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Abstract 
This research presents a hybrid method for restoring missing sensor data using adaptive control, aimed at 
enhancing data recovery accuracy in complex situations. The proposed algorithm involves creating a 
training dataset, a control element, and training hybrid models. Key steps include identifying data subsets, 
randomly removing elements to simulate gaps, estimating their values, clustering for accuracy, and 
developing neuro-fuzzy models tailored to specific data groups. Implemented as a Takagi-Sugeno neuro-
fuzzy network, the method effectively combines fuzzy rules with neural computations, allowing it to handle 
variability and noise in real measurements with high adaptability. Computational experiments focused on 
restoring gas temperature data from the TV3-117 turboshaft engine demonstrate high accuracy, with 
deviations ranging between 0.002 and 0.007, indicating robust performance even under sensor failures. The 
model achieves over 99% accuracy, a precision of 0.983, and an F1-score of 0.991, significantly 
outperforming traditional methods such as two-layer feedforward networks and ANFIS networks. This 
research offers a reliable solution for sensor data recovery and advances adaptive control systems, 
improving the reliability and performance of aviation technologies and other dynamic applications. 

Keywords  
restoring, missing sensor data, hybrid method, Takagi-Sugeno neuro-fuzzy network, helicopter turboshaft 

engine, fuzzy rules1 

1. Introduction 

Restoring missing sensor data is one of the key tasks in technical monitoring and control systems 
for complex objects such as aviation engines [1], robotic systems [2], and production lines [3]. The 
completeness and reliability of information received from sensors are crucial for these systems 
maintaining safe and efficient operation. However, in practice, sensors may fail or transmit distorted 
data due to technical malfunctions, external influences, or communication failures [4]. These factors 
pose the risk of inaccurate assessments regarding the objects condition, potentially leading to 
undesirable outcomes such as accidents or inefficient management. 

The research relevance methods for restoring sensor data arises from the need to enhance the 
information systems reliability and precision. Modern approaches, including neural networks and 
statistical models, enable not only the missing values restoring but also the systematic and random 
measurement errors correction. This is particularly important in environments with stringent safety 
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and cost-efficiency requirements, where timely detection and compensation for data anomalies can 
extend equipment lifespan and reduce maintenance costs. 

2. Related works 

Existing research on restoring missing sensor data covers a wide range of approaches, from 
traditional interpolation methods to advanced machine learning algorithms and neural networks. 
Classical methods like linear interpolation [5] or polynomial approximation [6] are effective for small 
gaps in data with predictable patterns but fall short when dealing with nonlinear dependencies, 
noise, or dynamic systems, making them less suitable for complex applications. 

With the artificial intelligence and machine learning advancement, the neural networks use has 
gained significant attention in data restoring. Recurrent neural networks (RNN) [7], particularly long 
short-term memory (LSTM) models [8,9], are frequently used to account for temporal dependencies 
and can recover information despite extended gaps. Other approaches [10,11] involve autoencoders, 
which train data representations and restore missing values. These methods show strong 
performance with nonlinear time series and hold promise for real-time applications. 

Neuro-fuzzy systems offer another effective approach, combining neural networks with fuzzy 
logic to handle uncertainty and noise [12]. Models like the Sugeno approach apply flexible rules to 
process fuzzy data and adapt to changing data characteristics, making them especially relevant for 
systems with high uncertainty or significant random errors [13]. 

However, key challenges remain unresolved. One issue is the need for adaptive control in data 
restore when system characteristics change [14]. Many models are fine-tuned to specific system 
parameters, but their performance degrades with changing conditions. Addressing this requires 
models capable of adjusting their parameters dynamically. Neuro-fuzzy systems with adaptive 
control elements [15] offer a promising solution for real-time adaptation. 

Another challenge is managing multidimensional dependencies between sensors, especially when 
parameters are highly interdependent. Current studies [16] often focus on single-sensor data restore, 
neglecting correlations across channels. Developing multichannel models that consider sensor 
interactions and adapt to their evolving characteristics is critical for improving restore performance. 

Thus, adaptive control and neuro-fuzzy systems represent a promising direction for addressing 
these challenges, enhancing data restore quality while adapting to changing operational conditions. 

3. Proposed method 

This research foundation is a general approach to developing a hybrid model, proposed in [29]. The 
original dataset portion, containing only complete data, is used for model construction, and certain 
elements are randomly removed from it. For each artificially excluded element, values are estimated 
using various methods. As a result, a restored set values are generated for each element, which is 
then used as the input vector to build the adaptation model. The known value of the removed element 
serves as the output: 

𝐮𝐮 = {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4, 𝑣𝑣}, (1) 

where ui is the value obtained using one method, and v is the element original value. The resulting 
training dataset (1) is applied for developing and tuning the adaptation model. 

