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Abstract
This paper introduces a matching framework tailored for master data model matching, incorporating
techniques from the field of ontology matching. We present a new quantitative approach for heuristic
similarity estimation between hierarchical data structures, which involves heterogeneous data. We
also introduce a relation-based navigation technique and an availability management method based
on restrictions that support efficient and progressive matching processes. This integration of ontology
matching techniques into master data model matching not only improves alignment consistency and
quality, but also facilitates more automatic data exchange solutions. The experiments on OAEI Anatomy
and Conference tracks indicate that our approach may be competitive, while an experiment on industrial
classification standards shows that our approach performs significantly better than the considered
baseline approaches.
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1. Introduction

The digital information supply chain refers to the comprehensive process through which digital
data is generated, processed, stored, transmitted, and ultimately utilized. Unlike the physical
supply chain, which deals with tangible goods, the digital information supply chain deals with
intangible data flows, requiring robust infrastructure and sophisticated protocols to ensure
efficiency and security. The key actors in the digital information supply chain are data producers
such as manufacturers, distributors and retail chains, and data consumers such as end users,
consumers, and online shoppers. In addition, regulatory bodies often oversee the flow of
information to ensure compliance with legal, ethical, and security standards, or simply require
businesses to adhere to regulatory compliance standards.
Actors within the digital information supply chain often operate a so-called Master Data

Management (MDM) platform as a central hub for data exchange. However, they predominantly
use diverse data models to categorize their products. To ensure accurate, consistent, and effective
data exchange, it is essential to align data between the actors.

Master data models are, typically, hierarchical concept classifications [1] where attributes may
be attached to the concepts. A product in an MDM system is an instance of a particular concept,
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Table 1
The partial attributes of coaxial cable in different ontologies (classification hierarchies).

ETIM ECLASS Custom
Armouring Cable armor present Armour

Diameter inner conductor Diameter of interior conductor Dia Inner
Diameter outer conductor Diameter of outer conductor Dia Outer

Colour outer sheet Colour of coat Color

having data fields corresponding to the attribute descriptions of that concept. Master datamodels
can be considered special ontologies, having a simple hierarchical ontological structure, with
rich descriptions of attributes comprising types, units etc. Consequently, ontology matching
becomes a centerpiece for these actors to exchange data.

A scenario: Ontology Matching in MDM: Consider three businesses, 𝑀, 𝐷 and 𝑅, that
exchange data described by different industrial classification standards: ETIM [2] and ECLASS
[3]. 𝑀 is a manufacturer, sending data to a distributor 𝐷, who in turn sends data to a retailer 𝑅.
𝑀, 𝐷 and 𝑅 each operate their own business systems and use their own ontologies to manage
the data representing the physical goods they exchange. We call this “product data” in the
following:

• 𝑀 classifies and manages all product data according to the ETIM classification standard.
• 𝐷 uses ECLASS to classify and manage their product data.
• 𝑅 uses a custom made classification to classify and manage the product data

For this example, let us assume that𝑀manufactures coaxial cables, 𝐷 distributes electrical and
electronic products, including cables, and 𝑅 is an online store that sells audio gear to musicians.
Table 1 is the partial data fields (attributes) of a coaxial cable in different ontologies.

What can be noticed is that the data itself, for instance the color of the cable is the same (as it
is one and the same physical cable), but the name of the data fields are different across the three
representations.
In this simple information supply chain, 𝑀 → 𝐷 → 𝑅, we already face two problems:

• Either 𝑀 needs to have information about how 𝐷 expects to receive data and map the
data from its own representation to that of 𝐷, or 𝐷 will have to receive𝑀’s representation
of data and then map to its own ontology.

• 𝐷 is faced with the same problem as 𝑀 - either map from ECLASS to that of the recipient
𝑅, which implies that 𝐷 needs to know about 𝑅’s representation of data, or 𝑅 needs to
map from 𝐷’s representation to its own.

In addition to this, even before being able to map the data fields, the correct category/clas-
sification must be determined for each product sent from 𝑀 and received by 𝐷 (and from 𝐷,
received by 𝑅). A specific data record of the coax cable product may be classified as Table 2.
Notice that the custom hierarchy for 𝑅 focuses more on the selling aspects of a product.



