
OntoMatch Results for OAEI 2024
Julian Sampels1

1Technische Universität Berlin, Berlin, Germany

Abstract
This paper presents the results of OntoMatch in the OAEI 2024 competition. OntoMatch is an ontology matching
system that combines graph search algorithms with zero-shot prompting of Large Language Models (LLMs) to
produce class correspondences. The system follows an iterative approach involving neighbourhood candidate
selection, context extraction using graph search techniques, verbalising of context and zero-shot LLM prompting
with templates. Each iteration concludes with a cardinality filter to refine the alignments. OntoMatch was
evaluated on the OAEI conference benchmark dataset. The results demonstrate the impact of incorporating
graph-based contextual information alongside carefully crafted prompt templates, achieving competitive scores
and highlighting the effectiveness of LLM-driven approaches for ontology alignment.

Keywords
Ontology Matching, Knowledge Graphs, Prompt Generation, Graph Search, Large Language Model

1. Presentation of the system

1.1. State, purpose, general statement

Ontology matching is a fundamental task in achieving semantic interoperability, aiming to identify
correspondences between concepts across heterogeneous ontologies. With the increasing reasoning
capabilities of Large Language Models (LLMs) such as Llama2 [1], Mistral [2] and Flan T5 [3], several
recent approaches have leveraged LLMs to tackle the ontology alignment problem. Notably, one of the
key advantages of using LLMs is the elimination of a task specific training process. Unlike traditional
machine learning approaches, which require extensive training on labelled datasets, LLMs can operate
effectively by using their pre-trained knowledge. For instance, Norouzi et al. [4] evaluated ChatGPT
using various prompt templates, incorporating all ontology triples into prompts to directly identify
correspondences. Similarly, OLaLa [5] explored zero-shot, one-shot and few-shot prompting, using
templates that include relevant triples asking whether two classes are corresponding.

The proposed ontology matcher, OntoMatch, was first introduced in [6]. It is a new iterative system
that combines the benefits of zero-shot LLM prompting with structural graph search algorithms. The
following description is taken from this paper.

1.2. Specific techniques used

We propose an ontology alignment pipeline that explores prompt generation leveraging graph search
algorithms, as depicted in Figure 1 and detailed in Algorithm 1. The internal graph structure of
ontologies enables the representation of elements based on relations within their neighbourhood. We
employ iterative neighbourhood candidate selection, followed by a graph search algorithm collecting
the contextual neighbourhood information.
At the onset of the process, a pairwise Similarity Computation (see Algorithm 1 Line 1 and Sec-

tion 1.2.1) is performed for each pair, consisting of one element from each of the first ontology and
the second ontology. The High Precision Matcher (see Line 2 and Section 1.2.2) initially aligns tu-
ples that achieve a high similarity score. During each iteration of the matching process, Candidate

OM-2024: The 19th International Workshop on Ontology Matching collocated with the 23rd International Semantic Web Conference
(ISWC 2024), November 11th, Baltimore, USA.
Envelope-Open julian.sampels@campus.tu-berlin.de (J. Sampels)
Orcid 0009-0007-4021-9591 (J. Sampels)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:julian.sampels@campus.tu-berlin.de
https://orcid.org/0009-0007-4021-9591
https://creativecommons.org/licenses/by/4.0/deed.en

Ontologies Similarity Computation High Precision Matcher

Candidate SelectionCardinality Filter

repeat while
new matches
are found

LLM Graph Search Algorithm

VerbaliserPrompt Generator

Figure 1: An overview of the framework from [6]

Selection (see Line 6 and Section 1.2.3) is done for evaluation by the LLM. This selection procedure is
determined by tuples whose similarity scores meet a minimum threshold and are constrained by the
neighbourhood cross products of prior matches. One of the two graph search algorithms (see Lines 7
and 8 and Section 1.2.4) we implemented, namely Random Walk or Tree Traversal, is utilised to extract
contextual information from the neighbourhood surrounding each class within both ontologies. This
context, represented as triples, requires translation into natural language by the Verbaliser (see Lines 7
and 8 and Section 1.2.7) for evaluation by the LLM. For each candidate pair, a prompt is formulated
incorporating the verbalised context of both tuple elements (see Line 9 and Section 1.2.8). These prompts
are fed into the LLM (see Line 10 and Section 1.2.9), yielding a yes or no answer resulting in a mapping.
The Cardinality Filter (see Line 14 and Section 1.2.10) reduces the received (𝑛 ∶ 𝑚)-mapping into a
(1 ∶ 1)-mapping utilising the Hopcroft-Karp algorithm for maximum matchings on bipartite graphs [7].
This loop continues until the LLM evaluates all further discovered candidates as no match or no new
candidates are found.

