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Abstract
To solve the problems of thermal elastic-plastic deformation of structural elements, a method of using 
the deformation theory of plasticity, generalized to the possibility of taking into account unloading 
with  the  development  of  plastic  deformations  during  unloading,  or  repeated  loading  with  the 
development of repeated plastic deformations, is proposed. Dependencies between the intensities of 
excess (differences between current values and the corresponding values recorded at the moment of 
unloading) stresses and excess deformations are built on the basis of Mazing's principle. An algorithm 
for solving problems based on the method of successive loads has been developed. The method of 
additional deformations was used to linearize the indicated stress-strain dependences..

Keywords 
deformation theory, thermal plasticity, unloading, mathematical modeling

1.Introduction

In many technological processes, structural elements are subjected to significant force and 
temperature loads, as a result of which irreversible plastic deformations occur in some areas of 
the structure. After complete removal of the load, residual stresses and deformations occur in 
such structures, which can have a significant impact on the operational properties of such 
structures.  Therefore,  the  problem of  quantitative  assessment  of  residual  stress  fields  and 
deformations that  occur in some heat  treatment processes,  during welding,  restoration of 
operational properties by surfacing, is very relevant. Currently, approximate methods based on 
the use of unloading theorems, computational and experimental methods [1, 2, 3], as well as 
methods based on the theory of plastic flow [4, 5] are used to solve similar problems. The latest 
mathematical models are quite complex and do not always satisfy the required accuracy when 
tracking the load surface in the process of plastic deformation. Therefore, the paper proposes a 
mathematical model based on the deformation theory of plasticity, which is generalized for the 
case of taking into account unloading.
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To solve such problems, you can use commercial packages of computer programs such as 
ANSYS,  SYSWELD,  etc.  Renting  commercial  packages  for  the  appropriate  term  is  quite 
expensive, and therefore, in practice, the creation of original problem-oriented mathematical 
support for solving problems in the field of welding and related technologies is widely used in 
practice. This way allows synthesizing working programs from ready-made modeling blocks 
and information bases, and it is much cheaper than renting a commercial package.

2.Methodology

To simulate the processes of elastic-plastic deformation we have suggested to use the theory 
of small thermal elastic-plastic deformations generalized for the case of unloading taken into 
account [6].

Stress-strain relations of small elastic-plastic deformations can be written as [6]

(1)

(2)

where

(3)

here  are the components of stresses and deformations 

deviators. Average stress and deformation are as follows  connected 

by the dependence ε0=
σ 0

K
+εT ,  where K=

2G (1+v )
(1−2 v )

 –  volume  compression  modulus  , 

G= E
2(1+v )  – shear modulus, εT=α tT

¿=α t (T−T 0 ) – average temperature deformation, α t- 

coefficient of thermal linear expansion of the material,  – components of stresses and 
deformations deviators which were reached in the specified point of the environment at the 
moment of unloading start. The last values are equal to zero, if any unloading wasn’t observed in 

the specified point.  is the value of temperature which was fixed in the specified point at the 

moment of unloading start. Values  і  are the stresses intensities  and , which are 
calculated by formulae

(4)



.
(5)

Apparently, if any unloading isn’t observed in the specified point yet, the values  and

are transformed into ordinary intensities of the stresses  and .

In the formula (1)  is the parameter of plasticity determined by formula (2). Moreover, they 

consider that there is a unique dependence between the intensities   and , which is not 
influenced by the kind of stressed state and can be found on the basis of experimental data for 
the simplest  homogeneous stressed states. 

At the stage of initial deformation from stress-free and deformation-free state in the points 
where some active loading is taking place the intensity of total deformation is equal to the sum 

of intensities of elastic and plastic deformations components  ε i=ε i
p+ε i

e.

Stress-strain relations (1) in this stage look like 

,
(6)

.
(7)

The relationship between the intensities of stresses and deformations in this stage for the 
most structural materials can be written as

.

(8)

where  –  material plasticity limit which depends on the temperature.  The identical 

relationship  can be obtained on the basis of Mazing principle  [7],  if it is 
generalized on isothermal processes of deformation. After such generalization we have found 
[8]



.

(9)

Stress-strain relations (2) can be presented as the solved ones relative to the deformation 
tensor component 

ε ij=
−~ψ
2G [ GG1

σ ij
(1)−σ ij−

(1+v )~ψ−(1−2 v )
(1+v )~ψ

δ ij( GGm σ 0
(1)−σ 0)]−δ ij (εT (1)−εT )+ε ij

(1) , (10)

 or relative to the stress tensor component 

σ ij=
G
G1

σ ij
(1)−2G

~ψ [ε ij(1)−ε ij+
~ψ (1+ν )
1−2 ν

δ ij [(ε0
(1)−ε0)−(εT (1)−εT )]−δ ij (ε0

(1)−ε0)]. (11)

Here the plastic deformation can be determined by formulae

ε ij
p=ε ij

p(1)−
(~ψ−1)

~ψ [ε ij(1)−ε ij+δ ij (ε0
(1)−ε0)].

(12)

Now we use the same symbols for ordinary stress and deformation tensors component which 
have been introduced earlier for deviator components 

~σ ij=
G
G1

σ ij
(1)−σ ij ,  ~ε ij=ε ij

(1)−ε ij ,

~σ 0=
G
G1

σ 0
(1)−σ 0, ~ε0=ε0

(1)−ε0, ~ε
T=εT (1)−εT .

