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Abstract 
BioGITOM is an advanced ontology matching (OM) system developed for the biomedical domain, 
designed to meet the increasing need for precise ontology alignment and data interoperability. By 
integrating Graph Isomorphism Networks and Graph Transformers, BioGITOM produces enriched 
concept embeddings that combine both structural and semantic information. This hybrid model 
enables the system to accurately identify correspondences between concepts across various 
ontologies, effectively addressing the challenges presented by the complexity and diversity of 
biomedical data. BioGITOM demonstrated outstanding performance in the Bio-ML benchmark tasks, 
ranking as the top system in all three tasks and outperforming eight competing methods. 
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1. Presentation of the System 

The biomedical field has seen a tremendous growth in data repositories, each containing 
valuable information essential for research and healthcare. However, these repositories are 
often semantically heterogeneous, making their integration and interoperability a significant 
challenge. To address this issue, ontology matching (OM) has emerged as a crucial solution, 
aiming to identify semantic correspondences between entities in different ontologies [1]. This 
process ensures that data from diverse sources can be aligned, understood, and effectively 
utilized for research and clinical purposes.  

Traditional OM methods often rely on external lexicons, rule-based systems, or predefined 
heuristics to establish mappings [2, 3]. While these approaches can be useful, they are limited 
in handling the complexity and scale of modern biomedical ontologies.  
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Recent advances in learning methods, particularly those utilizing Deep Learning (DL) and 
Graph Neural Networks (GNNs), offer a more powerful means of extracting meaningful entity 
representations for OM [4, 5, 6]. 

In this paper, we present BioGITOM, a novel OM system specifically designed for the 
biomedical domain. BioGITOM enhances concept matching by integrating both semantic and 
structural information. It leverages BioBERT to extract semantic features and employs a Graph 
Isomorphism Transformer (GIT) model, which combines Graph Isomorphism Networks (GINs) 
[7] and Graph Transformers (GTs) [8], to capture structural relationships within ontologies. 
This hybrid approach allows BioGITOM to deliver highly accurate correspondences between 
complex biomedical concepts, meeting the growing demand for more precise and scalable OM 
in biomedical research and applications. 

1.1. State, Purpose, General Statement 

BioGITOM is a specialized OM system developed to address the increasing complexity and 
heterogeneity in biomedical ontologies. Its core purpose is to ensure effective integration and 
alignment of disparate ontologies, which is essential for improving data interoperability in 
biomedical research. BioGITOM is particularly designed to manage the unique challenges posed 
by the biomedical field, where ontologies often differ in structure and semantics. By combining 
advanced graph-based techniques, BioGITOM is able to produce more accurate mappings 
between concepts from different ontologies, thereby supporting enhanced data sharing and 
collaboration across systems. 

1.2. Specific Techniques Used 

BioGITOM leverages a sophisticated set of techniques to deliver high-precision OM by 
integrating both structural and semantic features of biomedical concepts. The system employs 
a hybrid Graph Neural Network (GNN) model, combining the strengths of Graph Isomorphism 
Networks (GINs) and Graph Transformers (GTs) to handle complex biomedical data. Below is a 
detailed breakdown of the specific techniques used: 

1. Preprocessing: This module prepares the raw ontology data for processing. It reads input 
files in OWL (Ontology Web Language) format, creates RDF (Resource Description 
Framework) graphs, and extracts concept labels and synonyms. By doing so, it generates 
a rich set of terms and relationships for further processing.  

2. Concept Name Encoder: BioGITOM leverages BioBERT [9], a pre-trained language model 
specialized for biomedical text, to encode the names and synonyms of ontology 
concepts. BioBERT captures the semantic nuances of biomedical terms, providing rich 
embeddings for each concept. 

3. Graph Isomorphism Transformer (GIT): The core of BioGITOM is the Graph Isomorphism 
Transformer (GIT) model. This hybrid approach combines the structural expressiveness 
of Graph Isomorphism Networks (GINs) with the ability of Graph Transformers to 
capture long- range dependencies in graphs. GINs ensure that the local graph structure 
of the ontology is accurately captured, while GTs excel at identifying more global, non-
local relationships between concepts. This combination allows the system to create rich 



 

structural embeddings for each concept, capturing both fine-grained and broad context 
information about how concepts relate to each other in the ontology graph. 

4. Gating Aggregator: The Gating Aggregator is responsible for merging the semantic and 
structural embeddings generated by the Concept Name Encoder and GIT, respectively. 
This is done through a gated mechanism [10] that dynamically balances the importance 
of semantic and structural information for each concept. The gating function, controlled 
by a learnable weight matrix and bias, determines how much semantic information 
versus structural information should be reflected in the final embedding. This step 
ensures that the final embeddings used for matching are an optimal blend of both types 
of information, tailored to the specific characteristics of the ontologies being compared. 

5. Mappings Selector: The final step in BioGITOM’s architecture is the Mappings Selector, 
which compares the merged embeddings to identify correspondences between concepts 
from different ontologies. A similarity measure, such as cosine similarity, is applied to 
determine how closely the embeddings match. The output is a set of mappings between 
concepts, along with confidence scores indicating the strength of each match. 