Algorithm 1 Matching Pipeline
Require: Source ontology 𝑂1, target ontology 𝑂2, 𝑘-hop size 𝑘 and thresholds 𝑡𝑝, 𝑡𝑐
Ensure: Matching 𝑀
1: similarityComputation(𝑂1, 𝑂2) ▷ using Equation (1)
2: 𝑀 ← highPrecisionMatches(𝑂1, 𝑂2, 𝑡𝑝)
3: 𝑀𝑛𝑒𝑤 ← 𝑀
4: while 0 < length(𝑀𝑛𝑒𝑤) do
5: 𝑀𝑛𝑒𝑤 ← ∅
6: for (𝑐1, 𝑐2) ∈ candidates(𝑀, 𝑘, 𝑡𝑐) do ▷ using Equation (2)
7: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡1 ← verbalise(graphSearch(𝑐1, 𝑂1)) ▷ using Algorithm 2
8: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡2 ← verbalise(graphSearch(𝑐2, 𝑂2)) ▷ or Random Walk [8]
9: 𝑝𝑟𝑜𝑚𝑝𝑡 ← makePrompt(𝑐1, 𝑐2, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡2)
10: if llm(𝑝𝑟𝑜𝑚𝑝𝑡) == "𝑦𝑒𝑠" then
11: 𝑀𝑛𝑒𝑤 ← 𝑀𝑛𝑒𝑤 ∪ {(𝑐1, 𝑐2)}
12: end if
13: end for
14: 𝑀 ← 𝑀 ∪ cardinalityFilter(𝑀𝑛𝑒𝑤) ▷ using algorithm from [7]
15: end while

1.2.1. Similarity Computation

We apply a cosine similarity score to evaluate each pair within the cross-product of both ontologies,
aiming to identify and exclude tuples that are unlikely to match correctly. Before this assessment, the
concept names undergo a preprocessing step involving tasks such as resolving camel-cased names and
tokenizing class names split by ‘_’ or ‘-’. Following the preprocessing step, the similarity computation
with Equation (1) is conducted on their vector embeddings computed by the Sentence BERT (SBERT)
model, utilising the “all-MiniLM-L6-v2”1 transformer variant of SBERT.

𝑆(𝑐1, 𝑐2) ≔
Ω(𝑐1)

‖Ω(𝑐1)‖2
⋅

Ω(𝑐2)
‖Ω(𝑐2)‖2

∀𝑐1, 𝑐2 ∈ 𝑂1 × 𝑂2, (1)

where 𝑂1 × 𝑂2 is the cross product of both Ontology classes and Ω(⋅) the vectorised embedding of the
concept names.

1.2.2. High Precision Matcher

A class tuple (𝑐1, 𝑐2) ∈ 𝑂1 × 𝑂2 is considered a high precision match if their similarity score, as defined in
Equation (1), exceeds the threshold of 0.95, denoted as 0.95 ≤ 𝑆(𝑐1, 𝑐2). The reason why we chose a 0.95
similarity score as threshold in the High Precision Matcher instead of 1.0 is that most concepts may
comprise spelling mistakes and be written in either US or UK English. These high precision matches are
considered as initially new matches𝑀new in the first iteration of the procedure (see Algorithm 1 Line 3).

1.2.3. Candidate Selection

Matching exclusively based on the results from the LLM is computationally intensive, as it requires
running a prompt for each pair of classes. To maintain efficiency, we preselect candidates based
on the similarity score 𝑆 defined in Equation (1) and the neighbourhood of the previously matched
classes denoted by 𝑀. Analogous to the High Precision Matcher, the similarity score must reach
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑆(𝑐1, 𝑐2). In our candidate selection process, we consider 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as 0.4 without any
specific computation among test cases, since SBERT embeddings consider the direct meaning of words
due to its attention mechanism. Furthermore, in order to qualify as a candidate, a tuple (𝑐1, 𝑐2) must
satisfy the two additional conditions: firstly, the tuple entries 𝑐1 and 𝑐2 must each be unmatched;
secondly, there must exist a tuple (𝑐′1, 𝑐′2) ∈ 𝑀 that is already matched such that 𝑐1 is in the 𝑘-hop
reachable neighbourhood 𝑁𝑘(𝑐′1) and analogously 𝑐2 in the neighbourhood 𝑁𝑘(𝑐′2). This entire candidate
selection process is precisely formulated in the following equation,

