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Abstract 
This study is devoted to modeling the behavior of autonomous robotic systems using reinforcement 
learning (RL) methods. With the rapid development of robotics, computing, artificial intelligence, and 
machine learning,  it  is  becoming increasingly important to develop new approaches that allow 
autonomous robots to adapt to dynamic and unpredictable environments. Unlike traditional control 
methods, RL allows robots to autonomously learn optimal strategies through interaction with the 
environment, receiving rewards for correct actions and penalties for mistakes. This study discusses 
the key components and challenges of applying RL in real robotic systems, including environmental 
complexity, efficient modeling, and scalability. The study also presents a neural network model 
specifically designed for robotic agents and demonstrates its effectiveness through simulations. The 
results  confirm  that  RL-based  models  significantly  increase  the  adaptability  and  reliability  of 
autonomous robots in achieving predefined goals, such as obstacle avoidance and target navigation. 
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Introduction 
The behavior of autonomous robotic systems is one of the most promising and challenging 

tasks of modern science and technology. The rapid development of technologies in the field of 
robotics,  computing,  artificial  intelligence,  and  machine  learning  is  contributing  to  the 
emergence of  new methods and approaches to solve problems related to the autonomous 
operation  of  robots  in  the  real  world.  Modern  robots  must  not  only  execute  predefined 
commands  but  also  adapt  their  behavior  to  environmental  conditions,  make  decisions  in 
complex and unpredictable situations, while ensuring high accuracy, reliability, and safety [1]. 
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One of the key approaches to achieving this goal is the use of RL reinforcement learning 
methods [2]. Reinforcement learning allows robots to independently learn optimal behavioral 
strategies through interaction with the environment, receiving rewards for correct actions and 
penalties for mistakes.  

The essence of reinforcement learning is that the agent does not have predefined rules or 
behavioral patterns [3]. Instead, it gradually accumulates knowledge about the environment, 
determining which actions are best for achieving goals. The importance of this approach lies in 
the ability of agents to adapt to changing conditions, which cannot be achieved using traditional 
programming methods. 

In  the  context  of  autonomous  robotic  systems,  reinforcement  learning  is  of  particular 
importance because it allows robots to interact with the physical world, taking into account its 
dynamism and uncertainty [4]. For example, autonomous vehicles must not only follow traffic 
rules, but also take into account the behavior of other road users, changes in weather conditions, 
and road conditions.  

Classical approaches to robot control [5], such as hard-coded rules or scheduling algorithms, 
are often insufficient in complex dynamic environments. This is because realworld conditions 
may differ significantly from those planned at the stage of algorithm development. This is where 
reinforcement learning demonstrates its advantage, as the robot can learn from its own mistakes 
and improve its behavioral strategy based on feedback. 

The  application  of  reinforcement  learning  to  robotic  systems  also  contributes  to  the 
development of new methods and models of interaction with physical objects and people. For 
example, autonomous robots can learn to recognize facial expressions, gestures, or other signs 
that indicate human intentions and adjust their actions accordingly [6]. 

Despite the significant progress in reinforcement learning research, many aspects of this 
approach remain an active area of research[7]. One of the main challenges is the large number of 
iterations required to train agents in complex environments. Real-world robots often face time, 
resource, and safety constraints, so modeling environments and algorithms in simulations is an 
important part of research [8-11]. 

Thus, modeling the behavior of autonomous robotic systems using reinforcement learning is 
an important area of modern science that allows for the creation of more flexible, reliable, and 
adaptive systems [12]. This approach contributes to the development of artificial intelligence 
and robotics, making innovative solutions possible for many areas of our lives[13]. 

To  build  a  mathematical  model  of  the  behavior  of  autonomous  robotic  systems  using 
reinforcement learning methods, let us consider the main elements of this system. In general, RL 
is described as the interaction between an agent and the environment through the Markov 
Decision Process, MDP [14]. The Markov decision-making process is modeled as a five: 

V ( s )=max a¿ (1) 

′

 
Where 𝑉(𝑠) is the expected amount of remuneration for the state 𝑠; 𝑎 is  an action performed 

by an agent; 𝑅(𝑠, 𝑎) is remuneration received upon performance of an action 𝑎 in the state 𝑠; 𝛾 is discount factor (from 0 to 1), which reflects the importance of future remuneration; 𝑃(𝑠′|𝑠, 



𝑎) is is the probability of transition to the state 𝑠′ from the state 𝑠 when performing the action 𝑎; 𝑠′ is next state; . 
The main elements RL : 
Politics (𝜋) is an agent's strategy that determines what actions it performs in different states 

of the environment. 𝜋(𝑎|𝑠) = 𝑃(𝑎|𝑠) (2) 
 

where 𝜋(𝑎|𝑠) is probability of choosing an action 𝑎 in a state of 𝑠. The goal of reinforcement 
learning is to find the optimal policy 𝜋  that maximizes the expected reward for the agent. 