The missing element value estimate in the original dataset, each of the four methods is first 
applied. The results are input into the model, producing a final estimate for the missing element 
value. A critical aspect in model development is the architecture choice. A linear model in the form 
v = w1 ∙ u1 + w2 ∙ u2 + w3 ∙ u3 + w4 ∙ u4 + w0 [17] was examined, along with various nonlinear models 
based on artificial neural networks [18], which implement a function in the form v = f(u1, u2, u3, u4). 
None of the models analyzed demonstrated an improvement in accuracy compared to the individual 
methods included in the model. 



To create a more sophisticated model, a cluster analysis is performed on the training datasets (1) 
for all employed data arrays. As an analytical tool, presented in [17], it is recommended to utilize the 
Fuzzy C-means method with the Xie-Beni criterion [19] for the clusters number assessing. For the 
clustering procedure, it is proposed to use modified samples that include not the results generated 
by the methods, but the absolute errors related to their performance: 

𝐮𝐮 = {|𝑢𝑢1 − 𝑣𝑣|, |𝑢𝑢2 − 𝑣𝑣|, |𝑢𝑢3 − 𝑣𝑣|, |𝑢𝑢4 − 𝑣𝑣|}. (2) 

Conducting cluster analysis on the training datasets allows the several main groups identification 
within the original data arrays, where a similar pattern is observed regarding the original methods 
accuracy. Analysis [19,20] demonstrated that constructing a separate hybrid model for each of these 
groups based on a feedforward neural network significantly improved the hybrid method accuracy 
compared to the original approaches. The feedforward neural network key limitation lies in its 
inability to effectively handle uncertainty and variability in data, particularly under conditions 
characterized by complex nonlinear dependencies. This necessity highlights the neuro-fuzzy 
networks application, which, unlike standard neural networks, can account for the information 
fuzziness and adapt to changing conditions, ensuring higher accuracy in tasks such as clustering and 
complex data analysis. 

This research proposes a method for restoring missing sensor data, featuring control based on 
neuro-fuzzy networks, with the developed scheme illustrated in Figure 1. 
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Figure 1: The scheme for the proposed hybrid method for restoring missing sensor data, featuring 
control based on neuro-fuzzy networks. (author’s research). 

Based on this scheme, the following algorithm has been developed: 
Step 1. The training dataset formation. 

1.1. The subset S ⊆ D identification from the array containing complete data to create a reliable 
foundation for training, where ∣S∣ = n represent instances number. 

1.2. The elements’ specified number m is randomly removed from the selected subset S, creating 
gaps in the data, resulting in a new dataset S′ such that: 

S′ = S − {x1, x2, …, xm}, (3) 

where xi denotes removed elements. 
1.3. The missing element values yi estimation is performed using all available methods M, such 

as regression, interpolation, or machine learning techniques. 
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𝑦𝑦𝑖𝑖 = 𝑓𝑓�𝑥𝑥𝑗𝑗1 , 𝑥𝑥𝑗𝑗2 , … , 𝑥𝑥𝑗𝑗𝑘𝑘�, (4) 

with j1, j2, …, jk being indices of available elements in S′. 
1.4. The training dataset T is formed based on the obtained estimates and missing elements 

known values, creating input-output pairs for model training, i.e.: 

𝑇𝑇 = �(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆′,𝑦𝑦𝑖𝑖  is estimated or known� (5) 

1.5. Steps 1.2–1.4 are repeated until the training dataset T amount reaches a sufficient size, 
defined as the instances number exceeding a predetermined threshold Tmin (e.g., 500 
instances, i.e., ∣T∣ > 500). 

Step 2. The control element creation. 

2.1. A clustering method C (for instance, fuzzy C-means) is applied to determine elements groups 
Gk ⊆ S in the array exhibiting similar accuracy in method performance. 

