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Abstract
The Paillier cryptosystem, known for its additive homomorphic properties, plays a crucial role in 

preserving  the  confidentiality  of  computations  with  encrypted  medical  data.  However,  its 
computational complexity poses significant challenges when applied to large-scale medical datasets, 
affecting  both  performance  and  efficiency.  This  study  focuses  on  analyzing  the  performance 
limitations of the Paillier cryptosystem and developing strategies to improve its performance for 
medical data processing. 

This study provides a comprehensive framework for improving the performance of the Paillier 
cryptosystem, contributing to its effectiveness in the secure processing of medical data and paving the 
way for future advances in privacy-preserving cryptographic techniques.
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1. Introduction

The appearance of digital health technologies has transformed the management of medical 
records, making it possible to have more efficient storage, retrieval and analysis of patient 
information. The rise in the use of electronic health records (EHRs) and telemedicine platforms 
poses a significant threat in medical data privacy and integrity. Protection involves encrypting 
sensitive health information in order to prevent unauthorized access or breaches.

Out of diverse cryptographic techniques, Paillier cryptosystem distinguishes itself by its 
additive homomorphic properties. In other words, computations can be done on encrypted data 
without decrypting it first. This is especially useful in medical data processing where privacy-
preserving computations may make tasks such as statistical analysis and data mining easier 
while keeping the underlying data secure[1].
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While traditional encryption algorithms like RSA and AES operate efficiently in standard 
scenarios, advanced algorithms that support operations on encrypted data, such as Paillier’s 
homomorphic  encryption,  can  benefit  from  the  high-performance  computing  techniques. 
Implementing  these  techniques  could  lead  to  more  efficient  encryption  and  decryption 
processes, especially for large datasets or in cloud-based environments.

By applying high-performance computing strategies, we can address some of the limitations 
associated  with  the  computational  complexity  of  advanced  encryption  algorithms.  This 
approach  not  only  enhances  the  practicality  of  such  algorithms  but  also  opens  up  new 
possibilities for their application in secure data processing[2].

Review of encryption algorithms
There are several alternative encryption algorithms that can be used instead of or in addition 

to the Paillier algorithm, depending on your security and performance needs. Here are some of 
them:

1. RSA (Rivest-Shamir-Adleman)
Type: Asymmetric encryption
Features: RSA is one of the most common algorithms for asymmetric encryption and digital 

signatures. It is based on the complexity of factorization of large numbers. 
Advantages: Widely supported, used for secure key exchange.
Disadvantages: Slower compared to symmetric algorithms; large key sizes for a high level of 

security.
2. ElGamal
Type: Asymmetric encryption
Features: Based on the complexity of calculating the discrete logarithm in finite fields. It 

provides privacy and is used to create digital signatures.
Benefits: Provides privacy and authentication.
Disadvantages: Requires larger ciphertext size than other algorithms.
3. ECC (Elliptic Curve Cryptography)
Type: Asymmetric encryption
Features: Uses properties of elliptic curves to provide security with smaller key sizes. This 

makes ECC particularly effective for resource-intensive environments.
Advantages: High level of security with smaller key sizes.
Disadvantages: More complex implementation compared to other algorithms.
4. AES (Advanced Encryption Standard)
Type: Symmetric encryption
Features: Encryption standard to protect confidential data. Uses keys of 128, 192, or 256 bits.
Advantages: Very fast and efficient encryption for large amounts of data.
Disadvantages:  Requires  secure  key  exchange,  as  one  key  is  used  for  encryption  and 

decryption.
5. Homomorphic Encryption
Type: Specialized encryption
Features: Allows you to perform calculations on encrypted data without the need to decrypt 

it. Examples include Gentry and CKKS (Cheon-Kim-Kim-Song) schemes.
Advantages: Ideal for cloud computing where sensitive data needs to be processed.
Disadvantages: Very high computational complexity and slow processing speed[3].