(13)

Then the dependence (10) is written as

~ε ij=
~ψ

2G (~σ ij−(1+v )~ψ−(1−2 v )
(1+v )~ψ

δ ij
~σ 0)+δ ij~εT . (14)

Having introduced the symbols ~eij
p=ε ij

p(1)−ε ij
p ,  the formula (10) will look like

~eij
p=

~ψ−1
~ψ

~eij . (15)

We can also show that 



~eij
e= 1

2G
~sij , (16)

where ~eij
e=eij

e(1)−eij
e .

To linearize the specified stress-strain relations the method of additional deformation (MAD) 
is used. We will demonstrate this method for the case when the unloading is taking place with 
the development of plastic deformation.

Figure 1: Picture of using the additional deformation method on the unloading stage with 
plastic deformation development 

We assume that in the beginning of some k  step we have ~ε ij
p(k−1) and point Q corresponds to 

these deformations (fig.1).  We must  admit  that  for  visual  clarity we have superposed the 
beginnings of axes of references ~ε i ,~σ i for two different temperatures.

The process of successive approximations by the method of additional deformation is carried 
out by formulae

~eij
(k )=~e

ij∗¿e (k )+~eij
p(k−1)= 1

2G
~sij

¿(k )+~ε ij
p(k−1)¿ (17)

Having solved the problem under stress-strain relations conditions (17), we will find the 

solution ~eij
(k ) ,   ~σ ij

¿(k ) which point P corresponds to on fig.1. By the known values of component 
~eij

(k ) we have calculated the intensity of total deformations  ~ε i
(k ). Using the surface equation 

~σ i=
~Φ(~ε i ,T ) for the specified temperature value T  for the specified stage and value ~ε i

(k ) we 

have found the intensity of stresses ~σ i
(k ) (point N  on the figure). It has enabled us to find by 



formula ~ψ(k )=3G
~ε i

(k )

~σ i
(k )   the value of plasticity parameter ~ψ(k ) for the specified approximation, 

and by the formulae ~eij
p(k )=

~ψ(k )−1
~ψ(k )

~eij
(k ) we have calculated the components of plastic residual 

deformation of this k  approximation which can be used in formulae of the method of additional 
deformations (17) in the next approximation.

The formulae of the method of additional deformations in this case can be written as 

~ε ij
(k )= 1

2G (~σ ij¿(k )− 3 v
1+v

δ ij
~σ 0

¿(k ))+δ ij~εT+~ε ij
p(k−1)

,

~ε ij
p(k )=

~ψ(k )−1
~ψ(k ) (~ε ij(k )−δ ij~ε0

(k )) ,

~ψ(k )=3G
~ε i

(k )

~σ i
(k ) .

(18)

(19)

(20)

The whole process of loading (heating, cooling) is divided into separate stages. Specifying the 
values of the deformation plasticity component for zero approximation in (18) equal to these 
components which were reached for the previous stage of loading (at deformation from initial 
undeformed state they are accepted as zero) the elastic problem with additional deformations is 

solved. according to the found total deformations in approximation the intensities  

and  are calculated. Then according to the formula (20) for each point of the structure 

 approximation of the plasticity parameter   is calculated and by formula (20) the 
components of the deformation plasticity which will be further used in formulae (18) in the next 

approximation  to  find  the  component  .  Iteration  process  lasts  till  its  complete 
coincidence, after that the transition to the next stage of loading is taking place.

We must admit that initially on every iteration in each point of the structure the above-
mentioned deformation has been assumed that occurred in it during the previous stage of 
loading,  i.e.  initial  elastic  or  plastic  deformation,  elastic  unloading or  unloading with  the 
development of  further  plastic  deformation.  After coincidence of  the iteration process the 
examination is conducted in every point of the structure to find out if such deformation was 
taking place in fact.  If  in  some points  the deformation behavior  does not  correspond the 
accepted one on the basis of information from the previous stage of loading, then the stage is 
fully recalculated with the previous replacement of the deformation behavior to the opposite 
one in such points.



3.The results 

Due to the above-mentioned technique a number of practical problems have been solved, 
namely the welding of thin-walled structural parts, building-up welding aimed at strengthening 
or restoring the operational characteristics.   

In this way, for instance, the problem of welding procedure simulation of two cylindrical 
shells by circular joint providing the welding is taking place along the whole length of the 
welding seam simultaneously [9]. The obtained results have completely correlated with the 
similar results found in the paper [5] using more complicated theory of plastic flow. The results 
of  modelling  have  made possible  to  find the  fields  of  residual  stresses,  deformations  and 
displacements, study the kinetics of stress-and-strain state of the welding process, study the 
diagram of deformation in different points of the structure. As an example, we will show the 
distribution of residual welding stresses, elastic deformations, and also residual deflection of a 
shell. 

Figure 2: Distribution of residual welding stresses in cylindrical shell.

Figure 3: Distribution of elastic residual deformations.



Figure 4: Residual deflection.

In the figures,  x= X
L

−¿ is a dimensionless coordinate along the length of the shell, the 

stresses are related to the yield point of the material at some initial temperature.

4.Conclusions 

It is shown that to solve the complex problems of thermal elastic-plastic deformation of 
structural  elements,  it  is  possible to use the theory of  the deformation theory of  thermal 
plasticity deformation, which is much simpler than the flow theory, generalized to consider the 
possibility of unloading with the development of plastic deformations, or repeated loading with 
the development of repeated plastic deformations.
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