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Abstract
We analyze some useful properties of time series which are important in the problems of statistical 
data analysis and forecasting. The stationarity of time series can be tested in practice, as there are 
many special  tests  exist,  but  the  property  of  ergodicity  is  usually  just  assumed to  be  present. 
Ergodicity means that the statistical  characteristics observed over a single long time series are 
representative of the statistical characteristics observed across multiple samples of the process at a 
single point in time. The model-based approach has been used in the paper to justify the stationarity 
and ergodicity properties of investigated time series. The utilized model is conditional linear time 
series with known representation of its characteristic function. It has been used for justifying the 
mixing property which implies ergodicity.
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1. Introduction

Time series analysis is a statistical technique used to analyze data points collected or recorded at 
specific time intervals [1 – 3]. The primary goal of time series analysis is to identify patterns, 
trends, and other characteristics in the data that can be used for forecasting, monitoring, and 
understanding the underlying processes that generate the data [4]. It is widely used in various 
fields, including finance, economics, weather forecasting, engineering, medicine, energy, and 
environmental science. Very often time series (discrete-time random process) is obtained by 
sampling or averaging of continuous-time random process in the problems information signals 
and systems modelling, analysis, and estimation. 
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Many real-world time series are non-stationary, requiring transformation before analysis. 
But there are enough different methods to test the stationarity (which is invariance of the 
probabilistic characteristics of the process over time) property using the real data. Theoretical 
analysis of stationarity property of the time series models can be also performed [5].

Ergodicity is another useful property of time series, information signals [6], systems [7–9], 
control algorithms [10]. Ergodicity is a concept in statistics and probability theory that describes 
the long-term behavior of a system or process. A process is considered ergodic if, over time, its 
time-averaged properties converge to its ensemble-averaged properties [11]. This implies that 
observing the time series over a long period gives you enough information to understand its 
overall behavior, without needing to observe multiple realizations. This is usually practical 
since, in many real-world applications, only a single realization of the continuous-time process 
or time series is available. The ergodicity is important property also for the problems of time 
series forecasting.

But comparing with stationarity, there are only few tests of ergodicity, based on practical 
time series analysis. They are related only for some specific classes of random processes, such as 
Markov processes [12], [13], or utilize only mean ergodic property [14]. That is why, the ergodic 
property of investigated time series usually just assumed. 

But there is another approach, which consists in substantiating the mathematical model of 
the time series, which is ergodic. For example, continuous-time and discrete-time linear random 
processes [15] are ergodic [11]. 

The stationarity and ergodicity of the important class of continuous-time conditional linear 
random processes have been proven in the paper [11]. We develop the ideas [11] of utilizing the 
characteristic functions method in present article proving the ergodicity properties for the class 
of  conditional  linear  time  series  (discrete-time  conditional  linear  random processes).  The 
practical  importance  of  such kind of  time series  for  the  information signal  mathematical 
modelling, estimation, forecasting and computer simulation have been analyzed in [16].

The main goal of the article is to prove the mixing condition for conditional linear time series 
because it implies the ergodicity.  

Following the general structure and ideas of the paper [11], we analyze further the notion of 
stationary conditional linear time series and its multidimensional characteristic functions. Then 
we use this tool for proving the mixing and ergodicity consequently. 

2. Conditional linear time series and stationarity

We start from conditional linear time series (CLTS) definition and analysis of its characteristic 
function which is the tool for stationarity, mixing, and ergodicity proving.

A real-valued conditional linear time series ξ t (ω ), t∈ Z , ω∈ Ω (where Ω is sample space) 
is defined as a discrete-time conditional linear random process as follows [15, 16]:

ξ t (ω )= ∑
τ=−∞

∞

φτ , t (ω )ζ τ (ω ), (1)

where φτ , t (ω ), τ , t∈ Z  is a kernel of representation (1), which is real-valued random function 

of  two  arguments  (or  random  field  on  Z2);  ζ τ (ω ),  τ∈ Z  is  a  sequence  of  independent 
identically distributed random variables (stationary white noise in the strict sense);
random field φτ , t (ω ) and white noise ζ τ (ω ) are stochastically independent.



