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Abstract 
Today, smart agriculture is one of the core technologies for sustainable development and increasing the 
efficiency of open-field crop production enterprises of various sizes and forms of ownership in the face of 
changing climate conditions. The development and implementation of computerized methods and 
intelligent software and hardware solutions for transforming large volumes of agroclimatic data distributed 
in time and space is a relevant and important field for improving the efficiency of information technologies 
for agrotechnical applications. In this article, the scientific and applied problem of creating and validating 
a computerized method for predicting the probability of occurrence of crop diseases at the pre-symptomatic 
stage, which forms the basis of software and hardware components for processing data from 
agromonitoring systems based on fog architecture, has been solved. The main results of the research are: 
reduction of the number of informative features to five based on the Harris Hawk Optimizer algorithm, 
proving the effectiveness of Bagged Trees and Medium Neural Network algorithms in the classification of 
Powdery Mildew in Wheat, synthesis and testing of a computer model in Simulink that implements a full 
cycle of transformation of agroclimatic monitoring data in predicting the Risk of Powdery Mildew in Wheat. 
In addition, prospective directions for further research to improve the efficiency of information 
technologies for predicting the probability of crop diseases are substantiated in the article.  

Keywords1  

Classification, soil and climatic parameters, computerized method, prediction, Powdery Mildew Blumeria 
Graminis, feature selection, machine learning 

1. Introduction 

To date, the principles of digitalization and intellectualization of technological processes are one of 
the global trends in improving the efficiency of production processes at enterprises of various 
profiles, scales and forms of ownership. Agriculture is one of the strategic sectors of the national 
economies of many countries, and therefore requires constant search and implementation of 
scientifically substantiated approaches to the sustainable development of agricultural practices. 
Smart farming is a key concept relevant to running production processes in agricultural enterprises, 
particularly open-field crop production. This concept, in turn, is made possible by introducing 
technologies such as: Internet of Things, machine learning and artificial intelligence, remote sensing, 
drones and robotics. This approach allows achieving a significant socio-economic, environmental 
and technological effect, which consists in: efficient use of material, land and labor and time 
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resources; increasing the resistance of field crops to changing climatic conditions; increasing yields 
and minimizing negative environmental impact [1, 2].  

Based on a priori analysis of current statistics on agricultural practices at the global level, it has 
been established that cereals (wheat, rice, corn, barley, and others) are the most popular crops in 
terms of cultivated areas and specific yields [3, 4]. Over the past decade, wheat has been the leader 
among cereals at the national level in terms of cultivated areas: from 5.28 million hectares to 7.1 
million hectares. It is also necessary to emphasize that with an increase in cultivated areas, there is 
no proportional increase in the yield of cereals [5]. This phenomenon is rooted in the fact that during 
the full cycle of cultivation, grain crops are subject to destabilizing effects of physical (changing 
agroclimatic conditions) and biological (pests and diseases) factors, which negatively affect the 
integral stress resistance and productivity and, as a result, crop yields. 

Therefore, an actual scientific and practical task is to develop and implement methods, models, 
and software and hardware for predicting the occurrence of crop diseases at the pre-symptomatic 
stage in real time, which will allow timely planning and implementation of agrotechnical measures 
to increase the stress resistance of crops and preserve the harvest in changing agroclimatic 
conditions. 

In the present-day world practice, there is a significant number of high-quality research and 
developments of information and computer technologies for agrotechnical purposes to detect the 
parameters and characteristics of the processes of occurrence and progression of crop diseases based 
on various data collection technologies [6], in particular: obtaining and analyzing graphic images 
from satellites [7, 8] and UAVs [9, 10], as well as collecting and processing data from ground-based 
sensor networks [11, 12].  