𝐶𝑘(𝑀) ≔ {(𝑐1, 𝑐2) ∈ (𝑁𝑘(𝑐′1) × 𝑁𝑘(𝑐′2)) ∖ 𝑀× ∣ (𝑐′1, 𝑐′2) ∈ 𝑀 ∧ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑆(𝑐1, 𝑐2)}, (2)

where the exclusion of𝑀× ≔ {(𝑐𝑎, 𝑐𝑏) ∣ (𝑐𝑎, ⋅) ∈ 𝑀 ∧ (⋅, 𝑐𝑏) ∈ 𝑀} leads to candidate sets consisting solely of
unmatched classes. The 𝑘-hop reachable neighbours 𝑁𝑘(𝑣) of 𝑣 comprise all the neighbours of 𝑣 within
a distance of at most 𝑘 from 𝑣 for 𝑘 ∈ ℕ.

1.2.4. Graph Search Algorithm

Extracting context from the ontologies requires traversing the neighbourhood of a class in the corre-
sponding Knowledge Graphs (KG). We leverage two simple and well-known algorithms: (i) a Random
Walk algorithm akin to the approach proposed by Gosselin et al. [9] and (ii) a Tree Traversal algorithm
designed to extract a partial spanning tree from the KG within fixed boundaries. The reason why we
chose these two algorithms is that previous works [8, 10] have utilised them in their neighbouring
collection parts. In both algorithms, we consider the neighbouring classes connected by a rdfs:sub-
ClassOf (isParentOf for general to specific direction), rdfs:subClassOf (isChildOf for specific to general
direction) or owl:equivalentClass (isEquivalentTo) relation to the node. Additionally, property relations

1The model is available at https://www.sbert.net/docs/pretrained_models.html.

https://www.sbert.net/docs/pretrained_models.html

connected with rdfs:domain and rdfs:range are included. Previous works [8, 11, 12] also take into account
these relations to compute representations (or embeddings) of class names in their ontology matching
approaches.

1.2.5. RandomWalk Algorithm

A random walk is a sequence of nodes where each next node is selected randomly from the unvisited
neighbours of the preceding node. The Random Walk algorithm aims to generate 𝑏 ∈ ℕ random walks
of length 𝑙 ∈ ℕ, all starting from the same root concept. Excluding the root node, the random walks are
pairwise disjoint. The random walks are stored as a list of triples containing the previous concept, the
next concept and their relation. We adapted the Random Walk algorithm used by Gosselin et al. [8].

1.2.6. Tree Traversal Algorithm

The objective of the Tree Traversal algorithm is to construct a partial spanning tree rooted in the node
from which the context is extracted. To optimise efficiency and ensure contextual relevance, the tree
is limited in breadth and depth. Our Tree Traversal algorithm, as described in Algorithm 2, is based
on a breadth-first search (BFS) approach. The breadth limitation is achieved by reducing the outgoing
branches for each node. Similarly, the depth constraint is enforced by a maximal height parameter that
controls the distance of each node from the root node in the tree. In situations where the number of
neighbours exceeds the breadth limitation, a random selection approach is used.

Algorithm 2 Tree Traversal Algorithm
Require: Ontology, root concept 𝑐𝑟, maximal branches 𝑏 and height ℎ𝑚𝑎𝑥
Ensure: Tree triples 𝑇
1: 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅ ▷ set of visited nodes
2: 𝑇 ← ∅ ▷ Tree with triples (𝑐𝑜𝑛𝑐𝑒𝑝𝑡1, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡2)
3: 𝑄𝑢𝑒𝑢𝑒 ← [(0, 𝑐𝑟)] ▷ Queue containing tuples (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡)
4: while 0 < length(𝑄𝑢𝑒𝑢𝑒) do
5: (ℎ𝑣, 𝑣) ← dequeue(𝑄𝑢𝑒𝑢𝑒)
6: 𝑛 ← length(neighboursOf(𝑣)) ∖ 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑)
7: for 𝑖 ≔ 1 to minimum(𝑏, 𝑛) do
8: 𝑤 ← randomItem(neighboursOf(𝑣))
9: 𝑇 ← 𝑇 ∪ {(𝑣 , relation of 𝑣 to 𝑤, 𝑤)}
10: if 𝑤 ∉ 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ∧ ℎ𝑣 < ℎ𝑚𝑎𝑥 then
11: 𝑄𝑢𝑒𝑢𝑒 ← 𝑄𝑢𝑒𝑢𝑒 + [(ℎ𝑣 + 1, 𝑤)]
12: 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑤}
13: end if
14: end for
15: end while

1.2.7. Verbaliser

In order to transform the triples of the classes to be aligned into easily understandable natural language,
we utilise the Graph2Text model developed by Amaral et al. [13]. This innovative approach operates by
taking a series of triples as its input and generates coherent, human-readable sentences (see Table 1)
that encapsulate the information conveyed by these triples. The inclusion of this step is not strictly
necessary, as LLMs are capable of comprehending the triples in their original format.