2.2. A control element is developed and trained is a classifier Cclassifier for missing elements based 
on known portions xi and assigned groups Gk. The classifier primary idea is to the elements 
group identify (from step 2.1) to which a particular missing value belongs, based on the 
instance with gaps known part. Instances from the array with randomly removed elements 
(from step 1.2) are used for training. Thus, 

Cclassifier: xi ↦ Gk . (6) 

Step 3. Training hybrid models. 
For each identified group Gk, a hybrid model Hk is constructed based on a neuro-fuzzy network 

utilizing a feedforward structure. Training is conducted on the dataset formed in step 1 portion T, 
corresponding to the elements specific group Gk, ensuring that the model accounts for each group 
characteristics. In this context, it is advisable to employ a Takagi-Sugeno neuro-fuzzy network 
architecture [21–23] since it effectively combines fuzzy rules with neural computations, providing a 
high degree of adaptability to changing data conditions. This architecture includes fuzzy rules for 
managing uncertainty in data, which is crucial in the variability presence and real measurements 
noise typical [21, 22]. Moreover, the networks’ neural component enables modeling complex 
nonlinear relations between input and output data, leading to the missing values more accurate 
restoring [23]. This architecture use also facilitates adaptive learning mechanisms [22, 24] that can 
account for each group characteristics, forming flexible and highly effective models tailored to the 
data specifics, significantly enhancing prediction accuracy in missing value restore tasks. The 
Takagi-Sugeno-type architecture employs fuzzy rules Rj defined as: 

Rj: IF “x” IS “Aj” THEN “y = fj(x)”, (7) 

where Aj denotes fuzzy sets and fj(x) represents linear combinations for outputs. 

Step 4. The missing values restoring. 
An instance xmissing containing missing values is input into the control element, realized based on 

the classifier. The control element decides dk which hybrid model should be applied for the given 
instance, i.e.: 

dk = Cclassifier(xmissing). (8) 

Apply the selected hybrid model Hk to restore missing values yrestored: 

yrestored = Hk(xmissing). (9) 
Additionally, a confidence assessment mechanism Cconfidence is implemented, which analyzes the 

uncertainty level when selecting a model, considering factors such as the initial data quality and the 



outcomes from previous models. This will improve the value restore accuracy, particularly in 
complex or atypical situations. Thus,  

Cconfidence(dk) = quality(xmissing) + performance(Hk). (10) 
The proposed algorithm scientific novelty lies in its comprehensive approach to restoring missing 

values, which includes stages for forming a training dataset, clustering elements, and adaptively selecting 
hybrid models. Unlike similar methods [17, 19, 20], the algorithm does not simply apply a single universal 
model to all data; it first elements groups identifies with similar performance accuracy, allowing for the 
specialized hybrid models optimized construction for each group. Furthermore, the control element 
implementation in the classifier form, which makes decisions regarding model selection based on the 
instance specific characteristics, ensures higher accuracy and reliability in restoring missing values under 
data uncertainty and variability conditions. 

The Takagi-Sugeno neuro-fuzzy network architecture (Figure 2) for missing value restore is 
designed to combine the fuzzy logic strengths for handling uncertainty and neural networks for 
modeling complex, nonlinear relations between inputs and outputs. 
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Figure 2: The Takagi-Sugeno neuro-fuzzy network proposed architecture [22, 23]. 

The input layer receives the available data from an instance x ∈ R, which contains some missing 
elements. The input layer goal is to feed the known values of the instance into the subsequent layers, 
where x1, x2, …, xk  are known elements and y1, y2, …, ym are the missing elements. For each instance, 
the input is: 

x = [x1, x2, …, xk, _, _, …, _]. (11) 

In fuzzification layer, each input is mapped to fuzzy sets. The fuzzification process uses 
membership functions (typically Gaussian or triangular) to represent uncertainty in the input values. 
Each input xi is associated with a fuzzy set Aj, where the membership degree is computed: 

𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑖𝑖) = exp�−
�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗�

2

2 ∙ 𝜎𝜎𝑗𝑗2
� , (12) 

where cj is the fuzzy set center and σj is its width. 



The rule layer consists of fuzzy IF-THEN rules in the Takagi-Sugeno form [21, 23]. Each rule Rj 
takes the form: 

Rj: IF (x1 is Aj1) AND (x2 is Aj2) AND … THEN yj = fj(x), (13) 
where fj(x) is the inputs linear function: 

fj(x) = w1 ∙ x1 + w2 ∙ x2 + … + wk ∙ xk + bj. (14) 
The rule layer aggregates multiple rules, each corresponding to different fuzzy regions of the 

input space. 
In the inference layer, the network evaluates the degree to which each rule applies to the given 

input. This is done by calculating the product of the membership degrees for each rule: 

𝜇𝜇𝑗𝑗 = �𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

. (15) 

This layer output is the firing strength μj of each rule, indicating how well the input matches the 
rule fuzzy conditions. 