One of the main tasks, which is the focus of many relevant studies in developing intelligent 
information technologies for predictive monitoring of crops, is the precise and reliable analysis of 
observation results. To date, machine learning methods have gained considerable popularity in 
solving problems of intellectual analysis of large amounts of data when creating intelligent 
information technologies for various applied fields [13, 14]. In agriculture, such technologies are used 
for intelligent processing of agroclimatic data distributed in time and space [15, 16], as these 
approaches allow aggregating, analyzing, and interpreting large amounts of measurement data with 
subsequent automatic support for making management decisions to optimize agrotechnical 
procedures.  

The perspectives of integrating sensor networks for agroclimatic monitoring and machine 
learning methods have been proven by the authors of scientific studies on: the introduction of 
precision farming systems [17], analysis of promising practices for managing agrotechnical 
processes and resources [18], accounting for the impact of changing climatic conditions on crop 
cultivation regimes [19], and others.  

Thus, the results of the analysis of the current state of scientific and applied research prove the 
potential and effectiveness of creating and implementing information technologies for predictive 
monitoring of crop diseases based on online measurements of soil and climatic parameters with their 
subsequent processing by software based on machine learning algorithms. Consequently, the current 
research task is to develop computer components for complex intelligent processing of 
agromonitoring measurement data that implements a full cycle of data transformation (primary 
statistical processing, selection of informative features, and predictive analytics) within an integrated 
hardware and software architecture, taking into account the specifics of detected diseases and 
agroclimatic growing conditions for specific types and periods of grain crops. 

Therefore, the aim of the article is to further develop information technologies for agrotechnical 
purposes to predict the risk of occurrence of grain crop diseases (Powdery Mildew Blumeria graminis 
in wheat) at the pre-symptomatic stage through the development and research of computerized 
method of intelligent analysis of measured data of agroclimatic monitoring utilizing machine 
learning models. The object of research is information processes of software analysis of agroclimatic 
data distributed in time and space. The subject of research is methods and computer models of 
complex predictive processing of agroclimatic monitoring data.  



Accordingly, researching the development and validation of computerized methods and software 
components of predictive transformation and analysis of agroclimatic measurement data during the 
creation of information technologies for agrotechnical purposes to increase the stress resistance of 
grain crops is an actual scientific and practical task. 

2. Materials and methods 

Two primary software environments were used in this research: Python 3.10.12 and MATLAB 
R2024a. Preliminary data analysis was performed in Python using libraries such as Pandas and 
NumPy. MATLAB was used to train the classifier model with the possibility of further generating 
code for microcontrollers. For this purpose, the Simulink and Statistics and Machine Learning 
toolboxes were used. 

In Figure 1, a generalized structure of the research in this article is illustrated. 

 
Figure 1: Generalized structure of the research. 

The data for the research was obtained using professional Metos weather stations from Pessl 
Instruments via the FieldClimate IoT platform, access to which was provided by Metos Ukraine LLC. 
The experimental data reflects the results of monitoring soil and climatic parameters collected in two 
agroclimatic zones of Ukraine from September 2022 to September 2023: 

 northern steppe of Ukraine: a zone characterized by an arid and very warm climate. The 
hydrothermal coefficient varies from 0.7 to 1.0, and the annual sum of temperatures ranges 
from 2900 °C to 3300 °C; 

 forest-steppe of Ukraine: insufficiently humid and warm zone with a hydrothermal 
coefficient of 1.0 to 1.3 and an annual sum of temperatures from 2500 °C to 2900 °C. 

The data sample from the northern steppe zone (Dnipro region) consisted of 8656 records with a 
sampling interval of 1 hour and 14 attributes. Similarly, the data sample from the forest-steppe zone 
(Cherkasy region) consisted of 8687 records with the same sampling interval and number of 
attributes. Both samples have the probability of occurrence of Powdery Mildew Blumeria graminis 
as the target function for further analysis and modeling. A description of all attributes included in 
the two data sets is given in Table 1. 
 
