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Abstract
This paper presents the 2024 results of an enhanced version of the CANARD system, which integrates Large
Language Models (LLMs) to address the challenges of complex alignments. By leveraging LLM-based embeddings,
the system better captures semantic and contextual relationships, improving both precision and coverage. Four
architectural settings – Label Embedding Similarity (LES), Embeddings of SPARQL Query (ESQ), Subgraph
Embeddings (SE) and Instance Embeddings (IE) – were explored to improve the alignment quality. Experiments
on the Populated Conference dataset from the OAEI Complex Track demonstrate improvements over baseline
approaches, with an increase in F-measure up to 45% in some cases. However, challenges such as runtime
overhead in IE and noise in SE components were identified, where future work can explore better aggregation
techniques or fine-tuned LLMs.
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1. Presentation of the System

Due to the textual composition of ontologies, the capacity for language understanding is an important
feature for matching ontologies. Large Language Models (LLMs) show an increasing capacity for textual
comprehension in understanding and generation tasks. In the simple ontology matching task, these
models are widely explored and show increasing performance [1]. However, few approaches have
explored LLMs or embeddings in complex ontology matching. The system here is an extension of a
previous version of CANARD (Complex Alignment Need and A-box-based Relation Discovery) [2].
This new version replaces the main similarity computation modules of CANARD, which are mainly
lexical similarity computations, with embedding similarity generated by LLMs. With this replacement,
the matcher is supposed to have an increasing capacity to retrieve better complex correspondences
while being able to filter incorrect ones.

The base implementation of CANARD uses CQAs (Competency Questions for Alignment) to reduce
the search space and receives a source CQA as input together with the two ontologies to be matched.
CQAs are SPARQL queries used to retrieve instances in the source KG and check for owl:sameAs,
skos:closeMatch, or skos:exactMatch predicates relating to those instances in the target KG. In case
no predicate is found, an exact string matching is performed. With those instances in target KG, the
subgraphs related to those instances are retrieved along with the entities’ labels and descriptions. After
that, a cartesian lexical similarity is computed between the labels of the entities present in the CQA
and the ones retrieved from the subgraphs with a threshold filter that ignores the similarities below a
threshold.

The new architecture of CANARD is composed of 9 steps (Figure 1). In step 1, a DL formula is
extracted from the source SPARQL CQA. Then in step 2, the labels from the entities present in the
source SPARQL CQA are extracted. In Step 3, the instances are retrieved by querying the source KG
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Figure 1: Overall steps of the system.

with the source CQA. In step 4, similar instances in the target KG are retrieved for those retrieved in
step 3. In step 5, the subgraph of the target instances is retrieved. In step 6 the labels of the entities
in the subgraphs are retrieved and in step 7 their similarity is measured against the labels retrieved
in step 2. In step 8 the correspondences with summed similarity higher than a threshold are kept
and in step 9 the final alignment is written in EDOAL format. Two main improvements have been
implemented, corresponding to the two similarity evaluations in the instance matching step and in the
subgraph similarity measure. By using embeddings to compute those similarities, the matcher improves
its capacity to retrieve the relevant entities to each case. Also, since LLMs have increased language
understanding, using embeddings generated by LLMs improves similarity computation.

1.1. Embeddings Generation

Multiple embedding applications are possible in the proposed architecture. Since subgraphs are involved
in the similarity computation to the CQA entities (step 7 of Figure 1), some aggregation techniques are
applied. For the similarity computation with embeddings three aggregation strategies were considered:
Label Embedding Similarity (LES) Entity labels from the source and target KGs are processed

through pre-trained LLMs. Those LLMs have an associated tokenizer that splits the text into multiple
tokens. Those tokens are then input to the LLM that generates one embedding for each token. The final
embedding for each label is derived by averaging all embedding from the output of the model’s last
hidden layer. All embeddings from the CQA side are cross-compared with all tokens in the subgraph
labels resulting in n:m comparisons. The similarities lower than a threshold are filtered out and the
resulting ones are added to the final similarity.
Embeddings of SPARQL query (ESQ) In this setting the embeddings generated for all entities in

the CQA (similar to the LES step) are averaged resulting in a single embedding for the CQA. Then this
embedding is compared with the ones from the subgraph entities resulting in 1:m comparisons.

