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Abstract
This paper aims at presenting the results obtained by BioSTransMatch at the OAEI 2024 competition, marking
its first participation in this event. In this context, we applied the model BioSTransformers we developed to
the equivalence matching task in the Bio-ML track of the OAEI challenge. The model is founded on sentence
transformers, that have recently achieved remarkable results in ontology matching tasks. Here, we leverage a
transformer-based language model to identify similarities between ontology concepts. BioSTransformers is a
siamese neural model that we developed and trained using biomedical scientific articles from PubMed. It embeds
texts into a vector space to compare and identify similarities. The model optimizes a self-supervised contrastive
learning objective using articles from the MEDLINE bibliographic database and their associated MeSH (Medical
Subject Headings) keywords.
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1. Related Work

Ontology matching (OM) tasks have evolved significantly, incorporating a wide range of approaches,
from traditional methods [1, 2] to cutting-edge transformer-based techniques [3, 4, 5].

Transformer-based approaches have successfully overcome a fundamental limitation of the existing
traditional methods: the inability to effectively take into account account contexts and synonyms when
comparing entities. These transformer-based methods can be categorized into two main types. The first
category includes unsupervised learning methods, such as [4, 3], which utilize embeddings to capture
semantic similarities. The second category involves supervised methods, which fine-tune models to
improve performance, as seen in works like [5, 6].
More recently, large language model (LLM)-based methods have emerged as a promising direction.

For instance, OLaLa [7] utilized an SBERT model to extract top-k matches from target ontologies,
followed by an LLM to generate the alignments. LLMs4OM [8] is an end-to-end framework that
employs a RAG approach to retrieve additional context from a knowledge base. The LLM is then queried
using the retrieved information.

2. Presentation of the System

2.1. State, Purpose, General statement

In recent years, ontology matching has garnered significant attention within various representation
learning systems. Particularly with advancements in machine learning, language model-based ap-
proaches, such as [6], have been increasingly applied to this task. Although these systems have been
successfully used in ontology matching within general domains, the biomedical one requires special
consideration due to the caracteristics of the clinical and medical language.
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Figure 1: General view of BioSTransMatch.

BioSTransformers is a transformer-based model built on a biomedical model [9]. It constructs embed-
dings using the pretrained biomedical transformer, Bio_ClinicalBERT. This method has demonstrated
that training on biomedical data extracted from the PubMed database can lead to better vector repre-
sentations compared to other embedding models trained on general data. The purpose of our system is
to leverage these embeddings to create an ontology matcher that offers a simple, fast, and generalizable
approach.
Figure 1 presents the overall architecture of BioSTransMatch.

2.2. Candidate Generation

The first step of the matching process consists in determining the concepts to match. In the Bio-ML
track, some classes have the use_in_alignment property, which indicates whether they should be used
in the matching process. We have excluded all candidate concepts that have this property.
For the local ranking sub-task, candidate mappings are suggested from a test.cands file. Therefore,

we utilize candidates from this list.
We utilized DeepOnto [10], a Python library designed to facilitate ontology engineering with deep

learning techniques. DeepOnto encapsulates basic ontology processing functions from the OWL API
and implements several essential components such as reasoning, verbalization, pruning, and taxonomy,
etc.

2.3. BioSTranformers Embeddings

The goal of BioSTransformers is to obtain rich biomedical embeddings. Siamese transformers were
originally designed to transform similarly sized sentences into vectors.
Sentence-BERT [11] is a BERT-based bi-encoder designed to generate semantically meaningful

sentence embeddings for use in textual similarity comparisons. For each input, the model produces
a fixed-size vector (𝑢 and 𝑣). The objective function is designed such that the angle between the two
vectors 𝑢 and 𝑣 is smaller when the inputs are similar.

In our approach, we propose transforming MeSH terms, titles, and abstracts of PubMed articles into
the same vector space by training a siamese transformer model on these data. To ensure compatibility



between short and long texts within this vector space, we trained our models using pairs of inputs such
as (title, MeSH term) and (abstract, MeSH term).
We use a self-supervised contrastive learning objective function based on the Multiple Negative

Ranking Loss (MNRL) function. The MNRL only needs positive pairs as input (the title (or abstract) and
a MeSH term associated with the article in our case). For a positive pair (title 𝑖 or abstract 𝑖, MeSH 𝑖),
MNRL considers that each pair (title 𝑖 or abstract 𝑖, MeSH 𝑗) with 𝑖 = 𝑗 in the same batch is negative.
Since an article can be associated with several MeSH terms, we ensured in the batch generation that an
abstract (or title) associated with a MeSH term in PubMed is never taken as a negative pair.

2.4. Compute Similarities

Using our embeddings, we construct a similarity matrix founded on the cosine similarity measure as
shown in Equation 1.

𝑐𝑜𝑠(𝑢, 𝑣) = 𝑢.𝑣
|𝑢||||𝑣 ||

(1)

In the matrix, rows represent concepts from the source ontology, and columns represent concepts
from the target ontology. The matrix values are filled with the cosine similarities computed by BioS-
Transformers.

2.5. Threshold filter

In the next step, we filter out all scores below a threshold, effectively eliminating all correspondences
with low confidence. All correspondences with a score below are excluded. We set the threshold at
0.75, which yielded good results for the evaluated tasks.

3. Results

3.1. Bio-ML Track

The Bio-ML track 1 consists of five different pairs of datasets and includes both an equivalence matching
task and a subsumption matching task. BioSTransformers participates in the equivalence matching
task only.