 



Table 1  
Soil and climatic attributes present in the dataset 
SI. No Attribute Units Datatype Description 
1 DT - Continuous Date and time 
2 AT °C Continuous Air temperature 
3 DP °C Continuous Dew point 
4 SR Wt/m2 Continuous Solar radiation 
5 VPD kPa Continuous Vapor pressure-deficit 
6 RH % Continuous Relative humidity of the air 
7 PR mm Continuous Precipitation within one hour 

8 LW min Discrete 
Leaf wetness. If the leaves were wet 
during the last hour (60), otherwise (0) 

9 WS m/s Continuous Wind speed 
10 WG m/s Continuous Wind direction 
11 WD m/s Continuous Wind gust 
12 ST °C Continuous Soil temperature 
13 ET mm Continuous Evapotranspiration 

14 PMBG % Continuous 
Risk of Powdery Mildew Blumeria 
graminis disease in range from 0 to 100 

 
During the preliminary data analysis, all rows containing missing values were removed to avoid 

distortion of the results and to ensure the correctness of the modeling. There were two such rows 
and given that ‘PMBG’ is calculated once a day, their removal does not affect the value of the target 
function. In addition, for the initial analysis of the data in Python, the describe() function from the 
Pandas library was used to obtain statistical information about the numerical characteristics of the 
data, such as mean, standard deviation, minimum and maximum values, and quartiles. These 
indicators allowed assessing data distribution and identifying possible anomalies and general trends 
in the dataset. The statistical indicators obtained as a result of using describe() for the combined 
sample from the two regions are shown in Table 2. 
 
Table 2 
Descriptive statistics of the data collected (combined data of two regions) 
 count mean std min 25% 50% 75% max 
AT 

17343 

10.6 9.7 -10.9 2.7 9.8 18.2 37 
DP 5.3 7.7 -16.5 -0.3 5.5 11.5 25 
SR 135.2 215.7 0 0 3 192 1059 
VPD 0.5 0.6 0 0.1 0.2 0.7 5 
RH 72.6 17.2 19 61 76 87 100 
PR 0.1 0.3 0 0 0 0 15.2 
LW 8.6 21 0 0 0 0 60 
WS 3.5 1.8 0 2.1 3.2 4.6 13.4 
WG 6.1 2.7 0.3 4.1 5.8 7.8 19.1 
WD 180.2 107.3 1 83 180 278 360 
ST 11.9 8.9 -6.5 3.9 11 19.1 35.7 
ET 0.1 0.1 0 0 0 0.1 1.3 
PMBG 12.2 19.2 0 0 0 20 70 

 
The average ‘AT’ value of 10.6 °C indicates a moderate climate in the region. The range of values 

from 10.9°C to 37°C indicates the presence of both cold and very warm periods. The ‘AT’ values are 
centered around 9.8°C (median), with the bottom quartile (25%) falling within 2.7°C and the top 
quartile (75%) falling within 18.2°C, indicating a significant temperature variation. The average ‘RH’ 



value is 72.6%, indicating generally humid conditions. The humidity varies widely, with a minimum 
of 19% and a maximum of 100%, with most values concentrated between 61% and 87%. A mean ‘PR’ 
value of 0.1 mm indicates low precipitation. In fact, most of the records show no precipitation, as the 
median and 25th quartile are 0. The maximum value of 15.2 mm indicates significant but rare 
precipitation. The average ‘LW’ value is 8.6 minutes per hour, indicating predominantly dry 
conditions. 75% of the ‘LW’ values are 0, which means that the leaves remain dry most of the time. 
75% of ‘ET’ values below 0.1 mm indicate generally low evapotranspiration. The average ‘PMBG’ 
value is 12.2%, indicating a low average risk of developing the disease. The maximum ‘PMBG’ is 70%, 
which indicates a significant risk in certain periods. At the same time, the median of 0% indicates 
that a significant part of the sample had no or low risk of the disease, but the 75th quartile at 20% 
shows that there are periods with an increased risk of developing the disease. 