In the defuzzification layer, the network merges the results from all rules to generate the final 
output by applying a modified center of gravity equation [25]: 

𝑦𝑦 =
∑ 𝑤𝑤𝑗𝑗 ∙ 𝑓𝑓𝑗𝑗(𝑥𝑥) ∙ 𝜇𝜇𝑗𝑗𝑗𝑗

∑ 𝑤𝑤𝑗𝑗 ∙ 𝜇𝜇𝑗𝑗𝑗𝑗
. (16) 

Here, fj(x) represents the linear function output corresponding to the j-th rule, and μj is the firing 
strength of the j-th rule. 

The output layer produces the restored missing values yrestored. The result is the estimated values 
set for the missing elements based on the weighted contribution from the fuzzy rules. Table 1 
presents the Takagi-Sugeno neuro-fuzzy network training algorithm. 

The Takagi-Sugeno neuro-fuzzy network's architecture and training process allows for flexible, 
adaptive modeling of complex relations in data, making it highly effective for restoring missing 
values in datasets with uncertainty and variability. By clustering elements and assigning specialized 
models, this approach enhances accuracy and robustness in challenging restoring tasks. 

Table 1 
The Takagi-Sugeno neuro-fuzzy network training algorithm (author’s research). 

Step 
number 

Step name Description 

Step 1 Initialization The membership function parameters cj, σj and the linear 
function weights w1, w2, …, wk, and biases bj are initialized 
randomly. 

Step 2 Forward 
Propagation 

For each training instance x the membership degree in the 
fuzzification layer is computed. The rule activations (firing 
strengths) in the inference layer are computed. The network 
output is computed by aggregating the rule outputs using a 
weighted average in the defuzzification layer. 

Step 3 Error Calculation The error as the difference between the network output 
yrestored and the true value ytrue for the missing element is 
defined as: 

𝐸𝐸 =
1
2
∙��𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 − 𝑦𝑦𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟,𝑖𝑖�

2
𝑚𝑚

𝑖𝑖=1

. 
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4. Results 

The research presents the results from a computational experiment focused on restoring missing gas 
temperature before the compressor turbine 𝑇𝑇𝐺𝐺∗ data in the TV3-117 TE [26], which is part of the Mi-
8MTV helicopter’s power plant. The parameter values are recorded by a dual sensor comprising 14 
T-101 thermocouples [27] at 1-second intervals (Figure 3). Data recording was carried out over a 256-
second time interval. The application of temporal discretization and adaptive quantization with a 
dynamic range to the reconstructed 𝑇𝑇𝐺𝐺∗ signal diagram (Figure 3) resulted in its discrete form (Figure 
4). 

 
Figure 3: Diagrams of the gas temperature before the compressor turbine 𝑇𝑇𝐺𝐺∗ parameter recorded 
onboard the helicopter during the 256-second study interval. (author’s research). 

Step 4 Backpropagation The error gradient with respect to the parameters wj, bj of 
the linear functions in the rule layer is computed. For each 
weight wj, the gradient is calculated as: 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑗𝑗

=
𝜕𝜕𝐸𝐸

𝜕𝜕𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙
𝜕𝜕𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜕𝜕𝑤𝑤𝑗𝑗
. 

The gradients for the membership function parameters wj, 
bj are also computed using the chain rule, adjusting the 
centers and widths of the fuzzy sets: 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑐𝑐𝑗𝑗

=
𝜕𝜕𝐸𝐸

𝜕𝜕𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙
𝜕𝜕𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜕𝜕𝜇𝜇𝑗𝑗
∙
𝜕𝜕𝜇𝜇𝑗𝑗
𝜕𝜕𝑐𝑐𝑗𝑗

. 

Step 5 Parameter Update The parameters using RMSProp optimization method is 
updated as: 

𝜃𝜃𝑗𝑗
(𝑟𝑟+1) = 𝜃𝜃𝑗𝑗

(𝑟𝑟) −
𝜂𝜂

�𝐺𝐺𝑗𝑗
(𝑟𝑟) + 𝜖𝜖

∙ 𝑔𝑔𝑗𝑗
(𝑟𝑟), 

where 𝑔𝑔𝑗𝑗
(𝑟𝑟) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜃𝜃𝑗𝑗
(𝑡𝑡), 𝐺𝐺𝑗𝑗

(𝑟𝑟) = 𝜌𝜌 ∙ 𝐺𝐺𝑗𝑗
(𝑟𝑟−1) + (1 − 𝜌𝜌) ∙ �𝑔𝑔𝑗𝑗

(𝑟𝑟)�
2

, ρ 

is the decay rate (usually set to 0.9), and 𝐺𝐺𝑗𝑗
(𝑟𝑟) is the squared 

gradients running average, η is the training rate, ϵ is a small 
value (e.g., 10−8) added for numerical stability, θj represent 
each parameter (which can be wj, bj, cj, or σj). 