The CLTS representation is valid in the mean-square convergence sense of the series (1). 
In the applied problems of information signal analysis or time series forecasting the CLTS (1) 

is usually considered as a result of sampling or averaging of continuous-time conditional linear 
random process driven by the process with independent increments, which is infinitely divisible 
distributed.  That  is  why the white  noise in representation (1)  also has infinitely divisible 
distribution and can be specified using one of the known canonical forms. We use the Levy-
Khintchine form in this article, that is, the stationary white noise ζ τ (ω ), τ∈ Z  has specified by 
logarithm of its infinitely divisible characteristic function in the following form:

ln f ζ (u )=iau+ψ (u ),

where function ψ (u )=∫
−∞

∞

(eiux−1− iux

1+x2)1+x
2

x2
dG( x ) is uniformly continuous on u∈ R 

and ψ (0 )=0; G ( x ) , x∈ R is a real monotonically non-decreasing and bounded function 

satisfying the condition G (−∞ )=0; a∈ R, and if mathematical expectation E ζ τ (ω ) of white 

noise is finite then parameter a is represented as a=E ζ τ (ω )−∫
−∞

∞

xdG( x ) .

To represent the expression of m -dimensional characteristic function of CLTS we take into 
account that it is given on some probability space {Ω,F , P } and define σ  -subalgebra Fφ⊂ F  

generated by the random function φτ , t (ω ) . Also we assume that φτ , t (ω ) satisfy the condition 

∑
τ=−∞

∞

|φτ , t (ω )|<∞ with probability 1. 

Taking into account the above notations and using the results of [5, 11] the m-dimensional 

characteristic function f ξ(u1 ,u2 , ... ,um ; t1 , t2 , ... , tm)=E exp[i∑
k=1

m

uk ξ t k(ω )] of CLTS (1) can 

be  represented  using  the  expression 

f ξ(u1 ,u2 , ... ,um ; t1 , t2 , ... , tm)=E f ξ
Fφ(ω,u1 ,u2 , ... ,um ; t1 , t2 , ... , tm) , where 

f ξ
Fφ(ω,u1 ,u2 , ... ,um ; t1 , t2 , ... , tm)=E(exp[i∑k=1

m

uk ξ t k(ω )]|Fφ) is  conditional with respect 

to Fφ characteristic function of CLTS (1), which is expressed as follows:

f ξ
Fφ(ω,u1 ,u2 , ... ,um ; t1 , t2 , ... , tm)=exp[ia( ∑τ=−∞

∞

∑
k=1

m

uk φτ , t k(ω )+¿

+ ∑
τ=−∞

∞

∫
−∞

∞ (exp[ix(∑k=1m uk φτ , t k(ω ))]−1−
ix(∑

k=1

m

uk φτ , t k(ω ))
1+x2 )1+x2x2

dG ( x )], (2)

uk∈ R , t k∈ Z ,k=1 ,m.
The stationarity condition for CLTS is also similar to the one considered in  [5, 11]. The 

conditional linear time series is strict sense stationary if the multidimensional distribution of its 



kernel doesn’t depend on the same time shift of each argument (that is diagonal shift of the 
random matrix φτ , t (ω ), τ , t∈ Z). 

It means that if random kernels φτ , t (ω ), τ , t∈ Z  and φτ+s , t+s(ω ) satisfy the condition

P (¿ i=1¿n¿ j=1¿m {ω :φτ j , t j(ω )<x ij}¿)=P (¿ i=1¿n¿ j=1¿m {ω :φτ j+s , t j+s(ω )<x ij}¿) , x ij∈ R

(3)
for any s∈ R, then the CLTS (1) is strict sense stationary.

3. Ergodicity and Mixing

In this section we consider the general notion of ergodicity of strict sense stationary time series 
and its particular cases. Then we justify the conditions for CLTS to be mixing, because mixing 
implies ergodicity in general sense. It should also be mentioned that mixing property of random 
process has broader area of application. It can be used for studying the time series complexity 
and central limit problem [17], various properties of systems [18], evaluating the forecasting 
performance [19]. The relationships between stationary ergodic and mixing CLRP have been 
represented on the following Venn diagram (Figure 1).

