latency, making it ideal for time-sensitive applications, but it does come with trade-offs in 
terms of throughput and fault tolerance. We conducted a comparative analysis of Continuous and 
micro-batching modes using various configurations and benchmarks, with a focus on latency and 
throughput metrics. Our findings indicate that while the Continuous Processing mode offers 
significantly lower latencies while using Rate source (2 ms instead of 528 ms in micro-batch mode), 
its performance in high-throughput scenarios using Kafka source may be less consistent (260 ms in 
contrast to 197 ms in micro-batch mode). The study also explores the practical implications of 
deploying Continuous Processing mode in real-world applications, assessing its compatibility with 
different data sources and sinks, predominantly Apache Kafka. These findings have practical 
implications for optimizing text data flow strategies in big data analytics, providing insights that 
can guide the selection of processing modes based on specific operational needs. 
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1. Introduction 

Apache Spark 2.3 marked a significant evolution in the capabilities of Spark Structured 
Streaming by introducing a new mode known as Continuous Processing. Traditional Spark 
streaming had relied predominantly on micro-batching techniques, which process data in 
discrete intervals, combining streaming-like throughput with batch processing's fault 
tolerance and manageability benefits [1,2]. However, for scenarios demanding ultra-low 
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latency, micro-batching could introduce inherent delays incompatible with time-critical 
applications, such as traffic anomalies detection. 

Continuous Processing in Apache Spark Structured Streaming represents a paradigm shift 
from the traditional micro-batching execution strategy. While micro-batching processes data 
in discrete chunks, Continuous Processing treats streams as proper continuous flows, 
reducing latency substantially. This is achieved by utilizing long-lived operators that maintain 
their state across data batches rather than resetting for each batch as in micro-batching. This 
approach minimizes the overhead caused by frequent stopping and starting task executions, 
which is typical in micro-batch processing. 

The execution strategy of Continuous Processing is designed around the concept of 
pipelines akin to traditional database streaming models. These pipelines utilize long-lived 
tasks that continuously receive and process data as it arrives without the predefined intervals 
that characterize micro-batching. This model allows Continuous Processing to deliver lower 
latency by reducing the delays associated with batching. 

As of the latest release of Apache Spark, version 3.5.1, Continuous Processing is still 
labeled as experimental [3]. This designation implies that while the functionality is available 
for use, it is not yet fully optimized and may lack some robustness features integral to micro-
batching. Furthermore, the integration of Continuous Processing with various data sources 
and sinks is currently limited to Apache Kafka, Console Sink, and Rate Source. 

The limited support for diverse sources and sinks means that deploying Continuous 
Processing in a production environment requires careful consideration of the input and output 
interfaces. For organizations heavily using Kafka, Continuous Processing offers a promising 
opportunity to enhance the responsiveness of their streaming applications. However, for use 
cases involving other sources or more complex transactional needs, the experimental nature 
and the current limitations might pose significant challenges. 

The ongoing development and incremental improvements in Continuous Processing 
suggest that future releases of Spark may expand its capabilities and integrations. Developers 
and organizations interested in cutting-edge streaming technologies should monitor updates 
to Spark’s Continuous Processing mode, as it will likely evolve significantly. 

This paper analyzes these two processing modes within Apache Spark Structured 
Streaming, focusing on their performance implications across various setups and 
deployments. By examining several workloads, this study aims to delineate the conditions 
under which Continuous Processing significantly outperforms micro-batching and, 
conversely, when micro-batching remains preferable. 

2. Related Works 

Armbrust et al. [4] provided a general analysis of Continuous Processing mode and researched 
the relationship between latency and throughput. The paper also provided information about 
the scalability of micro-batching mode, showing Structured Streaming’s throughput 
depending on the number of worker nodes. However, despite discussing the architectural 
difference between micro-batching and Continuous Processing modes, they were not directly 
compared regarding latency and throughput given the same resources. 

Other works primarily focus on using micro-batching mode [5] or comparing it with other 
data stream processing frameworks, such as Kafka Streams, Storm, Flink, etc. [6,7]. Van 



Dongen and Van Den Poel conducted the most extensive benchmarking, presenting an open-
source benchmark implementation that can measure latency and throughput under different 
workloads, such as sustainable and bursts [8]. 

In the paper [8], the Continuous Processing mode was mentioned a few times as a lower-
latency alternative to micro-batching, but it was discarded because of its experimental status. 
The authors later expanded the list of measured metrics by publishing papers on the 
scalability and fault tolerance of data stream processing frameworks [9,10].  