Table 2
The classification of coax cable in different ontologies (classification hierarchies).

ETIM ECLASS Custom
Cables/ 27 Electric engineering, automation, process control engineering/ Cables /

Coaxial cable 27-06 Cable, wire/27-06-18 Communication cable/ Speaker Cables
27-06-18-02 Coaxial cable/Coaxial cable

In a typical information supply chain, these two problems multiply; 𝐷 will receive data from
many data providers, and 𝐷 needs to send data to many data consumers, and all may operate
different data standards.

We present a framework for ontology matching tailored to MDM systems, which typically are
simple classification hierarchies with rich attributes of concepts with data types and units. In
Section 2, we model typical MDM matching tasks, including key properties that narrow the
matching scope and enhance efficiency and quality. We also introduce a heuristic similarity
measure that incorporates descendants and attributes. The framework is detailed in Section
3. Section 4 covers experiments using OAEI tracks, Anatomy and Conference, as well as the
industrial classification standards, ETIM and ECLASS.

RelatedWork: Eine et al. [4] presents the feasibility of ontology-based big data management,
with applications in data integration using ontology alignment. Ramzy et al. [5] present a
methodology for master data management based on knowledge graphs, which relies on the
establishment of a knowledge graph (KG) layer to build a common understanding of key business
entities and semantic mappings from and to the original data sources. These works demonstrate
the potential of applying ontology technologies in master data management.

Euzenat et al. [6] offer comprehensive coverage of ontology matching within a uniform frame-
work, and OAEI (Ontology Alignment Evaluation Initiative) [7] provides a global benchmark
for evaluating schema or ontology matching methods. These works formalized the uniform
knowledge and evaluation benchmarks utilized in this paper.
LogMap [8] is one of the leading systems in the Ontology Alignment Evaluation Initiative

(OAEI). It performs matching based on logic consistency and output coherence alignment.
LogMap uses a Horn propositional logic representation of the extended hierarchy of each ontol-
ogy with all existing mappings, and applys Dowling-Gallier algorithm [9] for unsatisfiability
checking. Although its approach is efficient in checking the consistency of mappings, it does
not directly identify conflicting mappings. Additionally, since the expansion of mappings is
based on previously discovered mappings, some true mappings may remain undiscovered if
they were not covered within the expansion range of existing mappings.
We use a matching space maintaining a pool of correspondences that are not in conflict

with the current alignments. That pool shrinks when new correspondences are added. The
manner in which this pool is maintained gives fewer false negatives compared to LogMap for
the considered data sets.

Hansen et al. [1] present an approach using formal methods to ensure consistent alignment
for simple ontologies in the digital information supply chain. Their work provides models,



methods, and tools for ontology matching that can guarantee the consistency of alignments,
particularly in the context of master data management systems. Furthermore, they proposed
the potential of guiding the search for consistent correspondences while eliminating irrelevant
ones, which inspired the conflict-based restriction approach proposed in this paper.
COMA/COMA++ [10] presents approaches for the flexible combination of similarity mea-

surements, demonstrating that strategically combining different similarity measures can lead to
improved performance. Transformer-based models [11] like BERT [12] provide the ability to
capture semantic similarity more accurately from text context and have been used more widely
in the field of ontology matching. Furthermore, OLaLa [13] utilizes large language models
(LLMs) as a similarity measure and achieves competitive results on OAEI benchmarks. These
works inspired the aggregate similarity measurement in this paper.

Background knowledge is another important factor to improve the accuracy of similarity
estimation and has been widely used [8, 14, 15]. Portisch et al. [16] comprehensively reviewed
background knowledge in ontology matching from the perspective of methods and applications.
Appropriate background knowledge can enhance the detectability of matches between domain-
specific terms in MDM, which would be a key point to further enhance our approach.

2. Modelling for Aligning MDM

We now present the basic relations we shall use, the definition of an MDM ontology 𝑇 and the
basic properties of 𝑇, and some fundamental properties of consistent alignment.