Step 6 Repeat The steps 2–5 are repeated until the network converges, i.e., 
the error falls below a predefined threshold 
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Figure 4: Diagrams of the gas temperature before the compressor turbine 𝑇𝑇𝐺𝐺∗ reconstructed 
parameter recorded onboard the helicopter during the 256-second study interval. (author’s research). 

The generated diagrams (Figures 3 and 4) play a key role in creating the training dataset. 
According to the Nyquist theorem, the sampling rate must be at least twice the maximum frequency 
for accurate signal reconstruction [28]. With 256 readings over 256 seconds, the sampling rate is 256 
/ 256 = 1.0 readings per second, which corresponds to a time interval between readings of 
approximately 7 seconds. This frequency is well-suited for tracking slowly varying parameters and 
provides the necessary detail without excessive data amount [27, 28]. Thus, selecting 256 readings 
represents an optimal compromise between sampling rate, data volume, and computational costs, 
ensuring a balance between accuracy and data processing efficiency. As shown in Figure 4, the 
training dataset for the 𝑇𝑇𝐺𝐺∗  parameter has been created and is presented in Table 2. After 
normalization, it appears as shown in Table 3. 

Table 2 
The training dataset fragment of the gas temperature before the compressor turbine  𝑇𝑇𝐺𝐺∗  parameter 
values (author’s research). 

Table 3 
The training dataset fragment of the gas temperature before the compressor turbine  𝑇𝑇𝐺𝐺∗  parameter 
normalized values (author’s research). 

Thus, the normalized values for the 𝑇𝑇𝐺𝐺∗ parameter range from 0.95 to 0.99. Let’s assume there are 
missing values for the 𝑇𝑇𝐺𝐺∗ parameter between 56 and 65 seconds, 137 and 144 seconds, and 215 and 223 
seconds.  

According to the developed algorithm, at the initial stage, we select a subset S ⊆ D from the 
complete dataset, containing all 𝑇𝑇𝐺𝐺∗ parameter values over the entire period without missing data. Let’s 
assume, for example, that ∣S∣ = 256 records.  

Next, we remove data from S corresponding to the periods from 56 to 65 seconds, 137 to 144 seconds, 
and 215 to 223 seconds. Thus, S′ is the subset S with the removed values, and its size becomes ∣S′∣ = 256 

Number 1 … 38 … 84 … 173 … 256 
Value 1106 … 1118 … 1130 … 1122 … 1104 

Number 1 … 38 … 84 … 173 … 256 
Value 0.971 … 0.979 … 0.989 … 0.984 … 0.968 
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– 28 = 228 values. The missing values will be restored using various methods (regression, interpolation, 
machine learning). It is assumed that the implementation of fuzzy rules by a neuro-fuzzy network 
(Figure 2) for restoring the missing values is carried out according to expressions such as: 

𝑦𝑦56 =
𝑇𝑇55 + 𝑇𝑇66

2
, 𝑦𝑦57 =

𝑇𝑇56 + 𝑇𝑇67
2

, … ,𝑦𝑦65 =
𝑇𝑇64 + 𝑇𝑇66

2
. (17) 

Similarly, interpolation is performed for the other intervals with missing data. At the next stage, 
a training set T is created, including pairs of inputs xi and their corresponding restored values yi, 
using the missing and known data. The dataset size is ∣T∣ > 500. After that, a fuzzy clustering method 
(such as fuzzy C-means) is applied to divide the data into groups Gk with similar restoring 
characteristics. For example, let the data be divided into 3 groups: 

𝐺𝐺1: [0.95 … 0.96],𝐺𝐺2: [0.96 … 0.97],𝐺𝐺3: [0.97 … 0.99]. (18) 

The classifier is trained on the data to determine which group Gk the missing values belong to, 
based on the data known portion. For example, if the missing 𝑇𝑇𝐺𝐺∗ parameter value is 0.955, the 
classifier will assign it to group G1. For each group Gk, a hybrid model Hk is constructed based on the 
Takagi-Sugeno neuro-fuzzy network (Figure 2). A separate model H1 will be built for group G1, model 
H2 for group G2, and so on. These models are trained on the corresponding data from the training set 
T according to the proposed training algorithm (see Table 1). 