3. Proposed methodology 

The proposed methodology uses micro-batching and Continuous Processing to compare 
latency and throughput under different configurations. The benchmarking process uses a 
pipeline with either a rate source or a Kafka source as input, transforming the timestamp and 
value into a JSON string, and a Kafka sink as the output. 

Key components of the method include input sources, which involve testing the rate 
source at 10 and 100 records per second (rps) and using a Kafka source that utilizes text data 
from a Ukrainian Wikipedia corpus. The output sink is configured with a Kafka sink, which 
maps the message’s timestamp into the payload as a “new_timestamp” field to measure each 
record's latency. Spark configuration tests are conducted in local mode with 3 and 16 workers, 
and each benchmark is executed for 2 minutes. Additionally, the number of partitions for 
Kafka topics (both source and sink) is adjusted to evaluate its impact on throughput and 
latency. 

The proposed methodology aims to identify the optimal configuration for both micro-
batching and Continuous Processing modes by systematically varying the number of records 
per second, worker nodes, and Kafka partitions. This approach helps understand each 
processing mode's limitations and performance characteristics under different loads. The final 
configurations are presented in Table 1. 

Table 1 
Initial benchmarking configurations 

Source Workers Mode Sink 
Rate (10 rps) 3 Micro-batch Kafka 
Rate (10 rps) 3 Continuous Kafka 
Rate (100 rps) 16 Micro-batch Kafka 
Rate (100 rps) 16 Continuous Kafka 

Kafka 3 Micro-batch Kafka 
Kafka 3 Continuous Kafka 
Kafka 16 Micro-batch Kafka 
Kafka 16 Continuous Kafka 

 
After running the initial benchmarking and analyzing the results, it was suggested that the 

default number of partitions in the Kafka topic might influence Spark's throughput and 
latency. It was decided to include parametrization of this number to exclude the possibility of 
Kafka being the bottleneck in the benchmarking process. The configurations for 
benchmarking different Kafka topic partition count are presented in Table 2. 



Table 2 
Kafka topic partition count benchmarking configurations 

Source Kafka 
partitions 

Workers Mode 

Kafka 3 3 Continuous 
Kafka 16 16 Continuous 
Kafka 48 16 Continuous 

 
To develop an understanding of at what rates continuous processing becomes unreliable, 

another set of benchmarks focused on how continuous and micro-batch processing handle 
different loads in test conditions, which could provide a controlled throughput rate, was 
decided to perform. 

The resulting configurations for performing sustainable throughput benchmarks included 
comparing micro-batching and continuous modes, using rate source at 10 - 10 000 rows per 
second, 3 and 16 worker nodes, and writing into Kafka topics with 3 – 32 partitions, with the 
number of Spark partitions equal to Kafka’s. 

The total number of configurations was 64, but some configuration executions were 
canceled during the benchmarking process to make readjustments, as clear patterns have 
emerged, rendering some of the unperformed configurations worthless. The list of 
configurations in the stage 2 benchmark is presented in Table 3. 

Table 3 
Sustainable throughput benchmarking configurations 

Sources Workers Partitions Mode Status 
Rate (10 rps) 3/16 3/10/16/32 micro-batch/continuous Performed 
Rate (100 rps) 3/16 3/10/16/32 micro-batch/continuous Performed 

Rate (1 000 rps) 3/16 3/10 micro-batch/continuous Performed 
Rate (1 000 rps) 3/16 16/32 micro-batch/continuous Canceled 
Rate (10 000 rps) 3/16 3/10/16/32 micro-batch/continuous Canceled 

 
After observing the results of sustainable throughput benchmarks, it was decided to 

expand the research by decoupling the Spark partition count from the Kafka partition count to 
see if further improvements could be made. The benchmarking configurations are provided in 
Table 4. 

Table 4 
Decoupled Spark/Kafka partition count benchmarking configurations 

Sources Spark 
Partitions 

Kafka 
Partitions 

Mode 

Rate (1 000 rps) 32 16 micro-batch 
Rate (1 000 rps) 64 16 micro-batch 
Rate (1 000 rps) 16 16 micro-batch 
Rate (1 000 rps) 16 32 micro-batch 
Rate (1 000 rps) 16 64 micro-batch 