Subgraph embeddings (SE) For this setting, the embedding for the CQA is computed as in the ESQ
setting, and the embeddings for the subgraph are aggregated. Two types of aggregation are considered
depending on the type of the subgraph. If the CQA is unary (one variable in the SPARQL query) the
corresponding subgraph is a triple composed of subject, predicate, object, and also the subject type and
object type. For binary CQAs (two variables) the corresponding subgraph is a path that connects the
entities retrieved in the variables.

In the instance matching step (step 4 Figure 1), an embedding is generated for all entities in the datasets



without the BNodes. Then, for any given entity the most similar ones by computing their embedding
similarity. This setup is named Instance Embeddings (IE) and can be applied simultaneously with the
CQA embedding settings LES, ESQ, and SE.

1.2. Adaptations Made for the Evaluation

Some adaptations were made to evaluate the system in the OAEI complex track. The matcher was
evaluated in the Populated Conference dataset as it contains CQAs and instances as required by
CANARD to execute and later by the evaluator to compare the results.

The Populated Conference dataset contains 5 populated ontologies and all pairs were evaluated with
the proposed approach. For each pair, a range of similarity thresholds was evaluated to determine the
optimal value for filtering alignments. Two distinct threshold values are needed in this approach, one
for the CQA-related similarity and the other for the instance matching step. For the similarity in step 7
(Figure 1), values ranging between 0.5 and 1.0 incrementing by 0.1 were considered. For the instance
matching step (step 4 in Figure 1), thresholds of 0.8, 0.85, and 0.9 were employed to verify the impact of
the threshold in this step. Only a few thresholds were considered in the step 4 to reduce the number of
combinations to be tested.

The embedding generation (before themain execution), involves processing all KG labels and instances
through LLMs and is computationally intensive. To address this, embeddings were precomputed and
cached for reuse during the matching process. The computation using LLMs was computed using GPU
acceleration and the usage in the evaluation was done only with CPU. The tested models are GritLM-7B
[3], sfr-mistral [4], Glove [5], and Stella-base 1.

The evaluation was automatically performed using the evaluator proposed in [6] that was used
to evaluate the alignments of matchers in the complex track for the OAEI campaign. Two metrics
from those available in this evaluator were selected. Coverage (query F-measure based on CQAs) and
precision. Both metrics consider the comparison of instance sets.

Considering all parameter variations of input ontologies, embedding models, and thresholds, 1800
combinations of parameters were tested to identify themost promising configurations. This was followed
by additional evaluations incorporating embeddings into the linking step for the top-performing settings.
These adaptations allowed the system to demonstrate substantial improvements over baseline methods,
achieving higher precision and coverage scores on the tested dataset.

1.2.1. Link to the System and Parameters File

The baseline approach can be found in https://framagit.org/IRIT_UT2J/ComplexAlignmentGenerator.
The embedding variation used in this paper can be found at https://gitlab.irit.fr/melodi/
ontology-matching/complex/canarde.

2. Results

In this section, the results of the evaluation of the Populated Conference dataset are presented. In
the query-oriented evaluation, the GritLM-7B with the ESQ setting was the one with the highest
query-oriented f-measure and precision. In the precision-oriented evaluation, the Stella-base model
with ESQ setting and the instance embeddings IE setting with 0.85 threshold reaches higher results in
all precision-oriented metrics. The results of this evaluation are presented in Table 1.