For the missing value at the 56th second, using the known data, for example, T55 = 0.956, the 
classifier Cclassifier determines that this value belongs to group G1. To restore the temperature value at 
the 56th second, model H1 (corresponding to group G1) is applied, which reconstructs the missing 
value y56 = H1(T55, T57, …). The confidence score Cconfidence is calculated based on the quality of the input 
data and the performance of model H1, helping to improve the restoration accuracy. Let the 
neighboring parameter values for the adjacent seconds appear as follows (in normalized form): T54 = 
0.960, T55 = 0.955, T66 = 0.957, T67 = 0.958. For the 56th second, using the neuro-fuzzy network (Figure 
2), the missing value is restored as: 

𝑦𝑦56 =
𝑇𝑇55 + 𝑇𝑇66

2
=

0.955 + 0.957
2

= 0.956. (19) 

Similarly, other missing values are restored by applying hybrid models and regression methods 
for more accurate restoring. Table 4 presents the results evaluating the quality of solving the missing 
𝑇𝑇𝐺𝐺∗ parameter values restoring task. The experimental results show that for most values, the 
deviations are only 0.002…0.005, confirming the high accuracy achieved by the restoration models. 
The maximum deviation of 0.007 also falls within acceptable error limits, proving the stability and 
reliability of the proposed approach. Thus, hybrid models and regression methods demonstrate 
excellent performance in restoring critical parameters, ensuring accurate system operation even in 
the event of sensor failures. 

Table 4 
The results evaluating the quality of solving the missing 𝑇𝑇𝐺𝐺∗ parameter values restoring task 

Number The true value with a 
functioning sensor 

The restored value in 
case of a sensor failure 

Discrepancies between 
the true and restored 

values 
56 0.959 0.956 0.003 
57 0.960 0.957 0.003 
58 0.960 0.955 0.005 
59 0.961 0.956 0.005 
60 0.960 0.956 0.004 
61 0.960 0.957 0.003 
62 0.960 0.958 0.002 



The neuro-fuzzy network's performance (Figure 2) evaluation was conducted using traditional 
metrics, including Accuracy, Loss, Precision, Recall, and F1-score [29]. In the context of restoring 
missing sensor values on helicopters, Accuracy reflects the proportion of correctly restored values 
compared to the actual sensor data. Loss measures the prediction error, indicating how far the 
restored values deviate from the true ones [30]. Precision and Recall evaluate the model's 
effectiveness in correctly identifying and recovering missing values, while F1-score provides a 
balance between Precision and Recall, ensuring both completeness and accuracy in the restoration 
process [29, 30]. These metrics are determined using the formulas provided in [29]: 

𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝐴𝐴𝐴𝐴𝑐𝑐𝑦𝑦 =
1
𝑁𝑁
∙�𝟏𝟏(𝑦𝑦𝑖𝑖 = 𝑦𝑦�𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

,𝑃𝑃𝐴𝐴𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
,𝑅𝑅𝑃𝑃𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅 =  

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁

,  

𝐹𝐹1 − 𝑃𝑃𝑐𝑐𝑃𝑃𝐴𝐴𝑃𝑃 =  
2 ∙ 𝑃𝑃𝐴𝐴𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑃𝑃𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅
𝑃𝑃𝐴𝐴𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅

,𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝐴𝐴 =  �𝑇𝑇𝑃𝑃𝑅𝑅 ∙ �𝐹𝐹𝑃𝑃𝑅𝑅−1(𝑡𝑡)�
1

0

𝑑𝑑𝑡𝑡. 

(20) 

In the context of restoring missing sensor-registered parameters on board the helicopter, TP (True 
Positives) refers to correctly restored values that match the actual sensor data when the sensor is 
functioning. TN (True Negatives) represents cases where missing data were correctly identified as 
non-recoverable or not requiring restoration. FP (False Positives) indicates instances where data were 
incorrectly restored, leading to discrepancies between the restored and actual values. FN (False 
Negatives) refers to cases where the system failed to restore missing data correctly, leaving a gap in 
the sensor readings. 

Figures 5 and 6 display the Accuracy and Loss metric diagrams, demonstrating the network's high 
effectiveness. Specifically, the Accuracy exceeds 99 %, while the Loss metric decreases from 2.5% to 
0.5% over 180 training epochs, indicating significant improvement in model quality and training 
efficiency. This confirms the network's capability for high-precision classification tasks with 
minimal error. 