Figure 1: Venn diagram representing the relationships between stationary ergodic and mixing 
conditional linear time series

Let ξ t (ω ) , t∈ Z  be a strictly stationary time series with the values in a measurable space 

{X ,B }.  We denote  g( x1 , x2 , ... , xm),  m≥1 a  Bm-measurable function and assume that the 

following  expectation  exists:  E g (ξ t1(ω ) , ξ t2(ω ) , ... , ξ tm(ω ))<∞ ,∀ t1 , t2 , ... , tm∈ Z .  The 

time series  ξ t (ω ) , t∈ Z  is  called  ergodic  if  for  any above  function  g( x1 , x2 , ... , xm) the 
following condition holds with probability 1: 
lim
n→∞

1

n ∑
t=1

n

g(ξ t1+t (ω) , ξ t2+t (ω) , ... , ξ tm+t (ω))=E g(ξ t1(ω) , ξ t2(ω) , ... , ξ tm(ω)) ,∀ t1 , t2 , ... , tm∈ Z

.    (4)



In the table 1 the particular cases of general ergodicity of stationary time series which are 
most important for applications in the area of information signal modelling and analysis have 
been represented. The expressions in last column (ω is omitted for simplicity) holds with 
probability 1. The corresponding extensions for m≥2 can be obtained like in [11].

Table 1
Different types of ergodicity

In the table 1 U ( y )={0 , y ≤01 , y>0
 is a Heaviside step function [20].

The mixing property in terms of time series distribution means that the samples (including 
multivariate) of time series become asymptotically independent when time interval between 
them tends to infinity. Then joint characteristic function of that samples tends to the product of 
corresponding characteristic functions [11]. 

Following  the  notations  utilized  in  the  paper  [11]  we  further  denote 
Law (ξ1(ω ) , ξ2(ω ) , ... , ξm(ω ))=Law (η1(ω ) , η2(ω ) , ... , ηm(ω )) if  two  m -dimensional 

random vectors  (ξ1(ω ) , ξ2(ω ) , ... , ξm(ω )) and  (η1(ω ) , η2(ω ) , ... , ηm(ω )) have the same 

m -dimensional distribution.

Let  random  vectors  (φτ , t1+t (ω ) , φτ , t2+t (ω ) , ... , φτ , tm+t (ω )) and 

(φτ , s1(ω ) , φτ , s2(ω ) , ... , φτ , sn(ω )) are  asymptotically  independent  if  |t|→∞,  ∀ τ , 
t1 , t2 , ... , tm , s1 , s2 , ... , sn∈ Z , that is 

lim
|t|→∞

Law (φτ+t , t1+t (ω ) , φτ+t , t2+t (ω ) , ... , φτ+t , tm+t (ω ) , φτ , s1(ω ) , φτ , s2(ω ) , ... , φτ , sn(ω ))=¿

¿ Law (φτ , t1(ω ) , φτ , t2(ω ) , ... , φτ , tm(ω ))Law (φτ , s1(ω ) , φτ , s2(ω ) , ... , φτ , sn(ω )) .           (5)

Then strict sense stationary CLTS ξ t (ω ) is mixing time series which implies ergodicity in 
the sense of (4). The proof is analogous to [11] (but in discrete time) and utilize the above 
properties of the function ψ (u ), kernel and characteristic function of conditional linear time 
series. 

Ergodicity with 
respect to

m g( x1 , x2 , ... , xm) t1 , t2 , ... , tm Formula (4)

expectation μ 1 g( x )=x t1=0 lim
n→∞

∑
t=1

n

ξ t=μ

covariance 
function Rτ

2
g( x1 , x2)=¿

¿( x1−μ )( x2−μ )
t1=0, 

t2=τ

lim
n→∞

1

n ∑
t=1

n

(ξ t−μ )(ξ t+τ−μ )=Rτ

cumulative 
distribution 
function F ξ( y )

1 g( x )=U ( y−x ) t1=0
lim
n→∞

1

n
∑
t=1

n

U ( y−ξ t )=F ξ( y )

characteristic 
function f ξ(u )

1 g( x )=eiux t1=0 lim
n→∞

1

n
∑
t=1

n

eiu ξ t=f ξ(u )



4. Conclusions

The conditional linear time series driven by infinitely divisible white noise has been defined. 
The probability distribution properties of the time series can be analyzed using conditional 
characteristic  functions  method.  The  condition  for  CLTS to  be  strict  stationary  has  been 
represented.

It has been shown that ergodicity and mixing are important characteristics of mathematical 
model  which  is  used  for  time  series  analysis,  forecasting,  and  computer  simulation.  The 
continuous-time and discrete-time conditional linear random processes are useful mathematical 
models in the areas of medical end energy informatics [5, 15, 16]. That is why the mixing 
property and ergodicity of strict sense stationary CLRT has been justified using characteristic 
function method.

The prospective research deals with studying the relationship between the results of this 
paper  and  the  practically  important  autoregressive  moving  average  models  with  random 
coefficients [16].
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