Q-learning method is one of the most common reinforcement learning algorithms. This 
method is based on updating the Q-function through the interaction of the agent with the 
environment:

Q ( s ,a )=Q ( s ,a )+a(r+γ maxQ ( s ' , a ' )−Q ( s ,a ))(3 )𝑎
where 𝑄(𝑠, 𝑎) is is the current value of the function 𝑄 for the state 𝑠 and action 𝑎. It represents 

an estimate of the expected long-term reward if you act from this state and perform the action 𝑎; 𝑎 is learning rate, which determines how much the new value affects the old one. It varies from 0 
to 1; 𝑟 is is the immediate reward that the agent receives after performing the action 𝑎 in the 
state  𝑠;  𝛾 is discount factor, which determines the importance of future remuneration. The 
values are  𝛾 also varies from 0 to 1;  𝑠′ is the next state the agent enters after the action is 

performed 𝑎;  is  the maximum value of the function 𝑄 for all possible actions 𝑎′  in 
the following state 𝑠′. This is the maximum expected reward that an agent can receive based on 
the state  𝑠′ and acting optimally; 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎) is  the difference between the new estimate 
and the current estimate, also known as the temporal difference error. 

The Q-learning algorithm is repeated until the Q-values are close to the optimal values. As a 
result, the agent can choose actions based on maximizing the Q-value. 

2.The main research 

The task: an autonomous robotic system, a robot agent, must perform certain actions in the 
environment in order to move to a given point, avoid obstacles, etc. The testing environment 
will be a simulation of the real world in which the robot operates. The environment 
determines the state in which the robot is located and the reward for each action it performs. 

Figure 1 shows a neural network model for modeling the behavior of autonomous robotic 
systems using Reinforcement Learning (RL) techniques. This diagram represents a simple 
neural network consisting of three main blocks: an input layer, a hidden layer, and an output 
layer. 
Let's analyze each of these blocks separately: 



Input Layer 

• Description: The input layer is the first layer of a neural network. It is responsible for 
receiving the input data. 

• Function: Each node (neuron) in this layer represents one input parameter or feature 
from the data set. For example, if a model uses five input parameters (such as sensor data 
or image pixels), there will be five nodes in this layer. 

• Transitions: The outputs of the input layer are passed to the hidden layer. Nodes in this 
layer usually have no activation functions. 

Hidden Layer 

• Description: This is an intermediate layer between the input and output layers. In this 
model, there is one hidden layer. 

• Function: The hidden layer processes the input data using the Rectified Linear Unit 
activation function. 

• Transitions: The output from the hidden layer goes to the output layer. Each node in the 
hidden layer processes the data it receives from the previous layer and passes it to the 
next one. 

Output Layer 

• Description: The output layer is the final layer in a neural network model. 
• Function: This layer is responsible for generating the final result or prediction. The 

number of nodes in the output layer depends on the task. For example, there may be two 
output nodes for a two-class classification, one for a regression. 

• Transitions: The output layer takes the data from the hidden layer and uses it to generate 
the final result by applying an activation function (e.g., Softmax for classification). 

There are arrows between all the layers that symbolize the transfer of data between them. 
These arrows show how data flows through the model sequentially: from the input layer to the 
hidden layer and finally to the output layer. The connections between layers are fully connected, 
which means that every node in one layer is connected to every node in the next layer. 

Input data arrives at the input layer, where it is passed to the hidden layer for processing. 
After processing, the output data is passed to the output layer, which generates the final result or 
prediction. 

 

Figure 1: A neural network model for an autonomous robotic system using reinforcement 
learning methods.  



