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Abstract
This paper presents the results obtained by TOMATO in the OAEI 2024 evaluation campaign. We describe
here the results in the Conference track and our first . We report a general discussion on the results and
future improvements of the system.

1. Presentation

1.1. Overview

TOMATO (TOolkit for MATching Ontologies) takes inspiration from previous work on ontology
matching systems such as POMAP++ [1]. TOMATO is designed as a pairwise matcher, aligning
pairs of input ontologies against each other. At its core, TOMATO utilizes machine learning
approaches to learn from element similarities. In earlier versions, it focused mainly on string-
based similarity measures of ontology elements [2].

Challenges in Previous Versions. Earlier iterations of TOMATO, such as the 2023 system
[3], heavily relied on reference alignments for training machine learning models. This depen-
dency led to issues of overfitting and limited generalizability when applied to new datasets.
Furthermore, the lack of external ground truth for most OAEI tracks posed a challenge to
developing robust machine learning approaches.

Shift Towards Machine Learning and Scalable Alignment. In 2024, TOMATO made
significant strides by shifting towards a more machine learning-centric approach while minimiz-
ing dependency on reference alignments. However, the challenge remains: how can machine
learning models be trained without a reliable ground truth? To address this, several strategies
were explored:

• Artificial Alignment Generation. Leveraging large language models (LLMs) such as
ChatGPT and XLM-Roberta, we generated hypothetical alignments between ontology
entities, which were used to train models without relying on reference alignments.

OM-2024: The 19th International Workshop on Ontology Matching collocated with the 23rd International Semantic Web
Conference (ISWC 2024), November 11th, Baltimore, USA.
$ Philippe.Roussille@irit.fr (P. Roussille); Olivier.Teste@irit.fr (O. Teste)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Philippe.Roussille@irit.fr
mailto:Olivier.Teste@irit.fr
https://creativecommons.org/licenses/by/4.0


Figure 1: System workflow

• Exploring Alternative Model Architectures. To better interpret the learned align-
ment patterns, we experimented with models such as Decision Trees. These models
provided insights into the significance of various similarity metrics, but faced limitations
in generalizing across ontologies.

• Self-Alignment as a Baseline. A quick and practical solution was self-alignment, where
an ontology was aligned with itself. This allowed us to generate accurate correspondences,
which improved precision but led to a drop in recall due to a lack of variability.

1.2. Workflow

The workflow in TOMATO begins by taking as input two OWL ontologies to be aligned,
along with their associated reference RDF alignment files. These reference alignments provide
examples of entity matches that serve as ground truth for the learning process.

TOMATO then prepares the data by combining all ontology entity pairs (both matched and
unmatched based on our training data) into a single dataset. This set contains all possible entity
couples across the input ontologies, along with their reference match status.

From here, TOMATO can be used in one of two modes:



1. Learning mode: A machine learning model is trained on the full mixed dataset to learn
the patterns of matching vs non-matching entities.

2. Matching mode: A pre-trained model is applied to new ontology entity pairs to predict
their alignment status.

Unlike previous versions where we explored a wide range of similarity measures, our focus this
year has shifted toward finding ways to train models without relying on reference alignments.
This change stems from the recognition that reference alignments, while useful, introduce
biases that may limit the generalization of the system to unseen ontologies.

In 2024, our approach centers on the development of alternative strategies for generating
training data, such as creating artificial alignments using large language models and leveraging
self-alignment techniques. These methods provide the system with diverse examples of both
trivial and complex matches, allowing it to learn general alignment patterns without depending
on explicit reference data. This way, TOMATO is able to explore a broader spectrum of alignment
examples, improving its robustness and adaptability to various ontology domains.

1.3. Matching steps

The initial step in TOMATO’s workflow is to parse and ingest the input ontologies. We leverage
the owlready2 Python library to build an in-memory representation containing all ontology
elements and relationships.

Each entity such as classes, data properties and object properties is indexed via a unique
identifier, with the preferred identifier being the element’s label if present. As a fallback, the
final segment of the entity’s URI is used.

Structural relationships between classes are also extracted and stored. This includes superclass-
subclass links as well as relations defined through object properties.

By fully populating an internal graph structure in this way, TOMATO is able to consider
both lexical properties of entities as well as their positions and connections within the ontology
taxonomy during the matching process. This combined view aims to capture more contex-
tual evidence about intended semantic correspondence compared to considering elements in
isolation.

The loaded ontologies can then be queried as needed during the various steps of similarity
computation, model training and alignment prediction.