The data in Table 2 shows moderate climatic conditions with relatively low precipitation and 
moderate temperatures. The risk of developing Powdery Mildew is generally low, although periods 
of higher risk require attention. 

The risk of Powdery Mildew varies by 10% on average during the day under favorable conditions 
[20]. Thus, it was decided to aggregate the hourly measurement results to a daily resolution. 
Additionally, eight attributes were introduced: ‘FVT12S’ – the number of hours when the 
temperature ranges from 12°C to 21°C; ‘TL16S’ – the number of hours when the temperature is below 
15°C; ‘TG21S’ – the number of hours when the temperature exceeds 21°C; ‘FVT16S’ – the number of 
hours when the temperature ranges from 16°C to 21°C; ‘TG25S’ – the number of hours when the 
temperature exceeds 25°C; ‘SR_count’ – the number of hours when solar radiation was greater than 
0; ‘RHG85S’ – the number of hours when relative humidity was greater than or equal to 85%; 
‘LW_count’ – the number of hours when the leaves were wet. 

Taking into account the above transformations, the columns of the final table are renamed 
according to the predefined names stored in the variable INPUT_SUMMARY_COLUMNS = 
[‘AT_mean’, ‘FVT12S’, ‘TL16S’, ‘TG21S’, ‘FVT16S’, ‘TG25S’, ‘DP_mean’, ‘SR_sum’, ‘SR_count’, 
‘VPD_mean’, ‘RH_mean’, ‘RHG85S’, ‘PR_sum’, ‘LW_count’, ‘WS_mean’, ‘WD_mean’, ‘WG_mean’, 
‘ST_mean’, ‘ET_sum’, ‘PMBG_mean’], and the calculations correspond to the Python code (see 
Appendix A). The difference between the value of the disease risk for the previous day and the 
current day is calculated using diff(). Then, based on this difference, a new attribute ‘PMBG_class’ is 
created in which the class of risk change is stored: 1 – risk has increased, 2 – risk has decreased, 0 – 
risk has not changed.  

The data was then split into training and test samples in a 70:30 ratio. 70% of the data was used 
to train the models, and 30% to evaluate their performance. 

After performing these steps, the imbalance of classes in the target variable of the training dataset 
was detected (class 1 – 6.6%, class 2 – 6.4%, class 0 – 87%). This can lead to the model learning to 
favor a more common class, ignoring important features of less represented classes, which ultimately 
degrades the overall performance of the classifier model. Two approaches were used to address this 
problem: ‘undersampling’ and ‘oversampling’. The ‘undersampling’ approach is about reducing the 
number of instances of the majority class to achieve a balance with the minority. This allows the 
model to better account for the minority, as the number of samples of all classes becomes 
proportional. To implement this approach, the pandas.DataFrame.sample() function was used, which 
allows randomly selecting instances from the majority class. Figure 2(a) shows a comparison of the 
original dataset before dividing it into training and test samples and the data after resampling. The 
second approach is ‘oversampling’, which implies increasing the number of minority samples to 
achieve balance with the majority. One of the most common methods for this is the Synthetic 
Minority Over-sampling Technique (SMOTE) [21, 22]. This method generates synthetic minority 
samples by interpolating between real samples. It works by selecting a few nearest neighbors for 
each minority pattern and creating new patterns based on these neighbors. Figure 2(b) shows a 
comparison of the original training set and its version after SMOTE. 
 



  
(a) (b) 

Figure 2: (a) comparison of original and resampled preprocessed dataset across three categories, (b) 
comparison of original train data and resampled train data with SMOTE across three categories. 
 

These two approaches help to achieve a balance in the data and improve the overall quality of the 
model, preventing it from being biased towards the class with more instances and increasing 
classification accuracy for less represented classes. 

The next step in the process of preparing data before training classification models is scaling, 
including standardization and normalization. Scaling is an important step in data processing because 
different features can have different scales, which can negatively affect the performance of machine 
learning models, especially those based on distance or gradient methods.  

