
Modelling of automotive steel fatigue lifetime 
by machine learning method

Oleh Yasniy 1,†, Dmytro Tymoshchuk 1,∗,†, Iryna Didych 1,†, Nataliya Zagorodna1,† and 
Olha Malyshevska 2,†

1 Ternopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraine
2 Ivano-Frankivsk National Medical University, Galytska Str. 2, Ivano-Frankivsk, 76018, Ukraine

Abstract
In the current study, the fatigue life of QSTE340TM steel was modelled using a machine learning 
method, namely, a neural network. This problem was solved by a Multi-Layer Perceptron (MLP) 
neural network with a 3-75-1 architecture, which allows the prediction of the crack length based on 
the number of load cycles N, the stress ratio R, and the overload ratio Rol. The proposed model showed 
high accuracy, with mean absolute percentage error (MAPE) ranging from 0.02% to 4.59% for different 
R and  Rol.  The  neural  network  effectively  reveals  the  nonlinear  relationships  between  input 
parameters and fatigue crack growth, providing reliable predictions for different loading conditions.
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1. Introduction

QSTE340TM steel is a thermomechanically hardened low-alloy steel used in the automotive 
and mechanical engineering industries. Due to its high strength, QSTE340TM steel can reduce 
the weight of structures, which is important for automotive parts such as chassis, suspensions, 
and  body  components.  It  has  good  fatigue  resistance,  which  ensures  durability  in  harsh 
environments. The chemical composition of the steel includes manganese, silicon, phosphorus, 
sulfur, and other alloying elements that give it the required mechanical properties [1].

Machine learning methods allow us to model the fatigue life of QSTE340TM steel  and 
effectively predict the material's durability under cyclic loading. By applying machine learning 
algorithms,  a  large  amount  of  experimental  data  can  be  analyzed  automatically  and  the 
relationship  between  various  parameters  affecting  material  properties  can  be  determined 
[2,3,4,5,6].
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2. Methods

Neural networks allow us to model the fatigue life of QSTE340TM steel and effectively 
predict  crack  growth  in  the  material  under  cyclic  loading.  Functional  dependencies  were 
modelled for experimental data obtained in [7]. The dataset [8] contained the dependence of the 
crack length a on the number of loading cycles N for four stress ratios R, namely, R = 0.1, 0.3, 0.5, 
and 0.7 at a constant amplitude (CA) and after a single tensile overload with overload ratios Rol = 
1.5, 2.0. The neural network was trained on a dataset where the input parameters are the number 
of loading cycles N, the stress ratio R, and the overload ratio Rol, and the output parameter is the 
crack length a. The load cycle N reflects the number of cycles the steel has been loaded and is 
one of the main parameters for assessing fatigue crack growth. The stress ratio R determines the 
ratio of the minimum and maximum loads of the cycle, which also affects the rate of fatigue 
crack development. The overload ratio Rol considers cases where the load exceeds the nominal 
values.

The first 80% of the load cycles were used for the training, testing, and validation process. 
The accuracy of crack length prediction as a function of N, R, and Rol was tested on the data of 
the next 20% loading cycles. During the training process, the dataset was divided into 3 parts: 
training, testing, and verification. The training, testing, and validation samples contained 1791 
items, 80% of which were randomly selected for the training sample, 10% for the validation 
sample, and 10% for testing and evaluating the model's prediction quality. The forecasting error 
was calculated using the formula for the mean absolute percentage error (MAPE):

MAPE=100% ∙ 1
n∑i=1

n |atruetest (i )−apred .test (i )|
|atruetest (i )|

,
(1)

where n is the size of the test dataset, atrue
test (i ) is the true value of the crack length in the test 

dataset, apred
test (i ) is the predicted value of the crack length in the test dataset. 

3. Results and discussion

The Multi-Layer Perceptron (MLP) neural network [9] 3-75-1 was used to predict the crack 
length a in QSTE340TM steel depending on the number of load cycles N, the stress ratio R, and 
the overload ratio Rol. An effective model was created to detect nonlinear dependencies between 
these parameters accurately. The network consists of three layers: input, hidden, and output. 
The input layer contains three nodes corresponding to the three main input parameters. The 
hidden layer, which consists of 75 neurons, has the Tangential activation function. The output 
layer contains a single neuron designed to predict the crack length a, using a linear activation 
function (Linear),  which allows the generation of continuous values without limiting their 
range, which is critical for adequately reflecting the actual processes of fatigue crack growth. 
This architecture allows the MLP 3-75-1 neural network to learn from data and accurately 
predict fatigue crack growth in QSTE340TM steel. Figure 1 shows the relationship between the 



experimental crack length values  atrue and the predicted values  apred obtained by the neural 
network for the test data set.