Rate (10 000 rps) 16 16 micro-batch 
Rate (10 000 rps) 16 32 micro-batch 
Rate (10 000 rps) 16 64 micro-batch 
Rate (1 000 rps) 3 16 continuous 
Rate (1 000 rps) 10 16 continuous 
Rate (1 000 rps) 16 3 continuous 
Rate (1 000 rps) 16 10 continuous 
Rate (1 000 rps) 16 16 continuous 
Rate (10 000 rps) 16 3 continuous 
Rate (10 000 rps) 16 10 continuous 
Rate (10 000 rps) 16 16 continuous 

 

4. Results 

After setting up and running initial benchmarks on modern versions of Kafka and Spark 
(Kafka 3.7.0, released February 27, 2024; and Spark 3.5.1, released February 23, 2024), the 
results showed that continuous processing mode showed significantly lower latency when 
using the rate source while maintaining the same throughput. However, when using the 
Kafka source, continuous processing mode showed worse latency and throughput rates than 
micro-batch mode. 

This surfaced a flaw in initial benchmarking configurations, as Kafka produced much 
higher throughput than expected, so rate source benchmarks should have been adjusted to 
match Kafka throughput rates. 

Also, continuous processing mode's loss in latency to micro-batching indicated that 
continuous mode is not running optimally and suggested that high volumes of Kafka 
throughput may overflow the Spark application’s ability to process the data promptly, 
disrupting latencies. The initial benchmarking results are presented in Table 5. 

Table 5 
Initial benchmarking results 

Benchmark Throughput 
(rps) 

Mean 
latency 

(ms) 

50p 
latency 

(ms) 

75p 
latency 

(ms) 

99p 
latency 

(ms) 
Rate (10 rps), 3 

workers, micro-batch 
10 572.79 613 820 1 030 

Rate (10 rps), 3 
workers, continuous 

10 2.0 0 1 2 

Rate (100 rps), 16 
workers, micro-batch 

99 528.33 528 778 1 018 

Rate (100 rps), 16 
workers, continuous 

100 3.12 0 0 2 

Kafka, 3 workers, 
micro-batch 

119 896 388.78 138 393 2 165 

Kafka, 3 workers, 32 776 57 219.35 58 824 82 833 105 997 



continuous 
Kafka, 16 workers, 

micro-batch 
116 258 197.36 73 104 1496 

Kafka, 16 workers, 
continuous 

33 320 55 447.06 55 496 81 386 104 553 

 
Three additional configurations for Kafka source were performed to validate if the number 

of Kafka topic partitions impacted bad continuous processing performance, the results of 
which are shown in Table 6. 

None of those configurations performed significantly better than the initial ones, proving 
that despite working with a possibly non-optimal number of Kafka topic partitions, the reason 
for bad continuous processing performance may be related to other issues, such as throughput 
overflow. 

Table 6 
Additional Kafka source benchmarking results 

Benchmark Throughput 
(rps) 

Mean 
latency 

(ms) 

50p 
latency 

(ms) 

75p 
latency 

(ms) 

99p 
latency 

(ms) 
Kafka (3 partitions), 3 
workers, continuous 

30 757 56 338.7 57 095 82 433 106 619 

Kafka (16 partitions), 
16 workers, 
continuous 

29 641 57 040.19 57 881 83 241 107 732 

Kafka (48 partitions), 
16 workers, 
continuous 

29 861 46 237.82 46 959 67 974 87 808 

 
When analyzing the sustainable throughput benchmarking results of the micro-batching 

mode shown in Figure 1, benchmarks of 3-worker Spark are similar to 16-worker Spark, 
which infers that Structured Streaming micro-batch mode works well as long as number of 
Spark’s partitions matches the number of Kafka’s partitions. Also, there is a noticeable 
correlation between micro-batch mode latency, which gets slightly better with an increase in 
throughput but remains in the range from 510 to 570 ms. 



 

Figure 1: Throughput and latency results of the micro-batching mode using a rate source and 
a Kafka sink, with the Kafka partition count matching the Spark partition count. 

 

Figure 2: Throughput and latency results of the continuous processing mode using rate 
source and Kafka sink, with Kafka partition count matching Spark partition count. 

On the other hand, results presented in Figure 2 clearly show that the continuous 
processing mode is much more sensitive to Spark’s configuration. Despite generally having 
sub-millisecond latency (except the configuration with 10 rps and 3 partitions, where the 
average latency reaches over 2 ms), its throughput suffers greatly from configurations where 
the number of partitions exceeds the number of workers. 

As a result, it is important to analyze existing worker count and partition count 
configurations when transitioning from micro-batching mode to continuous processing, as 



continuous processing launches long-running tasks, which continuously work with a single 
partition. Therefore, not having enough tasks will leave some partitions unprocessed, which 
may lead to substantial data loss that may be mistaken as a throughput drop. 