The Paillier algorithm is a cryptographic algorithm that provides homomorphic encryption. 
It allows you to perform certain calculations on encrypted data without decrypting it, making it 
useful for secure computing and data storage.

2. Description of the Paillier algorithm

The main components of the Paillier algorithm
Public key: (n, g), where n is the product of two large prime numbers p and q, and g is a 

number that satisfies certain conditions.
Private key: (λ, μ), where λ is the Least Common Multiple (LCM) of (p-1) and (q-1), and μ is 

the modular inverse of n for λ.
The main stages of the algorithm
Key generation:
1) Choose two large prime numbers p and q.
2) Calculate n = p * q and n² = n * n.
3) Define g, often g = n + 1.
4) Calculate λ = LCM(p-1, q-1).
5) Calculate μ = λ^(-1) mod n.
Encryption:
1) Choose a random number r from {1, ..., n-1}.
2) Compute c1 = g^m mod n², where m is the plaintext.
3) Calculate c2 = r^n mod n².
4) Encrypted message c = c1 * c2 mod n².
Decryption:
1) Calculate x1 = c^λ mod n² - 1.
2) Calculate x2 = x1 / n mod n.
3) Decrypted message m = x2 * μ mod n.

3. Advantages and disadvantages of the Paillier 
algorithm

Advantages:
1)  Homomorphic  properties  and data  analysis.  Paillier  allows you to  perform addition 

operations  on  encrypted  data,  which  is  particularly  useful  for  statistical  analyzes  and 
calculations on encrypted data. Calculations can be performed without data decryption, which 
preserves data confidentiality during processing.

2) Security level: Based on the complexity of solving the problem of factorization of large 
numbers. Keys can be large for increased security.

3) Privacy:
 Can provide a high level of privacy for data by storing data in encrypted form during 

processing.
4) Flexibility:



Application: Suitable for scenarios where you need to perform analytics on encrypted data 
without decrypting it.

 Disadvantages:
1) Productivity:
Encryption and decryption with Paillier is significantly slower than symmetric encryption 

algorithms such as AES. This can be a problem when working with large amounts of data. High 
computational cost for encryption and decryption, which can require significant resources.

2) Storage capacity:
The size of the encrypted data is often much larger than the size of the original data. This can 

lead to high storage costs.
3) Difficulty of implementation:
The  implementation  of  homomorphic  algorithms  can  be  more  complex  compared  to 

symmetric algorithms, requiring additional knowledge and skills for proper implementation.
4) Scaling:
The efficiency of the algorithm may decrease when scaling to large volumes of data due to 

computational costs and overhead.
The Paillier algorithm is a powerful tool for processing data with high privacy requirements, 

where computations must be performed on encrypted data. However, its performance and 
storage capacity can be a problem for large data sets or scenarios where speed is critical. For 
most applications that require fast encryption and decryption, symmetric algorithms such as 
AES may be more appropriate.

4. Comparison of Paillier Algorithm and AES

1) Encryption type:
Paillier:  A  homomorphic  cipher  that  allows  you  to  perform  arithmetic  operations  on 

encrypted data. This can be useful in scenarios where data needs to be processed without 
decryption[3].

AES: A symmetric cipher that provides a high level of security for data but does not support 
operations on encrypted data.

2) Basic function:
Paillier: Allows to perform arithmetic operations on encrypted data.
AES: Encrypts data but does not allow to perform operations on encrypted data.
3) Key size:

Paillier: The size of the key is determined by the length of the prime numbers p and q, which 
are used to create the module n. larger keys provide a higher level of security but increase 
processing time.

AES: Supports standard key sizes of 128-bit, 192-bit and 256-bit, providing a good balance 
between speed and security.

4) Execution speed:
Paillier: Speed may be slower due to complex math operations, especially with large key 

sizes. Optimization and parallelization can help but can still be slower compared to AES[4].
AES: Extremely fast due to simple math operations and parallelization capabilities. Suitable 

for large volumes of data and high speeds.
5) Storage volume on AWS:



Paillier: Encrypted data can be larger due to encryption overhead. The volume may increase 
depending on the size of the key and data.