The next step is to create the structure of the neural network. The development environment 
will be Pycharm, using the Python programming language and the 'PyTorch' library, we will 
write a neural network structure for modeling an autonomous robotic system, Figure 2. 

First, we import the 'torch' library for working with tensors, 'torch.nn' for creating neural 
networks, 'torch.optim' for SGD training optimizers, Adam. 

 

 

Figure 2: Neural network for an agent with reinforcement learning on PyTorch. 

In the class ‘RobotAgent’: 

• __init__ (constructor): Initializes the layers of the neural network. 
• self.fc1: The first fully connected layer that accepts the input size vector state_size and 

transforms it into a vector with 128 features. 
• self.fc2: The second fully connected layer that transforms a vector with 128 features 

into another vector with 128 features. 
• self.fc3: The third fully connected layer, which takes a vector with 128 features and 

converts it into a vector of size action_size, which corresponds to the number of 
possible actions. 
 
 

Function ‘forward’: 

• forward: Performs a direct pass through the neural network. This is the main function 
that determines how data passes through the network layers. 

• torch.relu: Applies the Rectified Linear Unit activation function after each of the first 
two layers, which allows the model to detect non-linear dependencies. 

• torch.softmax: An activation function that converts the output values of the last layer 
into probabilities for each action. The outputs will reflect the probability of choosing 
each of the possible actions. 



To  train  the  model,  reinforcement  learning  is  used,  which  requires  large  computing 
resources and an iterative approach, Figure 3. 

 

 

Figure 3: Optimization of an agent neural network with reinforcement learning on PyTorch. 

Where: 

• optimizer = optim.Adam(agent.parameters(), lr=0.001): The Adam optimizer is used to 
update the model parameters. The learning rate is set to 0.001. 

• - Learning cycle: In each episode, the agent interacts with the environment, choosing 
actions based on probabilities computed by the network. It then receives a reward 
from the environment, which is used to compute a loss function. 

• optimizer.step(): Updates model parameters based on calculated gradients. 

This neural network model allows an autonomous robotic system to learn and improve its 
behavior through interaction with its environment using reinforcement learning techniques. 
The model adapts to new situations and gradually improves its skills to achieve specified goals, 
such as moving to a point or avoiding obstacles. 

Result 

The study confirmed the effectiveness of reinforcement learning methods for modeling the 
behavior of autonomous robotic systems. The developed neural network model allowed the 
agent to successfully learn through interaction with the environment, demonstrating the ability 
to adapt to changing conditions and improve its strategies to achieve its goals. 

 Table 1 and Figure 4 show the progress of the neural network training for the autonomous 
robotic system. The results show that as the number of episodes increased, the average reward 
of the agent gradually increased and the number of steps required to complete tasks decreased. 
From episode 1 to episode 50, there was a significant decrease in the average reward, indicating 
the difficulty of the initial stages of learning. However, from episode 100 onwards, the average 
reward began to increase, and in episode 350 it reached a maximum value of +100, which is an 
indicator of successful training of the system. 



A significant proportion of the episodes were completed successfully starting from episode 
100, which confirms the gradual improvement of the agent's behavioral strategy. The obtained 
results confirm the effectiveness of the developed neural network model and reinforcement 
learning methods for autonomous robotic systems. 

 

 

Figure 4: Performance During Training of a neural network for an autonomous robotic system. 
Table 1 
Progress of neural network training for an autonomous robotic system 

Episode Average reward Number of steps Successful episode 
(Yes/No) 

1 -50 10 No 
50 -20 30 No 
100 10 50 Yes 
150 30 60 Yes 
200 50 80 Yes 
250 70 90 Yes 
300 90 100 Yes 
350 100 110 Yes 

 

Conclusions
The study confirmed that Reinforcement Learning methods are effective for modeling the 

behavior of autonomous robotic systems. Thanks to these methods, the agent was able to learn 
through interaction with the  environment,  adapt  to  changing conditions,  and improve its 
strategies to achieve its goals. 

The developed neural network model, which consists of input, hidden, and output layers, 
allowed the agent to gradually accumulate knowledge about the environment and determine the 



optimal actions. This ensured the agent's ability to learn independently and improve behavioral 
strategies in complex environments. 

The use of simulations made it possible to quickly test new approaches, create accurate 
models of the environment, and significantly accelerate the learning process of autonomous 
systems. 
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