 

Figure 3: Throughput and latency results of the micro-batching mode with varying Kafka and 
Spark partition counts. 

After observing the benchmark results depicted in Figures 1 and 2, it was decided to 
expand the research by decoupling the Spark partition count from the Kafka partition count to 
see if further improvements could be made. Results of micro-batching mode benchmarking 
are shown in Figure 3, and continuous mode in Figure 4. 

 

Figure 4: Throughput and latency results of the continuous processing mode with varying 
Kafka partition count matching Spark partition count. 



Throughput and latencies did not significantly change, and for further benchmarks, 16 
Spark partitions and 16 Kafka partitions were decided to be the most suitable configurations 
for both micro-batching and continuous modes. However, during the benchmark for 
continuous mode at a rate source set to 10 000 rps, the throughput resulted in 16 000 rps, and 
after investigating the issue, it was concluded that the rate source might be unreliable starting 
at 10 000 rps for continuous processing mode. Additional tests in the 1 001 – 9 999 rps range 
were not performed, so the reliability of the rate source at that throughput level is 
questionable. 

The instability of the rate source for continuous processing was further confirmed by 
conducting a benchmark for 100 000 rps, where micro-batching mode showed 100 000 rps and 
continuous mode showed 1 063 758 (more than one million) rps, which exceeds the expected 
throughput by ten times. The investigation established that the issue does not arise from at-
least-once delivery guarantees, as no duplicate record values were present in the Kafka sink, 
meaning each record was unique. Average latencies concluded 537 milliseconds at 100 000 
records/s for micro-batch and 41 297 milliseconds at 1 063 758 records/s for continuous mode. 

After doing comprehensive research on the rate source and tuning optimal parameters for 
continuous processing, the last benchmark was attempted to once again measure continuous 
mode latencies in a simulation close to a real-world use case. Because of bad continuous 
processing mode performance on high workload levels, the file source in Kafka Connect was 
replaced by a custom script that implements rate-limiting data read from a corpus on a row 
count basis. The benchmark was executed on 1 000, 10 000, and 100 000 rps, with partition 
count in both Kafka and Spark set to 16, with 16 workers. Benchmarking results are provided 
in Table 7. 

Table 7 
Kafka source and sink benchmark for continuous processing 

Benchmark Throughput 
(rps) 

Mean 
latency (ms) 

50p latency 
(ms) 

75p latency 
(ms) 

99p latency 
(ms) 

Kafka, 1 000 rps 1 025 555.36 528 531 3 178 
Kafka, 10 000 rps 10 238 260.24 104 136 3 351 
Kafka, 100 000 rps 24 877 13 156.56 12 315 18 289 24 446 

 
The results have shown that given adjusted parameters for continuous processing mode 

and rate-limited throughput to 100 000 rps, the throughput got worse by around 20% while 
improving the mean latency by around 310%. Rate-limiting source to 10 000 rps produced a 
mean latency of 260 ms, the lowest latency achieved for a Kafka source in continuous mode in 
the scope of this research. 

5. Conclusion 

Spark Structured Streaming’s Continuous Processing mode prioritizes low-latency data 
processing, offering users a strategic choice between optimizing throughput and minimizing 
latency. The platform's use of a declarative API simplifies the construction of robust data 
pipelines and allows for relatively straightforward toggling between micro-batch and 
continuous modes. This flexibility is advantageous as it requires minimal code changes, 



making it accessible for users to adjust their processing strategies based on evolving data 
requirements or operational objectives. 

The methodology that was proposed in the paper involved creating a simple pipeline 
supported by micro-batching and continuous processing modes in Apache Spark, using two 
data sources – Rate source and Kafka topic containing text data from Ukrainian Wikipedia – 
and varying sources throughput, number of Kafka partitions, and number of Spark workers in 
order to measure Spark’s throughput and latency. 

The results have shown that transitioning between these modes is not merely a matter of 
code adaptation; it often necessitates tailored adjustments to the Spark configuration. This is 
due to the inherent architectural distinctions between how micro-batch and continuous 
processing modes manage data flows and system resources. Each mode is optimized for 
different aspects of streaming analytics, with micro-batch providing robustness and fault 
tolerance and continuous processing focusing on reducing processing time to the minimum. 
The lowest mean latencies achieved for continuous processing mode was 2 ms using rate 
source (in contrast to 528 ms in micro-batch mode) and 260 ms using Kafka source (in contrast 
to 197 ms in micro-batch mode). 