AES: Usually stores data more compactly, due to lower overhead. AES encryption does not 
increase data volume as much as it can with Paillier.

6) Resource requirements:
Paillier: High computational resources due to the complexity of mathematical operations.
AES: Low computing resources, fast encryption and decryption.
7) Parallelization:

Paillier:  Can  be  parallelized,  but  the  complexity  of  the  math  operations  may  limit 
efficiency[4,5].

AES: Parallelizes quickly and supports SIMD instructions, making it very efficient on modern 
processors.

8) Security:
Paillier: Provides a high level of security for scenarios where computations over encrypted 

data are required. However, security may depend on implementation parameters and may be 
less effective for large amounts of data[4,5].

AES: High security with many proven attacks. A good choice for general data encryption.
Homomorphic encryption allows to perform calculations on encrypted data, which can be 

useful in certain scenarios,  such as processing data without decrypting it.  However, these 
algorithms typically have higher computational overhead and a larger volume of encrypted 
data, which can lead to increased cloud costs. The performance of algorithms such as Paillier is 
often lower due to the complexity of the mathematical calculations.

For general medical data storage where data processing without decryption is not a primary 
priority, AES provides an efficient balance between speed, security and resources.

If the system requires data processing without decryption, homomorphic algorithms can be 
considered as an additional solution but considering possible resource costs[6].

5. Implementation of the optimized Paillier algorithm

An encryption and decryption algorithm based on the Paillier homomorphic encryption 
scheme was implemented.

Input parameters for encryption (Fig 1):
textData: This is the data to be encrypted. In this case, they are represented as a big number 

(BigInteger).
publicKey: A public key that contains parameters for encryption (values of n, g, nSquared).
Encryption:
A random number r is generated, which is very important for ensuring the randomness of 

the ciphertext.
The Paillier algorithm uses several mathematical operations based on the values from the 

public key:
publicKey.g.modPow(textData,  nSquared)  is  the  exponentiation  of  g^textData  mod 

nSquared.
r.modPow(n, nSquared) is the exponentiation of a random number r^n mod nSquared.
The results of these two operations are multiplied, and then the modulus of nSquared is 

taken.



This is the encrypted text.
Input parameters  for decryption(Fig 1):
encryptedData: This is encrypted data that needs to be decrypted.
publicKey: The public key that contains the parameters for decryption.
privateKey: private key containing parameters λ (lambda) and μ (mu).
Decryption:
Calculates the value of u as encryptedData.modPow(privateKey.lambda, nSquared). This is 

the operation of raising the encrypted data to the power of λ, followed by taking the module by 
nSquared.

Figure  1:  Sequential  encryption  and  decryption  algorithm  based  on  the  Paillier 
homomorphic encryption

The function L is calculated as L(u, n) = (u - 1) / n.
The decrypted text is calculated by multiplying the result L(u, n) by μ from the private key, 

and then taking the modulus of n. It is used during decryption to correctly obtain the original 
text from the ciphertext.

Basic concepts of Paillier:
Public key: n, g, and nSquared (where nSquared = n^2).
Private key: λ and μ. They are used to decrypt the message.
Homomorphic:  Paillier  is  a  homomorphic  encryption  scheme,  meaning  that  it  allows 

operations on encrypted data (such as addition) without decrypting it[7].
An optimized algorithm was implemented to increase productivity
Input parameters (Fig 2):
textData: List of data (in BigInteger format) to be encrypted.
publicKey: public key for encryption using the Paillier algorithm.
Potential  exceptions:  The  method  may  throw  an  InterruptedException  or  an 

ExecutionException if there are multithreading issues.
An ExecutorService is used, which creates a thread pool. The number of threads depends on 

the number of available processors in the system (Runtime.getRuntime().availableProcessors()), 
which allows for the most efficient use of system resources.