The mean and standard deviation are computed from the training data, and these values are then 
used to standardize the training data. The same mean and standard deviation from the training set 
are also applied to standardize the test data. This ensures that both datasets are transformed 
consistently, allowing for accurate evaluation of the performance of the model. The standardization 
is performed in MATLAB Classification Learner App [23] automatically before training the models.  

The last step is to extract significant features. To do this, the 'Feature Selection Wrapper Class' 
algorithm from a GitHub toolbox was used [24]. In the research, the Harris Hawk Optimizer (HHO) 
method was used to extract significant features. This feature selection method mimics the behavior 
and joint hunting strategy of Harris's hawks when chasing prey.  

The algorithm proposed by Heidari and co-authors [25] is based on the swarm approach, does 
not use gradients, and includes evolutionary optimization elements. HHO consists of two main 
phases, exploration and exploitation, which alternate in time to find the best parameters.  

This algorithm has a high convergence rate and excellent local search capabilities, which makes 
it effective for feature selection problems. In this research, the HHO algorithm proposed five 
significant features (‘TL16S’, ‘FVT16S’, ‘DP_mean’, ‘ST_mean’, ‘ET_sum’), which were extracted for 
further analysis and model training. 

After feature selection, the training set was used to train various Simulink-compatible machine-
learning classifiers. Types of classifiers chosen and their relevant hyperparameters [26, 27] are 
summarized in Table 3. 

Table 3  
Models and Hyperparameters used for training and testing 
Model Type Preset Hyperparameters 
Tree Fine Tree Maximum number of splits: 100; Split criterion: Gini's 

diversity index; Surrogate decision splits: Off 
Tree Medium Tree Maximum number of splits: 20; Split criterion: Gini's 

diversity index; Surrogate decision splits: Off 
Tree Coarse Tree Maximum number of splits: 4; Split criterion: Gini's 

diversity index; Surrogate decision splits: Off 
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Discriminant Linear Discriminant Covariance structure: Full 
Discriminant Quadratic 

Discriminant 
Covariance structure: Full 

Efficient 
Logistic 
Regression 

Efficient Logistic 
Regression 

Learner: Logistic regression; Solver: Auto; 
Regularization: Auto; Regularization strength (Lambda): 
Auto; Relative coefficient tolerance (Beta tolerance): 
0.0001; Multiclass coding: One-vs-One 

Efficient 
Linear SVM 

Efficient Linear SVM Learner: SVM; Solver: Auto; Regularization: Auto; 
Regularization strength (Lambda): Auto; Relative 
coefficient tolerance (Beta tolerance): 0.0001; Multiclass 
coding: One-vs-One 

Naive Bayes Gaussian Naive 
Bayes 

Distribution name for numeric predictors: Gaussian; 
Distribution name for categorical predictors: Not 
Applicable 

Naive Bayes Kernel Naive Bayes Distribution name for numeric predictors: Kernel; 
Distribution name for categorical predictors: Not 
Applicable; Kernel type: Gaussian; Support: Unbounded; 
Standardize data: Yes 

SVM Linear SVM Kernel function: Linear; Kernel scale: Automatic; Box 
constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

SVM Quadratic SVM Kernel function: Quadratic; Kernel scale: Automatic; 
Box constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

SVM Cubic SVM Kernel function: Cubic; Kernel scale: Automatic; Box 
constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

SVM Fine Gaussian SVM Kernel function: Gaussian; Kernel scale: 0.56; Box 
constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

SVM Medium Gaussian 
SVM 

Kernel function: Gaussian; Kernel scale: 2.2; Box 
constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

SVM Coarse Gaussian 
SVM 

Kernel function: Gaussian; Kernel scale: 8.9; Box 
constraint level: 1; Multiclass coding: One-vs-One; 
Standardize data: Yes 

KNN Fine KNN Number of neighbors: 1; Distance metric: Euclidean; 
Distance weight: Equal; Standardize data: Yes 