Furthermore, continuous processing mode must be carefully managed to balance the 
inherent trade-offs between latency and throughput. In scenarios where the data inflow 
exceeds the system's processing capacity, there is a significant risk of increased latency, 
contradicting the primary goal of this mode. Therefore, continuous mode is not universally 
superior; its effectiveness is contingent upon the specific characteristics and demands of the 
workload. Conducting thorough performance evaluations, including stress testing under peak 
data loads, is essential to ensure that the system remains performant and that latency stays 
within acceptable bounds. 

To fully leverage the potential of Continuous Processing mode in Spark Structured 
Streaming, developers and system architects need to fine-tune configurations and regularly 
monitor system performance. This proactive approach ensures that the streaming process 
remains efficient and aligns with their applications' latency and throughput requirements. 
Ultimately, the choice between micro-batch and continuous processing modes should be 
informed by a comprehensive understanding of the trade-offs involved and a strategic 
assessment of the application’s operational priorities.  

6. Limitations and Further Research 

Further research could be conducted to reach sub-millisecond latencies in the Kafka source 
instead of the rate source. The relation between Kafka topic message format (Avro, JSON, 
Protobuf, etc.) and Continuous Processing latency may be investigated. Also, as the 
benchmarks were conducted on one machine to eliminate possible latency overheads from the 
networking side, benchmarks could be tested on standalone clusters. Benchmarking pipelines 
with user-defined functions (UDFs) and MLlib also could be an interesting topic for extending 
research. 



References 

[1] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, S. Khan, A Survey of 
Distributed Data Stream Processing Frameworks, in: IEEE Access, vol. 7, pp. 154300-
154316, 2019, doi: 10.1109/ACCESS.2019.2946884.  

[2] E. Mehmood, T. Anees, Challenges and Solutions for Processing Real-Time Big Data 
Stream: A Systematic Literature Review, in: IEEE Access, vol. 8, pp. 119123-119143, 2020, 
doi: 10.1109/ACCESS.2020.3005268. 

[3] J. Torres, M. Armbrust, T. Das, S. Zhu, Introducing Low-latency Continuous Processing 
Mode in Structured Streaming in Apache Spark 2.3, 2018. 
URL: https://www.databricks.com/blog/2018/03/20/low-latency-continuous-processing-
mode-in-structured-streaming-in-apache-spark-2-3-0.html. 

[4] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and M. 
Zaharia, Structured Streaming: A Declarative API for Real-Time Applications in Apache 
Spark, in: Proceedings of the 2018 International Conference on Management of Data 
(SIGMOD '18). Association for Computing Machinery, New York, NY, USA, 2018, pp. 
601–613. URL: https://doi.org/10.1145/3183713.3190664. 

[5] Y. Drohobytskiy, V. Brevus, Y. Skorenkyy, Spark Structured Streaming: Customizing 
Kafka Stream Processing, in: 2020 IEEE Third International Conference on Data Stream 
Mining & Processing (DSMP), Lviv, Ukraine, 2020, pp. 296-299, doi: 
10.1109/DSMP47368.2020.9204304.  

[6] H. Mcheick, Y. D. F. Petrillo, S. Ben-Ali, Quality Model for Evaluating and Choosing a 
Stream Processing Framework Architecture, in: 2019 IEEE/ACS 16th International 
Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab 
Emirates, 2019, pp. 1-7, doi: 10.1109/AICCSA47632.2019.9035283.  

[7] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, V. Markl, Benchmarking 
Distributed Stream Data Processing Systems, in: 2018 IEEE 34th International Conference 
on Data Engineering (ICDE), Paris, France, 2018, pp. 1507-1518, doi: 
10.1109/ICDE.2018.00169. 

[8] G. Van Dongen, D. Van den Poel, Evaluation of Stream Processing Frameworks, in: IEEE 
Transactions on Parallel and Distributed Systems, vol. 31, no. 8, pp. 1845-1858, 1 Aug. 
2020, doi: 10.1109/TPDS.2020.2978480.  

[9] G. Van Dongen, D. Van den Poel, A Performance Analysis of Fault Recovery in Stream 
Processing Frameworks, in: IEEE Access, vol. 9, pp. 93745-93763, 2021, doi: 
10.1109/ACCESS.2021.3093208.  

[10] G. Van Dongen, D. Van den Poel, Influencing Factors in the Scalability of Distributed 
Stream Processing Jobs, in: IEEE Access, vol. 9, pp. 109413-109431, 2021, doi: 
10.1109/ACCESS.2021.3102645. 