For each element in the textData list, a separate encryption task is created, which is started in 
a new thread using executor.submit(). EncryptTask is a class that implements the encryption of 
each individual item (this class is probably a separate implementation where the encryption 
process is described). The submit method returns a Future object that represents the result of an 
asynchronous operation (in this case, encryption). All these Future objects are stored in the 
futures list.

Figure 2: Parallel algorithm for encryption
Input parameters(Fig 3):
encryptedText: list of encrypted data (in BigInteger format) to be decrypted.
publicKey: The public key used in the Paillier algorithm.
privateKey: private key for decrypting messages.
Potential  exceptions:  The  method  may  throw  an  InterruptedException  or  an 

ExecutionException if there are multithreading issues.

Figu
re 3: Parallel algorithm for decryption

An ExecutorService is created that manages the thread pool. The number of threads is 
determined  by  the  number  of  available  processors 
(Runtime.getRuntime().availableProcessors()).  This  allows  efficient  use  of  system hardware 
resources  for  parallel  execution  of  decryption.  For  each  item  in  the  encryptedText  list 
(encrypted data), a separate decryption task is created, which is passed to the execution of a new 
thread via executor.submit(). The DecryptTask class performs the decryption operation for each 



encrypted block.  The submit method returns a Future object  that  represents the result  of 
asynchronous execution. All these Future objects are added to the futures list.

To check algorithm was created test data(Fig 4).
According to results encryption and decryption is correct. However, performance for small 

data set is better for sequential realization(Fig 5).

Figure 4: Test data for encryption and decryption

Figure 5: Sequential and parallel results

Analysis of the results of the Paillier algorithm and the optimized Paillier algorithm
According to results of research for small amount of data (309 bytes), parallel methods are 

not very efficient due to the overhead of thread management. For 3.45 MB, parallel approaches 
show significant speed advantages for both encryption and decryption compared to sequential 
methods. For large data amount (50 MB), parallel methods provide significant processing speed 
advantages for both encryption and decryption. Parallel decryption is much faster than serial 
decryption, but it requires more powerful computing resources(Table 1).

Table 1
Analysis of the researched results

Data 
amount

Parallel 
encryption(ns)

Sequential 
encryption(ns)

Parallel 
decryption(ns)

Sequential 
decryption(ns)

309 bytes 17506900 4927600 5008500 663200
3.45 MB 8277496400 14101378500 3112705100 5291598670
50 MB 11638800000

0
20276400000

0
42220000000 7174400000

0



Parallel methods are significantly more efficient for processing large amounts of data, both 
for encryption and for decryption. This is especially noticeable when processing data with a 
volume of 50 MB, where the advantages of parallelization are most pronounced. For small data 
amounts (309 bytes),  the thread management overhead of  parallel  methods outweighs the 
benefits, making them less efficient than the sequential approach. As data amounts increase, the 
advantages of parallel methods become more apparent. Parallel encryption and decryption 
demonstrate a significant reduction in processing time for large amounts of data compared to 
sequential methods.

Conclusions

In  this  work  analyzed  the  Paillier  algorithm,  which  provides  additive  homomorphic 
properties for processing encrypted medical data. The main emphasis was placed on studying 
the performance of the algorithm and developing strategies for its optimization, which will 
allow more efficient processing of large volumes of data. The conducted analysis showed that 
the Paillier algorithm has significant advantages in preserving data confidentiality due to its 
homomorphic  properties,  which allow performing calculations  on encrypted data  without 
decrypting it. This is particularly useful for medical data where privacy protection is critical. 

However,  the  high  computational  complexity  of  the  algorithm  creates  performance 
problems, especially when processing large amounts of data. To improve processing speed, 
parallel encryption and decryption methods were implemented, which demonstrated significant 
advantages in the processing speed of large data sets compared to sequential methods.

The results of the work confirm the expediency of using the Paillier algorithm for tasks that 
require data processing without decoding them, and suggest effective optimization strategies to 
improve the performance of this algorithm in the conditions of large medical data sets. In the 
future, this may contribute to the further development of cryptographic methods to ensure the 
confidentiality and security of medical data.
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