KNN Medium KNN Number of neighbors: 10; Distance metric: Euclidean; 
Distance weight: Equal; Standardize data: Yes 

KNN Coarse KNN Number of neighbors: 100; Distance metric: Euclidean; 
Distance weight: Equal; Standardize data: Yes 

KNN Cosine KNN Number of neighbors: 10; Distance metric: Cosine; 
Distance weight: Equal; Standardize data: Yes 

KNN Cubic KNN Number of neighbors: 10; Distance metric: Minkowski 
(cubic); Distance weight: Equal; Standardize data: Yes 

KNN Weighted KNN Number of neighbors: 10; Distance metric: Euclidean; 
Distance weight: Squared inverse; Standardize data: Yes 

Ensemble Boosted Trees Ensemble method: AdaBoost; Learner type: Decision 
tree; Maximum number of splits: 20; Number of learners: 
30; Learning rate: 0.1; Number of predictors to sample: 
Select All 



 
Ensemble Bagged Trees Ensemble method: Bag; Learner type: Decision tree; 

Maximum number of splits: 99; Number of learners: 
30; Number of predictors to sample: Select All 

Ensemble RUSBoosted Trees Ensemble method: RUSBoost; Learner type: Decision 
tree; Maximum number of splits: 20; Number of 
learners: 30; Learning rate: 0.1; Number of predictors 
to sample: Select All 

Neural 
Network 

Narrow Neural 
Network 

Number of fully connected layers: 1; First layer size: 
10; Activation: ReLU; Iteration limit: 1000; 
Regularization strength (Lambda): 0; Standardize 
data: Yes 

Neural 
Network 

Medium Neural 
Network 

Number of fully connected layers: 1; First layer size: 
25; Activation: ReLU; Iteration limit: 1000; 
Regularization strength (Lambda): 0; Standardize 
data: Yes 

Neural 
Network 

Wide Neural 
Network 

Number of fully connected layers: 1; First layer size: 
100; Activation: ReLU; Iteration limit: 1000; 
Regularization strength (Lambda): 0; Standardize 
data: Yes 

Neural 
Network 

Bilayered Neural 
Network 

Number of fully connected layers: 2; First layer size: 
10; Second layer size: 10; Activation: ReLU; Iteration 
limit: 1000; Regularization strength (Lambda): 0; 
Standardize data: Yes 

Neural 
Network 

Trilayered Neural 
Network 

Number of fully connected layers: 3; First layer size: 
10; Second layer size: 10; Third layer size: 10; 
Activation: ReLU; Iteration limit: 1000; 
Regularization strength (Lambda): 0; Standardize 
data: Yes 

Based on the described methodology for assessing the risk of Powdery Mildew Blumeria graminis 
in wheat, the research steps of this article were presented in the form of a structural algorithmic 
scheme, as shown in Figure 3. 

When training the models, the five-fold cross-validation methodology was used to assess their 
performance [28]. This approach allows for efficient use of available data and reduces the risk of 
model overtraining.  

The data is divided into five subsets of equal size. At each iteration, four subsets are used to train 
the model, and one is used to test it. As a result, average accuracy rates are obtained, which gives a 
more stable and reliable assessment of model quality on different chunks of the dataset. 

3. Results and discussion 

After training and testing the classification models, the following results were obtained, as shown in 
Table 4. For each model, training was performed using undersampling and oversampling data 
balancing approaches, in particular, the accuracy rates on the validation (Val.) and test (Test) datasets 
were compared.  



 
Figure 3: Machine learning pipeline to predict PMBG risk using soil and climatic monitoring data. 
 
Table 4  
The summary of the findings from the various machine learning models applied in this study with 
respect to the Harris Hawks algorithm 
Model Undersample, 

Acc. % (Val.) 
Undersample, 
Acc. % (Test) 

Oversample, 
Acc. % (Val.) 