1.2.8. Prompt Generator

The specific prompt for the selected candidates is formulated by filling in the information in one of
the four prompt templates, as described in Items 1 to 4. concept1 and concept2 are placeholders

Table 1
Examples for verbalised triples

Ontology#Concept Verbalised triple

cmt#PaperFullVersion
PaperFullVersion is the parent of both Paper and Meta-Review. Paper is also the
parent of Document which is the child of Meta-Review and PaperFullVersion.

edas#MealEvent
A meal event is a parent of a conference dinner and a child of an academic event,
which is parent of a social event that, in turn, is parent of an excursion.

representing the names of the classes, while context1 and context2 are derived from graph search
algorithms applied to these ontologies, either with or without a Verbaliser.

1. Comprehensive task description with question and contextual information:
In this task, we are given two concepts along with their definitions from
two ontologies. Our objective is to provide ontology mapping for the provided
ontologies based on their semantic similarities.
ontology1#concept1: context1, ontology2#concept2: context2
Does the concept concept1 correspond to the concept concept2? yes or no:

2. Short task description with question and contextual information:
Classify if two concepts refer to the same real world entity.
This is the context for the first concept concept1: context1
This is the context for the second concept concept2: context2
Do these concepts concept1 and concept2 refer to the same real world entity?
yes or no:

3. Short task description with contextual information but without question:
Classify if the following two concepts are the same.
First concept concept1: context1
Second concept concept2: context2
Answer yes or no:

4. Basic prompt for reference without providing contextual information:
Is concept1 and concept2 the same? The answer which can be yes or no is:

1.2.9. Large Language Model (LLM)

The prompts generated in the previous stage of this pipeline might be sent to encoder-decoder LLMs,
such as Flan T5 [14] or decoder only models, e.g., Mistral [2] and Llama2 [1]. This enables us to
determine whether two concepts from a pair in an ontology correspond or not. The LLMs respond with
a yes if the two concepts to be aligned exhibit semantically similar contexts; otherwise, they indicate
no (See Table 2). The chosen LLM, Flan T5-XL, has achieved remarkable results in Knowledge Graph
Construction tasks, such as domain-specific ontology construction from text [15] and relation extraction
between entities in a sentence [16]; therefore, we leverage this model in our approach.

1.2.10. Cardinality Filter

In our approach, we utilise the well-known Hopcroft-Karp algorithm for maximum matchings on
bipartite graphs [7] to efficiently generate a (1 ∶ 1) mapping from our (𝑛 ∶ 𝑚)mapping provided by the
LLM. This algorithm ensures a one-to-one correspondence with a worst-case complexity of O (|𝑉 |5/2).

1.3. Adaptations made for the evaluation

The final configuration involved setting a similarity threshold of 0.95 for the High Precision Matcher
and 0.4 for Candidate Selection. The 𝑘-hop size was fixed at 2, while a depth of 3 and a breadth of 2 was
selected for the Tree Traversal algorithm, constrained by the Verbaliser’s length limitations.

Table 2
An example for our generated prompts on the conference tracks and the Flan T5-XL LLM response

Case Prompt LLM

cmt#PaperFull-
Version;confer-
ence#Abstract

In this task, we are given two concepts along with their definitions from two on-
tologies. Our objective is to provide ontology mapping for the provided ontologies
based on their semantic similarities. cmt#PaperFullVersion: PaperFullVersion is
the parent of both Paper and Meta-Review. Paper is also the parent of Document
which is the child of Meta-Review and PaperFullVersion. conference#Abstract:
Extended abstract is the parent of Extended abstract. Does the concept “PaperFull-
Version” correspond to the concept “Abstract”? yes or no:

yes

1.4. Link to the system

OntoMatch is available under the GNU General Public License (GPL), Version 3 [17]. The source code
can be accessed from the GitHub repository: https://github.com/JulianSampels/OntoMatch.