63 0.961 0.958 0.003 
64 0.961 0.957 0.004 
65 0.961 0.957 0.004 
137 0.985 0.982 0.003 
138 0.987 0.984 0.003 
139 0.988 0.984 0.004 
140 0.987 0.983 0.004 
141 0.987 0.982 0.005 
142 0.985 0.979 0.006 
143 0.985 0.980 0.005 
144 0.985 0.978 0.007 
215 0.973 0.969 0.004 
216 0.971 0.966 0.005 
217 0.972 0.970 0.002 
218 0.970 0.969 0.001 
219 0.973 0.969 0.004 
220 0.975 0.970 0.005 
221 0.974 0.970 0.004 
222 0.976 0.971 0.005 
223 0.978 0.974 0.004 



 
Figure 5: The accuracy metric diagram. (author’s research). 

 
Figure 6: The loss metric diagram. (author’s research). 

Specifically, the Accuracy (see Figure 5) exceeds 99 %, while the Loss (see Figure 6) metric decreases 
from 2.5 to 0.5 % over 180 training epochs, indicating significant improvement in model quality and 
training efficiency. This confirms the network's capability for high-precision classification tasks with 
minimal error.  

These results highlight the robustness and reliability of the neuro-fuzzy network in achieving high 
classification accuracy with minimal loss. The steady reduction in the Loss metric demonstrates the 
model's ability to generalize well to new data, further supporting its applicability in real-world scenarios 
requiring precise decision-making and control. 

In the context of restoring missing sensor-registered parameters on board the helicopter, obtained 
Precision is 0.983 means that 98.3 % of the values identified as successfully restored are indeed 
correct, indicating a very low false positive rate. Recall is 1.0 means that the method was able to 
correctly restore all the missing values (no false negatives), achieving 100 % completeness in the 
restoration process. The F1-score is 0.991 combines Precision and Recall, indicating a balance 
between accuracy and completeness, with a near-perfect performance in restoring the missing sensor 
data. 

A comparison (Table 5) of the proposed approaches for restoring missing sensor-registered 
parameters on board the helicopter was conducted by replacing the developed neuro-fuzzy network 
with a two-layer feedforward network (alternative approach 1) and the ANFIS neuro-fuzzy network 
(alternative approach 2), using a traditional training algorithm. This comparison aimed to evaluate 
the performance of different neural network structures in the context of the restoration task. 
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Table 5 
The comparative analysis results (author’s research). 

Number Proposed approach Alternative approach 1 Alternative approach 2 
Accuracy 0.991 0.932 0.976 
Precision 0.983 0.924 0.971 

Recall 1.0 0.817 1.0 
F1-score 0.991 0.867 0.985 
 

The comparative analysis of the proposed neuro-fuzzy network against alternative approaches 
revealed superior performance in restoring missing sensor-registered parameters on board the 
helicopter. The proposed approach achieved an accuracy of 0.991, significantly higher than the 0.932 
obtained by the two-layer feedforward network and the 0.976 from the ANFIS network. Furthermore, 
the proposed method demonstrated exceptional precision (0.983) and an F1-score (0.991), indicating its 
effectiveness in accurately identifying and restoring missing values compared to the alternative 
methods, which showed lower precision and recall rates. 

5. Discussion 

This research lies foundation in the development of a hybrid method for restoring missing sensor 
data with adaptive control (see Figure 1). The proposed method is based on an algorithm that involves 
forming a training dataset, creating a control element, and training hybrid models. The restoration 
of missing values includes identifying a data subset, randomly removing elements to create gaps, 
estimating their values using various methods, clustering to identify groups with similar accuracy, 
developing and training a classifier, constructing neuro-fuzzy models for each group, and utilizing a 
control element to select the model and assess the classifier's confidence. This collective approach 
enhances the accuracy of restoring missing values in complex situations. Unlike similar methods, 
this algorithm does not use a single universal model for all data; instead, it first identifies groups of 
elements with similar accuracy, allowing for the development of specialized hybrid models optimized 
for each specific group. 

The developed algorithm is implemented as a Takagi-Sugeno neuro-fuzzy network (see Figure 2), 
as it effectively combines fuzzy rules and neural computations (see Table 1), ensuring high adaptability 
to changing data conditions and allowing for the processing of uncertainty. This is particularly 
important in environments with variability and noise in real measurements, as well as modeling 
complex nonlinear dependencies between input and output data, facilitating more accurate restoration 
of missing values. A computational experiment has been conducted to restore missing gas temperature 
data before the compressor turbine (see Figures 3 and 4, Tables 2 and 3) for the TV3-117 TE. The results 
confirm the high accuracy of the restoration models, with deviations for most values ranging from 
0.002 to 0.005, and the maximum deviation of 0.007 falling within acceptable error limits (see Table 4). 
This indicates the stability and reliability of the approach, ensuring precise system operation even in 
cases of sensor failures. 