2.1. Relating concepts

A correspondence is defined as a triple (𝑐1, 𝑐2, 𝑟 ), where 𝑐1 and 𝑐2 are concepts, and 𝑟 represents
one of the following relations:

• isEqual (=): Indicates that two concepts are equivalent.
• lessEqual (≤): Indicates that the first concept is a specialization of the second one.
• largerEqual (≥): Indicates that the first concept is a generalization of the second one.
• disjoint (∅): Indicates that two concepts are disjoint (or exclusive).
• partialOverlap (≠∪

∩): Indicates that two concepts overlap but are not equal, and neither is
a subset of the other.

2.2. MDM ontology

An MDM ontology is a hierarchical classification of concepts, that is, a tree 𝑇, where the nodes
are concepts. Furthermore, the concepts in 𝑇 satisfy certain properties (making 𝑇 a classification).
Let 𝑐1 and 𝑐2 be concepts (nodes) of 𝑇:

• If 𝑐1 is a child of 𝑐2, then (𝑐1, 𝑐2, ≤).
• If 𝑐1 and 𝑐2 are siblings in 𝑇, then (𝑐1, 𝑐2, ∅).

That is, a child is a specialization of its parent and siblings are mutually exclusive concepts.
The following properties are consequences of above properties:



• If 𝑐1 is a descendant of 𝑐2, then (𝑐1, 𝑐2, ≤). (This property can also be expressed in terms of
ancestor and ≥.)

• If 𝑐1 and 𝑐2 are different concepts in 𝑇 and neither is a descendant of the other,
then (𝑐1, 𝑐2, ∅).

Furthermore, we have

• If 𝑐1 and 𝑐2 are different concepts in 𝑇, then ¬(𝑐1, 𝑐2, =).

That is, 𝑇 cannot contain two different equivalent concepts.

2.3. Conflict-based Restriction

When a set of correspondences 𝐴 is established between two MDM ontologies 𝑇𝑠 and 𝑇𝑡, it is
easy to reach an inconsistent situation. We shall now formulate some consistency constraints
on 𝐴. These constraints will later be exploited in order to prune the space that is explored when
searching for new correspondences.

A correspondence between 𝑇𝑠 and 𝑇𝑡 is a relation (𝑐𝑠, 𝑐𝑡, 𝑟 ), where 𝑐𝑠 is a concept in 𝑇𝑠 and 𝑐𝑡 is
a concept in 𝑇𝑡.

Let𝐴 be the alignment that contains only correspondences with 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 relations. 𝐴 is conflict
free if the following restrictions are satisfied for every correspondence (𝑐𝑠, 𝑐𝑡, =) ∈ 𝐴:

1. for every 𝑐𝑠′ in 𝑇𝑠, where 𝑐𝑠′ is not 𝑐𝑠: (𝑐𝑠′ , 𝑐𝑡, =) ∉ 𝐴,
2. for every 𝑐𝑡′ in 𝑇𝑡, where 𝑐𝑡′ is not 𝑐𝑡: (𝑐𝑠, 𝑐𝑡′ , =) ∉ 𝐴,
3. for every ancestor 𝑐𝑠′ of 𝑐𝑠 in 𝑇𝑠 and for every descendant 𝑐𝑡′ of 𝑐𝑡 in 𝑇𝑡: (𝑐𝑠′ , 𝑐𝑡′ , =) ∉ 𝐴,
4. for every descendant 𝑐𝑠′ of 𝑐𝑠 in 𝑇𝑠 and for every ancestor 𝑐𝑡′ of 𝑐𝑡 in 𝑇𝑡: (𝑐𝑠′ , 𝑐𝑡′ , =) ∉ 𝐴,
5. for every linear relative 𝑐𝑠′ of 𝑐𝑠 in 𝑇𝑠 and for every non-linear relative 𝑐𝑡′ of 𝑐𝑡 in 𝑇𝑡:

(𝑐𝑠′ , 𝑐𝑡′ , =) ∉ 𝐴, and
6. for every non-linear relative 𝑐𝑠′ of 𝑐𝑠 in 𝑇𝑠 and for every linear relative 𝑐𝑡′ of 𝑐𝑡 in 𝑇𝑡:

(𝑐𝑠′ , 𝑐𝑡′ , =) ∉ 𝐴,

where linear relatives of a concept 𝑐 in a hierarchy 𝑇 are the ancestors and descendants of 𝑐,
while non-linear relatives of a concept 𝑐 in a hierarchy 𝑇 are all other concepts in 𝑇 that are
neither ancestors nor descendants of 𝑐.