1.3. Adaptations Made for the Evaluation 

For this evaluation, BioGITOM was applied in its standard configuration without any task-
specific modifications. This approach demonstrates the system's inherent versatility and 
robustness, as it was capable of achieving high performance without the need for additional 
customization.  

The results underscore BioGITOM's effectiveness and generalizability across different OM 
tasks within the biomedical domain, highlighting its potential as a reliable tool for diverse 
applications. 

1.4. Link to the System and Parameters File 

BioGITOM is currently in the development phase and has not yet been released to the public. 
A public release is planned once the core development is finalized, ensuring that the system is 
fully functional and ready for broader use in OM tasks. 

2. Results  

BioGITOM’s results for OAEI 2024 are summarized in the following sub-sections:  

2.1. Performance Evaluation of BioGITOM Using OMIM-ORDO Dataset 

Table 1 demonstrates that BioGITOM excels on the OMIM-ORDO dataset. The system achieves 
an impressive precision of 0.951, reflecting its strong capability to generate highly accurate 
mappings while minimizing false positives. Additionally, BioGITOM delivers a solid recall rate 
of 0.773, indicating its effectiveness in identifying a significant number of relevant matches. 
This is further supported by a well-balanced F1 score of 0.853, underscoring the system’s overall 
accuracy and reliability. 
 
 



 

Table 1 
Results of BioGITOM on the OMIM-ORDO dataset. 
	

Tool P R F1 
BioGITOM 0.951 0.773 0.853 

	
2.2. Performance evaluation of BioGITOM using DOID-NCIT dataset 

Table 2 shows that BioGITOM performs exceptionally well on the DOID-NCIT dataset, 
achieving a precision of 0.944 and an F1 score of 0.913. While BioGITOM's recall value 
(0.884) is slightly lower than the highest recall of 0.959 achieved by LogMapBio, its 
overall performance remains highly competitive, demonstrating a strong balance between 
accuracy and recall. 

Table 2 
Results of BioGITOM on the DOID-NCIT dataset. 
	

Tool P R F1 
BioGITOM  0.944 0.884 0.913 

	
2.3. Performance evaluation of BioGITOM using SNOMED-FMA (Body) 

dataset 

As shown in Table 3, BioGITOM delivers outstanding performance on the SNOMED-FMA 
(Body) dataset, achieving the highest precision (0.962), recall (0.886), and F1 score (0.923) among 
all competing methods.  
 
Table 3 
Results of BioGITOM on the SNOMED-FMA (Body) dataset. 
	

Tool P R F1 
BioGITOM  0.962 0.886 0.923 

 
2.4. Performance evaluation of BioGITOM using SNOMED-NCIT (Pharm) 

dataset 

As shown in Table 4, BioGITOM demonstrates strong performance on the SNOMED-NCIT 
(Pharm) dataset, achieving the highest precision (0.983). However, its recall is relatively lower 
at 0.713, leading to an F1 score of 0.827. Despite this, BioGITOM secures the second position 
overall in this dataset, reflecting its high accuracy in producing correct mappings while 
acknowledging room for improvement in capturing a greater number of relevant matches. 

 



 

Table 4 
Results of BioGITOM on the SNOMED-NCIT (Pharm) dataset. 
	

Tool P R F1 
BioGITOM  0.983 0.713 0.827 

	
3. General Comments 

3.1. Comments on the Results (Strengths and Weaknesses) 

The experimental results highlight the significant advantages of BioGITOM compared to other 
highly ranked systems. A key strength of our approach lies in the Graph Isomorphism 
Transformer (GIT) model, which effectively generates contextually relevant representations, 
enabling the system to handle the complexities of biomedical ontologies. This capability is 
especially valuable when working with intricate and heterogeneous ontological structures. 

However, a limitation of our current approach is its focus solely on generating equivalent 
mappings. This narrow focus does not fully address other types of semantic relationships, such 
as subsumption, which may be crucial in certain OM tasks. 

3.2. Discussion on Improvements for the Proposed System 

To enhance the system’s versatility and performance, we are actively investigating ways to 
expand the range of matching relationships that BioGITOM can handle, moving beyond simple 
equivalences to include subsumption, and other relevant relationships. 

Additionally, we are exploring the transfer of concept representations into a hyperbolic 
integration space. This shift is motivated by the limitations of Euclidean space for hierarchical 
ontologies, where distortions can occur. Hyperbolic space is better suited for preserving 
hierarchical structures, and we believe that this transformation will significantly improve 
BioGITOM’s accuracy and representation of complex ontological relationships [11, 12]. 

4. Conclusion 

BioGITOM is a novel approach for biomedical OM that leverages a hybrid Graph Neural 
Network model, GIT, integrating the strengths of Graph Transformers (GTs) and Graph 
Isomorphism Networks (GINs).  

Experimental results show that BioGITOM consistently outperforms competitive methods 
across most of the evaluated datasets, underscoring its strong ability to produce highly accurate 
mappings. However, the system currently focuses exclusively on generating equivalent 
mappings. To address this limitation, we are actively working on extending BioGITOM to 
handle a broader range of matching relationships, such as subsumption, which will enhance the 
system’s versatility and applicability in more complex ontology matching scenarios. 
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