2. Results

This section discusses the results2 of OntoMatch for the OAEI 2024 tracks. OntoMatch shares some
similar LLM concepts with OLaLa [18] and, for similar reasons, is not designed for multilingual input.
One specific OntoMatch factor is the used verbaliser (see Section 1.2.7), which is only capable of
processing English. Furthermore, as the proposed system is relatively new, we have some compatibility
issues with other OAEI tracks. Consequently, it is only capable of handling OAEI’s conference tracks at
this state of development.

2.1. Conference

The conference track consists of seven ontologies with reference alignment cases, all focused on the
domain of conference organisation. The calculated average reference alignment density is approx-
imately 2.2 × 10−3, which serves as an important metric for graph-structure based neighbourhood
candidate approaches, where new candidates are typically found near to previous matched classes.
This track includes several reference alignment sets: M1 focuses solely on classes, M2 targets

properties and M3 covers both classes and properties. Since OntoMatch currently matches classes
exclusively, we present the results based on the reference alignment variant rar2-M13, which contains
only violation-free classes.
OntoMatch achieved an overall F1 score of 0.63, which is above the StringEquiv baselines and

equivalent to edna. It demonstrated a high precision score of 0.82, while maintaining a good recall of
0.51 in the OAEI 2024 Campaign.

3. General comments

3.1. Comments on the results

OntoMatch is designed and programmed with the idea of modularity, providing the advantage of
uncomplicated component replacement, adaptation and interchangeability. This modular architecture
facilitates the potential for addressing the language barriers, enabling for substitution of specific
LLM components within the framework with alternative parts that better align with the desired
functionalities.

2The results for the OAEI 2024 conference tracks are available at https://oaei.ontologymatching.org/2024/results/conference/.
3The results for the rar2-M1 reference alignments of OAEI 2024 conference tracks are available at https://oaei.ontologymatching.
org/2024/results/conference/eval.html#rar2-M1.

https://github.com/JulianSampels/OntoMatch
https://oaei.ontologymatching.org/2024/results/conference/
https://oaei.ontologymatching.org/2024/results/conference/eval.html#rar2-M1
https://oaei.ontologymatching.org/2024/results/conference/eval.html#rar2-M1

When comparing with previous evaluations reported in [6], the results show notable deviations,
which could be attributed to differences in evaluation settings. Contributing factors to this discrepancy
could include variations in the LLM prompting process across systems, as well as potential issues related
to the verbalisation component. Both elements require compatibility with the underlying hardware
system to function correctly and avoid errors.

3.2. Discussions on the way to improve the proposed system

In future work, we plan to enhance compatibility with additional OAEI tracks and explore the use of
other LLMs, such as Llama2 [1] and Mistral [2]. Furthermore, we aim to optimise the parameters for
the graph search algorithms and the similarity threshold during the execution of the High Precision
Matcher. Specialised settings and components for speed could extend the framework’s capabilities and
performance.

References

[1] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-
gava, S. Bhosale, et al., Llama 2: Open foundation and fine-tuned chat models, arXiv preprint
(2023). doi:10.48550/arXiv.2307.09288.

[2] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, et al., Mistral 7b, arXiv preprint (2023). doi:10.48550/arXiv.
2310.06825.

[3] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma,
et al., Scaling instruction-finetuned language models, Journal of Machine Learning Research 25
(2024) 1–53. URL: https://www.jmlr.org/papers/volume25/23-0870/23-0870.pdf.

[4] S. S. Norouzi, M. S. Mahdavinejad, P. Hitzler, Conversational ontology alignment with ChatGPT,
CEUR-WS (2023). doi:10.48550/arXiv.2308.09217.

[5] S. Hertling, H. Paulheim, OLaLa: Ontology matching with large language models, in: Proceedings
of the 12th Knowledge Capture Conference 2023, K-CAP ’23, Association for ComputingMachinery,
New York, NY, USA, 2023, p. 131–139. doi:10.1145/3587259.3627571.

[6] J. Sampels, S. Efeoglu, S. Schimmler, Exploring prompt generation utilizing graph search algorithms
for ontology matching, in: Knowledge Graphs in the Age of Language Models and Neuro-Symbolic
AI, IOS Press, 2024, pp. 2–19. doi:10.3233/SSW240003.

[7] J. E. Hopcroft, R. M. Karp, An 𝑛5/2 algorithm for maximum matchings in bipartite graphs, SIAM
Journal on computing 2 (1973) 225–231. doi:10.1137/0202019.