2.4. Heuristic Similarity Between Hierarchies

We propose a heuristic approach to estimate the overall similarity between two hierarchies by
evaluating potential correspondences based on their similarity matrix between entities, where
an entity can be either a concept or an attribute.
- Let 𝐸𝑠 denote the set of source entities.
- Let 𝐸𝑡 denote the set of target entities.
- 𝑆(𝑒, 𝑒′) presents the similarity score between a source entity 𝑒 ∈ 𝐸𝑠 and a target entity 𝑒′ ∈ 𝐸𝑡,

the value falls within the range of 0 to 1.



Using a specified threshold 𝜃, we filter out entities whose highest similarity score to their
counterparts exceeds this threshold, calling them prominent entities. The set of prominent
entities of source and target are denoted as 𝑃𝑠 and 𝑃𝑡:

𝑃𝑠 = {𝑒 ∈ 𝐸𝑠 ∣ max
𝑒′∈𝐸𝑡

𝑆(𝑒, 𝑒′) > 𝜃}, 𝑃𝑡 = {𝑒′ ∈ 𝐸𝑡 ∣ max
𝑒∈𝐸𝑠

𝑆(𝑒, 𝑒′) > 𝜃} (1)

𝑃𝑠 is the set of source entities that are considered compatible with at least one target entity.
Similarly, 𝑃𝑡 is the set of target entities that are considered to be compatible with at least one
source entity. Both identify key entities in their respective hierarchies as potential candidates
for alignment.
The highest similarity scores associated with these prominent entities are referred to as

prominent scores and are collectively denoted by 𝑉, with the type 𝑉 ∶ (𝐸𝑠 ∪ 𝐸𝑡) → [0, 1].
For each entity 𝑒 in 𝑃𝑠 or 𝑃𝑡, the prominent score 𝑉 [𝑒] is given by:

𝑉 [𝑒] = {
max
𝑒′∈𝐸𝑡

{𝑆(𝑒, 𝑒′) ∣ 𝑆(𝑒, 𝑒′) > 𝜃} if 𝑒 ∈ 𝑃𝑠,

max
𝑒′∈𝐸𝑠

{𝑆(𝑒′, 𝑒) ∣ 𝑆(𝑒′, 𝑒) > 𝜃} if 𝑒 ∈ 𝑃𝑡.
(2)

The sequence 𝑉 thus consists of these maximum similarity scores corresponding to the entities
in 𝑃𝑠 and 𝑃𝑡. Each entity in 𝑃𝑠 and 𝑃𝑡 has a corresponding value in 𝑉, therefore, |𝑉 | = |𝑃𝑠| + |𝑃𝑡|.

The ratio 𝑟 of the size of prominent entities to the total number of entities is used to represent
the scale of potential mappings:

𝑟𝑎𝑡𝑖𝑜 =
|𝑃𝑠| + |𝑃𝑡|
|𝑇𝑠| + |𝑇𝑡|

(3)

The mean value of the prominent scores represents the quality of these potential mappings:

̄𝑉 = 1
|𝑉 |

∑
𝑒∈(𝐸𝑠∪𝐸𝑡)

𝑉 [𝑒] (4)

The final heuristic value ℎ is determined by combining the ratio 𝑟 and the mean prominent
score ̄𝑉:

ℎ = 𝑟𝑎𝑡𝑖𝑜 × ̄𝑉 = 1
|𝑇𝑠| + |𝑇𝑡|

∑
𝑒∈(𝐸𝑠∪𝐸𝑡)

𝑉 [𝑒] (5)

The heuristic score ℎ, defined as the product of the 𝑟𝑎𝑡𝑖𝑜 of prominent entities and the mean
prominent score ̄𝑉, ranges from 0 to 1 due to their individual constraints. 𝑟𝑎𝑡𝑖𝑜 represents the
proportion of prominent entities (0 to 1), while ̄𝑉 is the average of normalized similarity scores
above a threshold (0 to 1). Thus, ℎ provides a normalized score indicating the extent and quality
of potential correspondence, from no correspondence (0) to perfect correspondence (1). Table 5
demonstrates the impact of this method on enhancing the classification-level similarity matrix
with attribute-level similarity.