Oversample, 
Acc. % (Test) 

Fine Tree 74 65 84 73 
Medium Tree 74 65 83 73 
Coarse Tree 74 56 76 65 
Linear Discriminant 69 58 75 62 
Quadratic Discriminant 60 65 82 64 
Efficient Logistic Regression 69 58 74 62 
Efficient Linear SVM 68 58 76 59 
Gaussian Naive Bayes 65 65 72 63 
Kernel Naive Bayes 76 70 76 56 
Linear SVM 68 60 76 60 
Quadratic SVM 72 67 87 76 
Cubic SVM 70 63 90 80 
Fine Gaussian SVM 69 58 91 78 
Medium Gaussian SVM 73 58 84 71 
Coarse Gaussian SVM 61 49 73 58 
Fine KNN 72 60 90 75 
Medium KNN 68 58 86 71 
Coarse KNN 39 19 76 63 
Cosine KNN 57 60 85 69 



Cubic KNN 68 58 86 72 
Weighted KNN 75 63 89 72 
Boosted Trees 48 65 84 72 
Bagged Trees 80 65 88 74 
RUSBoosted Trees 71 63 83 75 
Narrow Neural Network 70 63 88 73 
Medium Neural Network 75 58 91 80 
Wide Neural Network 69 70 90 78 
Bilayered Neural Network 69 56 90 71 
Trilayered Neural Network 69 60 89 76 

 
The tree models (Fine Tree, Medium Tree, Coarse Tree) showed the best accuracy when using 

oversampling, with the best accuracy for Fine Tree (84% on validation and 73% on testing). Coarse 
Tree significantly reduced the accuracy on the undersampled test set (56%). SVM models had stable 
results, especially when using oversampling. For example, Quadratic SVM and Cubic SVM 
demonstrated high accuracy rates (up to 90% on the validation set). Fine KNN and Weighted KNN 
achieved the best results in oversampling, showing 90% and 89% accuracy, respectively, on validation. 
Medium and Wide Neural Networks showed the highest accuracy (91% and 90%, respectively) with 
oversampling, indicating their ability to efficiently process more balanced data. The tree-based 
methods (Boosted Trees, Bagged Trees, RUSBoosted Trees) also performed well, especially Bagged 
Trees, with 88% accuracy on the validation and 74% on the oversampled test set. Thus, the use of 
oversampling generally improved the performance of the models, especially for SVMs, KNNs, and 
neural networks. 

To analyze the performance of the models in more detail, the Confusion Matrix for the training 
and test data, as well as the ROC curves for the three classes, were constructed, as shown in Figure 
4 and Figure 5. This analysis was performed for two models: Bagged Trees (on undersampled data) 
and Medium Neural Network (on oversampled data). 

The Confusion Matrix for both models showed similar results. For the Bagged Trees model on the 
undersampled data, it can be seen that the model generally copes with the classification of classes, 
although there are some errors in the classification of smaller classes. The Medium Neural Network 
model, on the other hand, showed better results on oversampled data, reducing the number of 
misclassifications, especially for less represented classes. 

The ROC curves for both models show high sensitivity and specificity for each of the three classes. 
Both models perform well for most classes, with the Medium Neural Network on oversampled data 
showing slightly higher performance in terms of area under the curve (AUC) for class ‘2’. 

 

   
(a) (b) (c) 

Figure 4: Results for Bagged Trees with undersampled data (a) Validation confusion matrix, (b) Test 
confusion matrix, (c) Test ROC curve. 
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(a) (b) (c) 

Figure 5: Results for Medium Neural Network with oversampled data (a) Validation confusion 
matrix, (b) Test confusion matrix, (c) Test ROC curve. 
 

The Bagged Trees model trained on undersampled data was then exported [29] to the Simulink 
environment (Figure 6) to implement a computerized model for automatic data processing to predict 
the Risk of Powdery Mildew in Wheat. 