[8] F. Gosselin, A. Zouaq, Sorbet: A siamese network for ontology embeddings using a distance-based
regression loss and BERT, in: International Semantic Web Conference, Springer, 2023, pp. 561–578.
doi:10.1007/978-3-031-47240-4_30.

[9] F. Gosselin, A. Zouaq, Sebmatcher results for OAEI 2022, CEUR-WS (2022). URL: https://ceur-ws.
org/Vol-3324/oaei22_paper12.pdf.

[10] Y. He, J. Chen, H. Dong, E. Jiménez-Ruiz, A. Hadian, I. Horrocks, Machine learning-friendly
biomedical datasets for equivalence and subsumption ontology matching, in: International
Semantic Web Conference, Springer, 2022, pp. 575–591. doi:10.5281/zenodo.6510086.

[11] V. Iyer, A. Agarwal, H. Kumar, VeeAlign: A supervised deep learning approach to ontology
alignment, CEUR-WS (2020). URL: https://ceur-ws.org/Vol-2788/oaei20_paper13.pdf.

[12] S. Efeoglu, GraphMatcher: A graph representation learning approach for ontology matching,
CEUR-WS (2022). doi:10.48550/arXiv.2404.14450.

[13] G. Amaral, O. Rodrigues, E. Simperl, Prove: A pipeline for automated provenance verification of
knowledge graphs against textual sources, Semantic Web (2022) 1–34. doi:10.3233/SW-233467.

[14] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying large language models and knowledge
graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering (2024). doi:10.1109/
TKDE.2024.3352100.

http://dx.doi.org/10.48550/arXiv.2307.09288
http://dx.doi.org/10.48550/arXiv.2310.06825
http://dx.doi.org/10.48550/arXiv.2310.06825
https://www.jmlr.org/papers/volume25/23-0870/23-0870.pdf
http://dx.doi.org/10.48550/arXiv.2308.09217
http://dx.doi.org/10.1145/3587259.3627571
http://dx.doi.org/10.3233/SSW240003
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1007/978-3-031-47240-4_30
https://ceur-ws.org/Vol-3324/oaei22_paper12.pdf
https://ceur-ws.org/Vol-3324/oaei22_paper12.pdf
http://dx.doi.org/10.5281/zenodo.6510086
https://ceur-ws.org/Vol-2788/oaei20_paper13.pdf
http://dx.doi.org/10.48550/arXiv.2404.14450
http://dx.doi.org/10.3233/SW-233467
http://dx.doi.org/10.1109/TKDE.2024.3352100
http://dx.doi.org/10.1109/TKDE.2024.3352100

[15] N. Mihindukulasooriya, S. Tiwari, C. F. Enguix, K. Lata, Text2KGBench: A benchmark for ontology-
driven knowledge graph generation from text, in: International Semantic Web Conference,
Springer, 2023, pp. 247–265. doi:10.1007/978-3-031-47243-5_14.

[16] S. Efeoglu, A. Paschke, Retrieval-augmented generation-based relation extraction, 2024. doi:10.
48550/arXiv.2404.13397.

[17] Free Software Foundation, GNU general public license, version 3, https://www.gnu.org/licenses/
gpl-3.0.html, 2007.

[18] S. Hertling, H. Paulheim, OLaLa results for OAEI 2023, CEUR-WS (2023). URL: https://ceur-ws.
org/Vol-3591/oaei23_paper7.pdf.

http://dx.doi.org/10.1007/978-3-031-47243-5_14
http://dx.doi.org/10.48550/arXiv.2404.13397
http://dx.doi.org/10.48550/arXiv.2404.13397
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://ceur-ws.org/Vol-3591/oaei23_paper7.pdf
https://ceur-ws.org/Vol-3591/oaei23_paper7.pdf

	1 Presentation of the system
	1.1 State, purpose, general statement
	1.2 Specific techniques used
	1.2.1 Similarity Computation
	1.2.2 High Precision Matcher
	1.2.3 Candidate Selection
	1.2.4 Graph Search Algorithm
	1.2.5 Random Walk Algorithm
	1.2.6 Tree Traversal Algorithm
	1.2.7 Verbaliser
	1.2.8 Prompt Generator
	1.2.9 Large Language Model (LLM)
	1.2.10 Cardinality Filter

	1.3 Adaptations made for the evaluation
	1.4 Link to the system

	2 Results
	2.1 Conference

	3 General comments
	3.1 Comments on the results
	3.2 Discussions on the way to improve the proposed system