3. Framework

We propose MDMapper, which is a framework specifically designed for MDM matching tasks.
The architecture of MDMapper is shown in Figure 1.



Figure 1: The architecture of MDMapper.

In the Pre-processing phase, we initiate with Data Extraction, which parses both source and
target ontologies into internal representations (𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐼 𝑛𝑑𝑒𝑥 and 𝑁𝑜𝑑𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠). The next
step involves the Similarity Measure module, which employs a variety of methods to estimate
the pairwise similarity of source-target concepts.

3.1. Similarity Measure

We employ similarity measurement approaches to estimate the similarity scores of pairwise
source-target concepts to capture different characteristics. The final similarity matrix is a linear
combination of multiple similarity matrices.
We use the iSUB [17] algorithm, which emphasizes the importance of shared contiguous

substrings, and the pre-trained language model, Sentence Transformer [18], which demonstrates
superior performance in capturing semantic meaning.
Additionally, we enhance our similarity matrix with our heuristic approach (see Section

2.4) via bottom-up similarity propagation, effectively augmenting the direct comparisons with
inherited similarities across the data hierarchy.



Figure 2: A simple matching space example.
(1) This part comprises two hierarchies (𝑇𝑠 and 𝑇𝑡) and a correspondence (𝑠𝐵, 𝑡𝐵, =).
(2) For this part, the table on the left represents the updated matching space according to the correspon-
dence (𝑠𝐵, 𝑡𝐵, =); some cells are blocked with status -1 according to the restrictions in Section 2.3; blue
cells are blocked according to Restriction 1 and 2, yellow cells are blocked according to Restriction 3
and 4, and green cells are blocked according to Restriction 5 and 6. The tables on the right display the
narrowed matching spaces for further matching process

3.2. Matching

Throughout the matching process, the framework maintains a Matching Space to manage
discovered correspondences and prevent potential conflicting matches, thereby preserving the
consistency of the alignment and enhancing the efficiency of matching.
The Matching Space is initialized as a matrix of size |𝑇𝑠| × |𝑇𝑡|, with all cells set to open (0)

status. For each newly discovered correspondence, the corresponding cell in theMatching Space
is marked as aligned (1). Restrictions are added by blocking cells, which are set to blocked (-1)
status. These cells correspond to potential correspondences that conflict with the accepted ones,
as described in Section 2.3. It is illustrated with a simple case in Figure 2 how the matching
space maintains alignment and restrictions.

InitialMatching: During an initial matching phase, high-confidence correspondences, known
as anchors, are identified. They are added to the matching space and will never be removed.
An entity matching framework CollaborEM [19] utilizes Iterative KG Completion [20] to

generate positive labels for their self-supervised Entity Matching task. We refined this approach
for anchor identification, which gives stricter constraints that ensure higher-quality anchors
compared to merely applying a threshold on similarity scores.



Our approach employs a significantly mutually most similar rule to identify anchors based on
the similarity matrix. Each identified anchor (𝑠, 𝑡 , =), 𝑠 ∈ 𝑇𝑠, 𝑡 ∈ 𝑇𝑡, must satisfy:

1. Their similarity score must exceed the given threshold.
2. They must be mutually the most similar to each other.
3. There should be a margin between their similarity and the second most similar pair.

Matching phase: The matching phase performs a local matching for each candidate in
the candidate pool, which is initially populated with anchors. Candidates at lower levels are
prioritized for extraction from the pool. For each candidate (𝑠, 𝑡 , 𝑟), the first step is to decide the
pair of concepts (𝑠′, 𝑡′) to explore in the following local matching.
The navigation function determines (𝑠′, 𝑡′) based on the hierarchical positions of (𝑠, 𝑡) and

their relation 𝑟, as follows:

(𝑠′, 𝑡′) =
⎧

⎨
⎩

(parent(𝑠), parent(𝑡)) if 𝑟 ∈ {" = ", " ≠∪
∩ ", "∅"} and parent(𝑠), parent(𝑡) exist,

(parent(𝑠), 𝑡) if 𝑟 = " ≤ " and parent(𝑠) exists,
(𝑠, parent(𝑡)) if 𝑟 = " ≥ " and parent(𝑡) exists.