 

 
Figure 6: Simulink model for Bagged Trees with undersampled data. 
 

An example of the model output in Figure 6 for the northern steppe scenario in the form of time 
graphs is shown in Figure 7, comparing actual and predicted data on the risk of Powdery Mildew 
Blumeria graminis in wheat. 
 

 
Figure 7: Results of modeling in Simulink for Bagged Trees with undersampled data for the period 
from September 2022 to September 2023. 
 

The analysis of time graphs shows that the predicted data from the model is able to reproduce the 
main trends of growth and reduction of disease risk in the relevant time periods. Although there are 
some discrepancies between the actual and predicted values at certain points, in general, the model 
reflects risk behavior well and can be used for operational monitoring and decision-making in open-
field conditions. 
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4. Conclusion 
In this research, the relevant scientific and practical task has been solved by developing and 
researching the computerized method for predicting the risk of powdery mildew in wheat based on 
software analysis of soil and climatic monitoring data. The research allowed for the further 
development of information technologies for agrotechnical purposes to predict the risk of occurrence 
of grain crop diseases (Powdery Mildew Blumeria graminis in wheat) at the pre-symptomatic stage. 
The main results of the research include: 
1. Using undersampling and oversampling methods to solve the problem of class imbalance in the 

training sample. 
2. The application of feature selection algorithms, in particular Harris Hawk Optimizer, reduced 

the number of features to five. 
3. Classification models such as Bagged Trees and Medium Neural Network performed well on 

both validation and test datasets, demonstrating good generalizability. 
4. The export of the Bagged Trees model to the Simulink environment and the subsequent 

generation of program code for microcontroller devices allows it to be used for real-world 
prediction and control in agroclimatic systems based on fog architecture. 

To improve the results, future research should pay attention to the following aspects: 
1. Improving the parameters of algorithms such as Bagged Trees and Neural Networks by further 

tuning hyperparameters, which can lead to even more accurate results. 
2. Involvement of new data sources, such as information on field cultivation, which can improve 

the recognition of conditions that contribute to the occurrence and development of diseases. 
3. Further integration of the model with IoT platforms for automatic real-time monitoring can 

provide more up-to-date and accurate data for predicting disease risks. 
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Appendix A. Python code for daily summarized data 
def read_df_with_daily_summary(csv_path: str) -> pd.DataFrame: 
    df = pd.read_csv(csv_path) 
    df["DT"] = pd.to_datetime(df["DT"], dayfirst=True) 
    df.set_index("DT", inplace=True) 
    # Resample data by day to calculate the required values 
    df_daily_summary = df.resample("D").agg( 
        { 
            "AT": [ 
                "mean", 
                lambda x: ((x >= 12) & (x <= 21)).sum(), 
                lambda x: (x < 15).sum(), 
                lambda x: (x > 21).sum(), 
                lambda x: ((x >= 16) & (x <= 21)).sum(), 
                lambda x: (x >= 25).sum(), 
            ], 
            "DP": "mean", 
            "SR": ["sum", lambda x: (x > 0).sum()], 
            "VPD": "mean", 
            "RH": ["mean", lambda x: (x >= 85).sum()], 
            "PR": "sum", 
            "LW": lambda x: (x > 0).sum(), 
            "WS": "mean", 
            "WD": "mean", 
            "WG": "mean", 
            "ST": "mean", 
            "ET": "sum", 
            "PMBG": "mean", 
        }    ) 
    df_daily_summary.columns = INPUT_SUMMARY_COLUMNS 
    df_daily_summary["PMBG_class"] = ( 
        df_daily_summary["PMBG_mean"] 
        .diff() 
        .apply(lambda x: 1 if x > 0 else 2 if x < 0 else 0) 
    ) 
    # Reset the index for a clean DataFrame 
    df_daily_summary.reset_index(inplace=True) 
    df_daily_summary.drop(columns=["DT", "PMBG_mean"], inplace=True) 
    return df_daily_summary 
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