The ontologies of this track are the OMIM (Online Mendelian Inheritance in Man), ORDO (Orphanet
Rare Disease Ontology), NCIT (National Cancer Institute Thesaurus), DOID (Human Disease Ontology),
FMA (Foundational Model of Anatomy), and SNOMED CT (Systematized Nomenclature of Medecine -
Clinical Terms).

• OMIM desribes genes, genetic phenotypes, and gene-phenotype relations, generated through
manual curation based on biomedical literature [12];

• ORDO is a classification of rare diseases and relationships between diseases, genes, and epidemi-
ologic features [13];

• NCIT is an ontology on cancer-related concepts [14];
• DOID describes human diseases [15];
• FMA represents a coherent body of explicit declarative knowledge about the human anatomy
[16].

• SNOMED CT is a structured clinical terminology that includes a vast collection of medical
concepts, relationships, and terms to accurately represent clinical findings, procedures, and
medications [17].

The equivalence matching task is further divided into two categories: an unsupervised setting, and a
semi-supervised setting, where 30% of the reference alignments are provided in the training set.

1https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/



3.2. Unsupervised Setting

In this setting, we have used our model following the steps of the overall architecture in Figure 1. Table
1 shows the results on the different tasks.

Global Matching To find the mappings between concepts for the global matching task, we select the
element in each row that represents the maximum similarity among the column elements. Specifically,
we choose the first element that has the highest similarity.

Local Ranking In this step, we take all candidates and sort them in a decreasing order.

Table 1
Bio-ML track evaluation results for the equivalence matching task for the unsupervised setting.

Task P R F1 MRR H@1

OMIM-ORDO 0.312 0.586 0.407 0.7408 0.6825
NCIT-DOID 0.657 0.833 0.735 0.9001 0.8646
SNOMED-FMA 0.128 0.384 0.192 0.6326 0.5125
SNOMED-NCIT (Pharm) 0.584 0.844 0.690 0.9431 0.9182
SNOMED-NCIT (Neoplas) 0.289 0.663 0.402 0.8463 0.7893

3.3. Semi-supervised Setting

The supervised model requires a dataset of both positive and negative alignments during training. This
dataset consists of reference alignments as well as generated positive and negative alignments.

Global Matching First, we trained our model on the training data from all tasks to fine-tune the
model across the entire dataset. The training was conducted using cosine similarity, with reference
alignments as positive samples and generating negative ones from the list of references.
The second step involves training a neural classifier to select the best alignment from a list of

candidates. To achieve this, we used the fine-tuned model to generate similarity scores for each
candidate from the source data, and the trained classifier to choose the optimal alignment from the list
of candidates.

Local Ranking As in the local ranking process for the unsupervised setting, all candidates are
considered and ranked. However, in this case, the ranking is based on the scores generated by the
fine-tuned model. Table 2 presents the results for the different tasks.

Table 2
Bio-ML track evaluation results for the equivalence matching task for the semi-supervised setting

Task P R F1 MRR H@1 H@5

OMIM-ORDO 0.973 0.278 0.432 0.737 0.672 0.811
NCIT-DOID 0.698 0.741 0.719 0.906 0.872 0.943
SNOMED-FMA 0.357 0.661 0.464 0.855 0.798 0.924
SNOMED-NCIT (Pharm) 0.845 0.860 0.852 0.957 0.943 0.974
SNOMED-NCIT (Neoplas) 0.700 0.607 0.650 0.855 0.795 0.933



4. General Comments

BioSTransMatch performs well in the local ranking task within the unsupervised setting, as demon-
strated in Table 1. The model achieves results comparable to state-of-the-art approaches in local ranking,
even under zero-shot conditions.
However, for datasets such as SNOMED-FMA, SNOMED-NCIT (Neoplas) and OMIM-ORDO, BioS-

TransMatch yielded lower-than-expected outcomes. This suggests that our current strategy—selecting
the alignment with the highest score—may not be optimal when identifying the correct match. To
address this, we extended the model to a semi-supervised setting, allowing it to learn to select the best
alignment from a list of candidates. This adjustment resulted in significantly improved performance
compared to the unsupervised approach.
As potential avenues for optimizing the system, BioSTransMatch can be optimized in several ways.

One key enhancement involves incorporating additional information into the alignment process, as our
current method relies exclusively on label comparisons, which may not always provide sufficient detail
for accurate matching.

Furthermore, investigating alternative strategies for alignment selection in the global matching task
within the unsupervised setting could be advantageous. Rather than relying solely on the maximum
score, exploring methods such as greedy algorithms or the Max Weight Bipartite Extractor could yield
improved results. Additionally, experimenting with different threshold values for filtering could further
refine the system’s accuracy.

5. Conclusion

In this paper, we present the BioSTransMatch system and discuss its performance results in the BioML
track of the OAEI challenge. Our evaluation showed that the model achieved moderate performance in
the unsupervised mode. While BioSTransMatch delivered lower overall results in the global matching
task, it performed well in the local ranking task.
In the semi-supervised setting, the system achieved significantly better results, highlighting the

potential of supervised learning in enhancing the alignment process. Additionally, our findings suggest
that leveraging textual information can be beneficial when generating correspondences between entities.

For this first OAEI participation of BioSTransMatch, the reported results motivate further research in
the area of transformer-based ontology matching. The system can be greatly improved in the future,
by improving the candidate generation pipeline or using more information in the entity comparison.
There remains opportunities for enhancing its capabilities, we seek to a deeper analysis of ontology
structures to better leverage structural context.

Future participations in OAEI also allows ongoing evaluation versus state-of-the-art matchers. Overall,
the results provide motivation to push the boundaries of adaptive ontology matching.
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