(6)

The basic ideology of the function design: On the one hand, valid correspondences increase the
likelihood of relations existing between their hierarchical neighbors; ‘=’, ‘≤’, and ‘≥’ suggest
possible matches among parents or siblings. On the other hand, ‘≠∪

∩’ and ‘∅’ indicate the need
to expand the matching scope.
Since only correspondences with an ‘=’ relation can be identified via similarity score, for a

given (𝑠, 𝑡) with unknown relation, we determine its relation by evaluating the overlap of the
descendants of them, using the following criteria:

𝑟 =

⎧
⎪

⎨
⎪
⎩

=∶ (∀𝑥 ∈ 𝐷(𝑠), ∃𝑦 ∈ 𝐷(𝑡) ∶ 𝑥 = 𝑦) ∧ (∀𝑦 ∈ 𝐷(𝑡), ∃𝑥 ∈ 𝐷(𝑠) ∶ 𝑥 = 𝑦)
≤∶ (∀𝑥 ∈ 𝐷(𝑠), ∃𝑦 ∈ 𝐷(𝑡) ∶ 𝑥 = 𝑦) ∧ (∃𝑦 ∈ 𝐷(𝑡), ∀𝑥 ∈ 𝐷(𝑠) ∶ 𝑥 ≠ 𝑦)
≥∶ (∀𝑦 ∈ 𝐷(𝑡), ∃𝑥 ∈ 𝐷(𝑠) ∶ 𝑥 = 𝑦) ∧ (∃𝑥 ∈ 𝐷(𝑠), ∀𝑦 ∈ 𝐷(𝑡) ∶ 𝑥 ≠ 𝑦)
∅ ∶ (∀𝑥 ∈ 𝐷(𝑠), ∀𝑦 ∈ 𝐷(𝑡) ∶ 𝑥 ≠ 𝑦)
≠∪
∩∶ Otherwise

(7)

𝐷 denotes all descendant concepts of the given concept.

Local matching: This phase identifies new correspondences within a narrower matching
scope tailored to the suggested pair of concepts (𝑠′, 𝑡′). For the given pair of concepts (𝑠′, 𝑡′),
we identify the correspondences between their descendants and the concepts themselves. A
local similarity matrix is constructed, related to the sub-hierarchies of 𝑠′ and 𝑡′, which is then
filtered through the matching space to delineate the matching scope.
Furthermore, depending on the relations between their linear relatives, we apply varying

thresholds to improve the matching quality. For example, for a pair of concepts (𝑠″, 𝑡″) in the
local matching scope, if (𝑝𝑎𝑟𝑒𝑛𝑡(𝑠″), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑡″), =) exists, a lower threshold should be applied
for matching 𝑠″ and 𝑡″, since the equivalence in their parents indicates a higher likelihood of
an ‘=’ relation between them.



Table 3
Results of OAEI Anatomy Track (2023)

Matcher Size Precision Recall F1-Measure ↓

Matcha 1484 0.951 0.931 0.941
OLaLa 1470 0.924 0.896 0.910

SORBETMtch 1470 0.923 0.895 0.909
LogMapBio 1578 0.880 0.916 0.898
LogMap 1402 0.917 0.848 0.881
AMD 1282 0.938 0.794 0.860
ALIN 1159 0.984 0.752 0.852

LogMapLite 1147 0.962 0.728 0.828
StringEquiv 946 0.997 0.622 0.766
LSMatch 1009 0.952 0.634 0.761

Ours* 1442 0.928 0.883 0.905

Local matching may find new correspondences that are added to the candidate pool. Fur-
thermore, the matching space is updated accordingly. This iterative process continues until no
further correspondences can be identified.

4. Experiments

Although MDMapper is designed primarily to address MDMmatching tasks, it is also capable of
handling simple ontology matching tasks. To compare it with other ontology matching systems,
we apply our framework to the OAEI Anatomy and Conference tracks. Furthermore, to evaluate
our performance in solving real-world MDM matching problem, we applied our framework
to match ETIM and ECLASS in various versions: with and without attributes. Both versions
showed outperforming results compared to the baseline approaches. All experiments were
conducted on a MacBook with an Apple M2 Max chip and 64GB of RAM.