Figure 1: The predicted versus true (experimental) values of crack length a

As can be seen from Figure 1, the model is highly accurate, as almost all points lie along the 
bisector of the first coordinate angle, which means that the predicted values are almost identical 
to the experimental ones. The prediction error calculated by MAPE is only 0.34%. This indicates 
that the neural network effectively models fatigue crack growth in QSTE340TM steel, providing 
accurate predictions with minimal deviation from the actual values.

To test the accuracy of crack length prediction as a function of N, R, and Rol, data from the 
next 20% of loading cycles were used. This data was removed at the initial stage and was not 
used to test the model accuracy. Figure 2 shows the relationship between the experimental crack 
length values atrue and the predicted values apred, obtained for a stress ratio R = 0.1 at constant 
amplitude and with a single overload with overload factors Rol = 1.5, 2.0.

a) CA b) Rol = 1.5



c) Rol = 2.0

Figure 2: The predicted versus true values of crack length a for stress ratio R = 0.1. a) built for 
CA; b) built for overload ratio Rol = 1.5; c) built for overload ratio Rol = 2.0

As can be seen from Figure 2, the predicted crack lengths are very close to the experimental 
values, which is also confirmed by the low value of the MAPE prediction error (Table 1).

Table 1
MAPE prediction error for R = 0.1

Оverload ratio Rol MAPE (%)
CA 0.681.5 4.61
2.0 4.59

Figure 3 shows the relationship between the experimental values of the crack length a and 
the predicted values obtained for stress ratio R = 0.3 under constant amplitude and with a single 
overload with overload factors Rol = 1.5, 2.0.
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Figure 3: The predicted versus true values of crack length a for stress ratio R = 0.3. a) built for 
CA; b) built for overload ratio Rol = 1.5; c) built for overload ratio Rol = 2.0

With a load factor of R = 0.3, the model showed high forecasting accuracy, which is also 
confirmed by the low value of the MAPE forecasting error (Table 2).

Table 2
MAPE prediction error for R = 0.3

Оverload ratio Rol MAPE (%)
CA 0.071.5 3.52
2.0 0.14

Figure 4 shows the dependence between the experimental values of the crack length a and 
the predicted values obtained for the load cycle asymmetry factor R = 0.5 at CA and Rol = 1.5, 2.0.
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Figure 4: The predicted versus true values of crack length a for stress ratio R = 0.5. a) built for 
CA; b) built for overload ratio Rol = 1.5; c) built for overload ratio Rol = 2.0

At stress ratio R = 0.5, the predicted crack lengths are also very close to the experimental 
ones, which is confirmed by the low value of the MAPE prediction error (Table 3).

Table 3
MAPE prediction error for R = 0.5

Overload ratio Rol MAPE (%)
CA 0.021.5 0.23
2.0 0.06



Figure 5 shows the dependence between the experimental values of the crack length a and 
the predicted values obtained for a load factor of R = 0.7 at CA and Rol = 1.5, 2.0.

a) CA b) Rol = 1.5

c) Rol = 2.0

Figure 5: The predicted versus true values of crack length a for stress ratio R = 0.7. a) built for 
CA; b) built for overload ratio Rol = 1.5; c) built for overload ratio Rol = 2.0

Similarly to the previous cases, at a load factor of R = 0.7, the predicted crack lengths are quite 
close to the experimental ones. The values of the MAPE prediction error are given in Table 4.

Table 4
MAPE prediction error for R = 0.7

Оverload ratio Rol MAPE (%)
CA 3.491.5 0.18
2.0 0.06



The obtained results demonstrate the high generalization capability of the model and its 
effectiveness in reflecting the real fatigue crack growth under cyclic loading.

4. Conclusions

The crack length a was predicted as a function of the number of load cycles N for four stress 
ratio R = 0.1, 0.3, 0.5, and 0.7 at a constant amplitude and overload factors Rol = 1.5, 2.0 by a 
neural network. The neural network, trained on experimental data, is able to predict the crack 
length  a based on the input parameters, thus providing sufficiently accurate predictions for 
assessing the fatigue life of QSTE340TM steel.
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