As shown in Table 1, LES and ESQ achieve the highest performance when LLMs are utilized. These
configurations involve fewer embedding aggregations than SE. Notably, as the number of aggregations
increases, such as in the SE configurations, the performance of all models decreases. This degradation can
be attributed to the loss of semantic information and increased noise caused by combining embeddings
without a weight transformation mechanism or filtering, such as those used in Graph Neural Networks

1https://huggingface.co/infgrad/stella-base-en-v2
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query oriented precision oriented
model cls cqa rec. prec. ovlp f-m. cls prec. rec. prec. ovlp f-m.
base (levenshtein) 0.35 0.36 0.47 0.35 0.47 0.21 0.26 0.26 0.28 0.26
GritLM-7B (LES) 0.37 0.32 0.68 0.36 0.68 0.36 0.39 0.38 0.40 0.39
sfr-mistral (i-LES) 0.37 0.32 0.67 0.35 0.67 0.36 0.39 0.38 0.39 0.39
GritLM-7B (ESQ) 0.37 0.32 0.68 0.35 0.68 0.36 0.39 0.38 0.40 0.39
sfr-mistral (i-ESQ) 0.37 0.32 0.67 0.35 0.67 0.36 0.39 0.38 0.39 0.39
glove (SE) 0.20 0.25 0.39 0.17 0.39 0.18 0.24 0.25 0.28 0.22
glove (i-SE) 0.21 0.25 0.40 0.18 0.40 0.18 0.23 0.25 0.28 0.22
stella-base (ESQ+IE 0.9) 0.30 0.30 0.64 0.25 0.64 0.38 0.41 0.40 0.41 0.40
stella-base (ESQ+IE 0.85) 0.30 0.29 0.62 0.24 0.62 0.39 0.42 0.41 0.42 0.41
GritLM-7B (ESQ+IE 0.9) 0.33 0.27 0.63 0.30 0.63 0.37 0.41 0.40 0.42 0.40

Table 1
Results for best models in each setting. i refers to ignore case version. The values near IE are the threshold in the
link step. The columns were abbreviated for shortness where cls stands for classical precision and ovlp stands for
overlap (comparison of instance sets).

[7]. Also, increasing the model size consistently improves performance across all configurations.
However, the results among the LLMs don’t diverge much. Another observation is that the IE setting
enhances precision-orientedmetrics across all models but in some cases, the results in the query-oriented
evaluation are reduced.

Also, the improved architecture was compared with other matchers in the same dataset. The results
of this comparison are presented in Table 2.

Matcher Prec. Coverage
Matcha-DL - -
AMLC 0.230 0.260
CANARD 2018 0.212 0.471
CANARD 2024 (Stella-base IE 0.85) 0.389 0.623
CANARD 2024 (GritLM-7B ESQ) 0.359 0.679

Table 2
Comparison of the proposed approach with other matchers. Precision in this table stands for classical precision
and Coverage to classical - query F-measure coverage.

3. General Comments

The results demonstrate that the integration of Large Language Models (LLMs) enhances the perfor-
mance of the CANARD framework in the Populated Conference dataset. The usage of embeddings
increased the precision and F-measure by up to 45% over the baseline, showing their effectiveness in
capturing semantic nuances. The LES and ESQ configurations were the most effective, and applying
the instance embeddings also increased the performance of the matcher in the precision-oriented that
is instance-based evaluation.

However, some weaknesses were still present for example the Instance Embeddings (IE) setting in-
curred significant computational overhead due to the exhaustive comparison of embeddings, particularly
for large datasets. Also, the aggregation of subgraph embeddings used in the setting SE occasionally
introduced noise, leading to reduced performance in comparison to other configurations.

Several improvements can address the identified weaknesses. The IE step can be optimized using
approximate similarity measures or clustering techniques to reduce the search space. Techniques
like weighted aggregation or Graph Neural Networks (GNNs) could improve the quality of subgraph
embeddings by better preserving semantic relationships. Also, using domain-specific fine-tuning of
LLMs on ontology-related tasks could further enhance the relevance of embeddings. Is also possible



to combine embedding-based methods with symbolic reasoning approaches to enhance the ability to
capture complex logical relationships.

4. Conclusions

This paper presented an enhanced ontology matching system that integrates Large Language Models
(LLMs) into the CANARD framework to deal with complex alignment tasks. The use of LLM-based
embeddings improved performance in the conducted evaluation of the Populated Conference dataset.
While the system excelled in capturing semantic relationships, challenges such as high runtime in
certain configurations and reduced performance in subgraph embeddings highlight areas for future
optimization. Proposed improvements include efficiency enhancements, fine-tuning of LLMs, and
advanced aggregation techniques.
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