4.1. OAEI Tracks

We applied our approach to the OAEI Anatomy and Conference tracks. Table 3 shows that our
approach achieves an F1 measure of 0.905, which ranks 4th based on the anatomy track (2023).
Table 4 shows that our F1 measure is 0.65 on the conference track (2023), which ranks 3rd. Our
approach is efficient, with runtimes of 58 seconds on the Anatomy track and 97 seconds on the
Conference track. In addition, our approach ensures coherent alignment.

4.2. Industry Classification Standards Matching

Data Description: ETIM-7 has 4,878 classifications across 3 layers, while ECLASS-11 includes
86,468 classifications in 6 layers. ETIM Germany is working on aligning ETIM to ECLASS, but
the current reference alignment is incomplete. It includes 2,762 ETIM categories mapped to



Table 4
Results of OAEI Conference Track (2023)

Matcher Precision Recall F1-Measure ↓

GraphMatcher 0.71 0.77 0.74
SORBETMtch 0.73 0.61 0.66
LogMap 0.76 0.56 0.64
Matcha 0.62 0.62 0.62
OLaLa 0.59 0.61 0.60
ALIN 0.82 0.44 0.57
edna 0.74 0.45 0.56
LogMapLt 0.68 0.47 0.56
AMD 0.82 0.41 0.55
LSMatch 0.83 0.41 0.55
StringEquiv 0.76 0.41 0.53
TOMATO 0.57 0.47 0.52
PropMatch 0.86 0.08 0.15

Ours* 0.72 0.58 0.65

Table 5
Results for Sub-ETIM to Sub-ECLASS Matching

Approach Size Precision Recall F1-Measure

StringEquiv 928 0.997 0.321 0.486
Optimal Threshold 1196 0.810 0.421 0.554

Ours* (without attribute ) 1356 0.973 0.459 0.623
Ours* (with attribute) 1635 0.966 0.549 0.700

The attribute features we use include name, datatype, and unit.

2,435 ECLASS categories, totaling 2,875 mappings. All correspondences are between the ETIM
leaf nodes and the parent nodes of the ECLASS leaf nodes.

We extracted subtrees from both ETIM and ECLASS on the basis of thesemappings, preserving
root-to-leaf paths. The resulting Sub-ETIM subtree consists of 2,873 categories in 3 layers, with
10,745 attributes aligned with leaf nodes. The Sub-ECLASS subtree contains 5,561 categories in
6 layers, with 8,928 attributes aligned with leaf nodes.

Given the incomplete alignment, we evaluated the matching results using the filtered corre-
spondences within specific layers of the classification hierarchies. While valid correspondences
may exist beyond this scope, they cannot be assessed without complete reference mappings.

Analysis: To benchmark our approach, we used StringEquiv and Optimal Threshold (the best
achievable results based on the threshold applied to the similarity matrix) for matching tasks
between Sub-ETIM and Sub-ECLASS. These techniques are among the most commonly used in
current MDM matching solutions. Since the ETIM and ECLASS datasets are not available in
OWL or RDF format, we were unable to directly apply other Ontology Matching Systems.



We conducted two experimental variants with our approach (see Table 5): one excludes
attributes, while the other incorporates them into the similarity matrix using the heuristic
method described in Section 2.4. Our approach, both with and without attributes, significantly
outperforms the baseline methods. The improvement achieved by incorporating attributes
demonstrates the effectiveness of using attribute features in category similarity measurements.
Excluding pre-processing, the matching process takes 5.73 seconds.

5. Discussion

We have introduced a framework for ontology matching geared towards the Master Data
Management domain. In addition to known ontology matching techniques, we developed a
relation-based navigation approach that narrows the matching scope using existing correspon-
dences. Furthermore, a heuristic approach is proposed to estimate the overall similarity between
subtrees, integrating heterogeneous entities into a unified measure.

Experiments on data from OAEI tracks indicate that our approach may be competitive, while
the experiment on industrial classification standards shows outperforming results in solving
real-world MDM matching problems compared to selected baseline techniques.
The framework is in a prototype stage and under development for further enhancements.

Future work includes integrating domain-specific external knowledge resources to refine match-
ing quality, incorporating global optimization and callback mechanisms to resolve conflicts, and
developing a user interface to select different conflict-based alignment versions.
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