1.3.1. Ontology Preprocessing

As in prior iterations, we apply standard text preprocessing techniques to clean and normalize
entity labels before computing similarities. This includes:

• Converting CamelCase to snake_case
• Replacing non-alphanumeric symbols with spaces
• Performing English stemming
• Removing stop words



1.3.2. Train and match

Training a Model. We have shifted our focus this year from relying on reference alignments to
training our models using alternative methods. Instead of using predefined reference alignments
to label entity pairs as matches (1) or non-matches (0), we now generate training data by aligning
an ontology with itself. This ensures a perfect match for all entities, providing a reliable ground
truth.

In this approach, we construct a similarity matrix for the ontology pair by comparing an
ontology to itself. This matrix is then fed into a pre-trained matching model, which is now
based on self-alignment data. By using an ontology’s internal structure to generate matches,
we aim to create robust training examples that improve the model’s ability to generalize across
different ontologies.

Computing Alignments. A similarity matrix is constructed for the target ontology pair.
This matrix is then input to the pre-trained matching model, which outputs the predicted entity
alignments.

This year, we successfully broke a significant barrier regarding memory usage by optimizing
the overall memory footprint of the system. Through careful optimization of the internal data
structures and efficient management of the similarity matrix, we were able to substantially
reduce the memory requirements. This allowed TOMATO to handle larger and more complex
ontologies without encountering memory overloads, an issue that had previously limited our
participation in certain OAEI tracks.

However, despite these improvements, there remain some unresolved issues, likely related
to how Docker is used internally for managing the computational processes. These issues
occasionally result in suboptimal performance, particularly when handling very dense or highly
interconnected ontologies. Despite these challenges, we were still able to successfully participate
in the Anatomy Track for the first time, demonstrating the robustness of TOMATO’s alignment
capabilities.

By optimizing memory usage and tackling system scalability, we have made significant
progress in improving TOMATO’s overall performance. Nevertheless, addressing the remaining
Docker-related issues is a key area for future development.

2. The problem for ground truth

2.1. Generating Artificial Alignments with Large Language Models

One of the first strategies we explored was the generation of artificial alignments using large
language models (LLMs) such as ChatGPT and XLM-Roberta. The idea behind this approach
was to leverage the capabilities of these advanced models to produce hypothetical alignments
between ontology entities, while explicitly excluding reference alignments provided by the
OAEI.

As demonstrated by He et al. [4], large language models are capable of identifying semantic
relationships between terms, but they struggle with the complexities of specialized terminologies
and structures found in ontologies.



The goal was to generate plausible correspondences that could serve as training data for our
machine learning models. By excluding the reference alignments, we aimed to address the issue
raised in previous OAEI campaigns regarding the use of such resources. Large language models,
trained on vast amounts of text data, are capable of identifying semantic relationships between
terms, and we hoped to capitalize on this ability to create a diverse set of alignment examples.

Challenges Encountered. However, this approach quickly revealed several significant chal-
lenges. First and foremost, the size, structure, and exhaustive nature of ontology descriptions
had a direct impact on the performance of the LLMs. Ontologies often consist of highly special-
ized terminology, complex relationships, and formal structures, which LLMs may struggle to
accurately interpret or generate.

The quantity and form of ontology descriptions – whether detailed or concise—heavily
influenced the quality of the alignments produced. In some cases, the artificial alignments
generated by the models were too generic or semantically incorrect, lacking the necessary
precision to serve as useful training data. This issue was exacerbated by the complexity of
ontological relationships, such as hierarchical structures and role-based associations, which
LLMs failed to capture consistently.

As a result, the alignments we produced with this method quickly proved to be unusable
for training purposes. The generated correspondences either did not align with the real-world
complexity of ontology matching or introduced too much noise, rendering them ineffective for
model learning.

2.2. Exploring Alternative Model Architectures

In parallel to generating artificial alignments, we explored alternative machine learning model
architectures to address the issue of not relying on reference alignments. Our primary approach
was to experiment with models such as Decision Trees, which offer a more interpretable
representation of the matching process. The goal of this approach was to better understand the
importance of different similarity measures and how they contribute to successful alignments.

Decision Trees offer interpretable alignment models, as highlighted in Fleissner et al. [5] and
Kokash et al. [6], where the use of Decision Trees for clustering and alignment tasks is explored.

By using models like Decision Trees, we aimed to generate explicit rules that could guide the
alignment process. Unlike black-box models, such as neural networks, Decision Trees provide
clear decision paths, allowing us to analyze how various similarity metrics—lexical, structural,
and semantic—are weighted and applied to different types of correspondences (e.g., class vs.
property alignments).

Challenges Encountered. While Decision Trees offered greater interpretability, they also
introduced several challenges. First, the complexity of ontology alignment often exceeds the
capacity of simple rule-based models. Ontologies involve intricate hierarchical structures,
multiple types of relationships, and a high degree of semantic ambiguity, all of which are
difficult to capture with rigid, predefined rules.