The quality of the proposed Takagi-Sugeno neuro-fuzzy network (see Figure 2) has been assessed 
based on traditional quality metrics: Accuracy, Loss, Precision, Recall, and F1-score. The model's 
accuracy exceeds 99 % (see Figure 5), while the Loss value decreases from 2.5 to 0.5 % (see Figure 6) 
over 180 training epochs, demonstrating a significant improvement in model quality and training 
efficiency. These results confirm the capability of the neuro-fuzzy network to perform high-precision 
classification tasks with minimal errors, highlighting its reliability and robustness. In the context of 
restoring missing values recorded by sensors on board the helicopter, the achieved Precision of 0.983 
indicates that 98.3 % of the values identified as successfully restored are indeed correct. The Recall 
of 1.0 confirms the complete restoration of all missing values, while the F1-score of 0.991 indicates a 
balance between accuracy and completeness, demonstrating nearly perfect performance in restoring 
missing sensor data. 

https://goo.gl/VLCRBB


The comparative analysis of the proposed approaches for restoring missing sensor-registered 
values on board the helicopter showed superior results for the developed neuro-fuzzy network 
compared to alternative methods, such as a two-layer feedforward network and the ANFIS neuro-
fuzzy network (see Table 6). The proposed approach achieved an accuracy of 0.991, significantly 
higher than 0.932 for the two-layer network and 0.976 for the ANFIS network. Furthermore, the 
method demonstrated exceptional precision (0.983) and an F1-score (0.991), indicating its high 
efficiency in identifying and restoring missing values compared to alternative methods, which 
exhibited lower accuracy and completeness metrics. 

Despite the successes achieved in developing the hybrid method for restoring missing data, the 
research faces certain limitations. The effectiveness of the algorithm depends on the quality and 
completeness of the original data, as insufficient representation in the training dataset may 
negatively impact the accuracy of the restored values. The method may encounter challenges when 
working with data containing high levels of noise or anomalies, which could lead to a decrease in 
overall reliability. Although the proposed algorithm has demonstrated high accuracy, its 
performance may vary based on the specifics of different sensor types and helicopter operating 
conditions. 

Prospects for further research include expanding the developed method to process data from 
other sensor types and in various operating conditions. It would also be beneficial to consider 
integrating the algorithm with machine learning methods, such as deep neural networks, to enhance 
adaptability and improve restoration quality. Additionally, developing more complex strategies for 
handling noise and anomalies in the data could significantly increase the algorithm's reliability, 
allowing for effective application in real-world scenarios that require high precision and resilience 
to failures. 

6. Conclusions 

This research successfully presents a hybrid method for restoring missing sensor data through 
adaptive control, emphasizing the development of specialized hybrid models tailored to specific 
groups of data. The algorithm incorporates multiple stages, including data subset identification, 
random removal of elements to simulate missing values, and various estimation methods, 
culminating in the construction of a Takagi-Sugeno neuro-fuzzy network. This approach not only 
enhances the accuracy of missing value restoration but also demonstrates adaptability to changing 
data conditions and the ability to handle uncertainty in real-world measurements. 

The computational experiments conducted on the gas temperature data before the compressor 
turbine of the TV3-117 turboshaft engine confirm the efficacy of the proposed method. The results 
show deviations in the restored values ranging from 0.002 to 0.005, with a maximum deviation of 
0.007, all within acceptable error limits. This indicates the method's stability and reliability in 
operational scenarios, even when sensor failures occur. The ability to maintain precision within 
these limits underscores the method's potential for practical applications in critical systems, such as 
helicopter avionics. 

Furthermore, the performance metrics indicate that the model's accuracy exceeds 99%, with a 
Precision of 0.983 and an F1-score of 0.991, validating the robustness of the Takagi-Sugeno neuro-
fuzzy network. These metrics demonstrate that the proposed method effectively balances accuracy 
and completeness, achieving near-perfect performance in the restoration of missing sensor data. The 
comparative analysis with alternative methods, such as a two-layer feedforward network with an 
accuracy of 0.932 and an ANFIS network with an accuracy of 0.976, illustrates the superiority of the 
developed approach. 

This research contributes significantly to the field by addressing the challenges of missing data 
recovery in sensor systems. The proposed hybrid method, achieving an accuracy of 0.991, 
demonstrates substantial improvements over traditional approaches, paving the way for further 
advancements in the adaptive restoration of missing values. Future research could explore the 
extension of this method to different sensor types and operational conditions, potentially integrating 



advanced machine learning techniques to enhance adaptability and further improve restoration 
quality. 
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