As we tested this approach, it became clear that Decision Trees struggled to generalize across
different ontologies. The alignment rules generated were often specific to the training data



and did not perform well when applied to new, unseen ontologies. In addition, the depth
and complexity of the trees quickly escalated as we introduced more features and similarity
metrics, leading to overfitting. This overfitting resulted in poor generalization and a lack of
robustness when the model encountered ontologies with different structures or domain-specific
terminologies.

Although this approach provided valuable insights into the role of various similarity measures,
it ultimately highlighted the need for more flexible models capable of handling the nuanced and
complex nature of ontology alignment. Despite the limitations, the experiment underscored
the importance of better feature selection and the need for hybrid approaches that combine
rule-based reasoning with more adaptive learning techniques.

2.3. Self-alignment as a quick-and-dirty solution, which ultimately worked

As a rapid solution to the training problem, we implemented an approach where the system
aligns an ontology with itself. This method was introduced as a quick workaround to avoid
using reference alignments, while still providing a baseline for the machine learning model to
learn from. The self-alignment ensures that all correspondences between entities are correct by
design, as they involve the same ontology being aligned to itself.

Initial Results. During testing, we found that this method allowed us to maintain an accept-
able level of precision, although it led to a noticeable drop in recall. Since the system was trained
on perfect correspondences (i.e., each entity aligning with itself), it struggled to generalize to
more complex inter-ontology alignments, where correspondences are less obvious or more
semantically intricate.

Despite this drop in recall, the precision remained high, as the system could accurately identify
correct matches within the self-alignment framework. The key insight from this experiment
is that while recall suffers due to the lack of variability in the training data, precision can
be maintained in a controlled environment. This suggests that the model still benefits from
understanding simpler correspondences, which may serve as a foundation for more complex
learning in future iterations.

Ongoing Use of This Approach. Given the stability of the precision, we decided to retain
this approach for the time being, using it as a foundational method while exploring other
strategies for improving recall. We maintained the same 𝛼 parameter configuration as last
year, which controls the balance between positive and negative examples during training. This
allowed us to keep the same level of precision while investigating ways to enrich the model’s
ability to capture more complex correspondences.

This approach has also proved useful in reinforcing the insights gained from the first two
strategies. In particular, it has highlighted how the generation of artificial noise and the
exploration of different model architectures can help refine the system’s overall alignment
capabilities. Moving forward, we plan to combine self-alignment with other techniques, such
as artificial alignment generation and feature-driven model exploration, to further enhance
TOMATO’s performance.



3. Results of the OAEI 2024 Conference Track

TOMATO participated again this year in the Conference Track of the OAEI, where the objective
is to align academic domain ontologies. The Conference Track remains a key environment
for evaluating matching systems, as it involves dense and diverse ontologies that represent
concepts and relationships within academic contexts, such as publications, authors, conferences,
and institutions.

3.1. Raw results

Table 1
Performance Results for OAEI 2024 Conference Track

System Precision F1-measure Recall Threshold
TOMATO 0.57 0.49 0.43 0.0
StringEquiv 0.76 0.52 0.43 0.0
MDMapper 0.67 0.62 0.55 0.0
LogMap 0.77 0.63 0.58 0.0
Matcha 0.66 0.69 0.61 0.0

3.2. Comparison

Table 2
Comparison of TOMATO Performance in OAEI 2023 and 2024

Year Precision F1-measure Recall
2023 0.57 0.52 0.47
2024 0.57 0.49 0.43

3.3. Overall Performance

In 2024, TOMATO showed a slight decrease in performance compared to the previous year. The
F-measure dropped from 0.52 in 2023 to 0.49 this year, mainly due to a drop in recall, which
went from 0.47 to 0.43. Precision, however, remained stable at 0.57, indicating that TOMATO
continues to produce accurate alignments, though with reduced coverage, i.e., fewer relevant
correspondences are being found.

3.4. Comparison with 2023

Compared to last year’s results, TOMATO’s recall decreased, contributing to the overall drop in
the F-measure. However, it is worth noting that TOMATO maintained a good precision score,
demonstrating that the correspondences it does identify tend to be correct. This stability in
precision is encouraging, as it suggests a solid foundation that can be built upon by improving
recall in the future.



3.5. Approach and Future Directions

This year, the primary focus for TOMATO was on avoiding the use of reference alignments for
model training, addressing concerns raised in the previous OAEI campaign. Despite this shift,
TOMATO managed to maintain a consistent precision, although the recall dropped slightly due
to the exclusion of reference alignments from the training process.

Looking ahead, we aim to improve TOMATO’s recall by incorporating external knowledge
sources, such as knowledge graphs, to capture more complex and subtle correspondences.
Further experimentation with hybrid strategies combining machine learning with heuristic-
based matching could also enhance TOMATO’s performance on large-scale, diverse ontology
matching tasks.

4. Results of the OAEI 2024 Anatomy Track

TOMATO participated for the first time in the Anatomy Track, which involves aligning the
Adult Mouse Anatomy with a section of the NCI Thesaurus representing human anatomy. This
track presents unique challenges due to the large size and technical complexity of the ontologies
involved. These ontologies are meticulously designed and contain highly specialized terms.
Furthermore, they differ from other ontologies in their use of specific annotations and roles,
such as the extensive use of the partOf relation.

4.1. Performance and Challenges

TOMATO’s performance on the Anatomy Track was moderate, placing it behind established sys-
tems like LogMap and Matcha in terms of F-measure and recall. The following table summarizes
TOMATO’s performance compared to other systems:

Table 3
Performance on the Anatomy Track

Matcher Runtime (s) Size Precision F-Measure Recall Recall+
Matcha 42 1485 0.951 0.941 0.931 0.82

LogMapBio 1346 1549 0.888 0.898 0.908 0.757
MDMapper 121 1441 0.926 0.903 0.881 0.703
LogMap 12 1402 0.917 0.881 0.848 0.602
ALIN 370 1156 0.984 0.851 0.75 0.489

LogMapLite 2 1147 0.962 0.828 0.728 0.288
TOMATO 2154 572 0.955 0.523 0.36 0.024
StringEquiv - 946 0.997 0.766 0.622 0.000

TOMATO achieved a precision of 0.955, which is among the highest in the track. However,
its recall was significantly lower at 0.36, leading to a moderate F-measure of 0.523. The low
recall indicates that TOMATO struggled to capture a large number of relevant correspondences,
especially non-trivial matches. In terms of recall+, which measures non-trivial correspondences
(i.e., those that do not have identical labels), TOMATO’s performance was the lowest in the
track (0.024).



One key limitation observed during this evaluation was related to memory usage and ex-
ecution speed. The ontologies in the Anatomy Track are not only large but also structurally
complex, which increases the computational demands during the alignment process. Despite
efforts to optimize TOMATO’s performance, we encountered memory bottlenecks and execution
times that exceeded acceptable thresholds, particularly when dealing with large datasets.

4.2. Areas for Improvement

The Anatomy Track highlights several areas where TOMATO needs improvement.

• Memory management. The large size of the ontologies, coupled with their detailed
conceptualization and numerous annotations, requires a more efficient use of memory.
Current limitations have led to performance bottlenecks, particularly when processing
the full scope of the anatomy ontologies.

• Execution speed. Given the complexity of the relationships in these ontologies, such
as the extensive use of the partOf relation, TOMATO’s runtime has proven slower than
expected (2154 seconds). We need to further optimize the system to handle these large,
hierarchical structures more efficiently.

Despite these challenges, TOMATO has demonstrated its potential in managing simpler
correspondences, and we are confident that with improved memory handling and speed op-
timizations, it can perform more competitively in future Anatomy Track evaluations. Future
work will focus on reducing computational overhead while maintaining the precision levels
observed during this year’s evaluation.

5. Conclusion and Future Directions

This work highlights the key challenges associated with applying machine learning (ML)
approaches to ontology matching, particularly in the absence of a reliable ground truth. Unlike
traditional matching systems, ML models rely heavily on training data to learn patterns of
similarity between entities. The lack of a dedicated ground truth complicates this process, as
generating accurate and unbiased training examples becomes a significant hurdle. In the OAEI
context, the prohibition against using reference alignments for training further exacerbates this
issue, leaving ML-based systems like TOMATO at a disadvantage compared to heuristic-based
systems.

However, in certain tracks, such as the medical ontologies, this challenge could be mitigated
by leveraging external knowledge sources. Medical ontologies, for instance, benefit from large,
well-established resources like SNOMED CT and the Unified Medical Language System (UMLS),
which provide robust, validated knowledge bases that could serve as a proxy for ground truth. By
incorporating such external resources, ML-based approaches could be trained more effectively,
leading to more accurate and generalized matching results in those domains.

We plan to integrate clustering-based noise generation with our existing strategies to improve
TOMATO’s performance. In addition, exploring the use of external knowledge bases in tracks
where they are available (e.g., medical ontologies) could provide a more stable ground for



training ML models. Finally, we will continue refining the feature selection process and hybrid
approaches, combining rule-based reasoning with ML, to address the inherent complexity of
ontology alignment tasks.
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