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Abstract 

The article considers the creation of a model of a clustering system with an external module for the 
architecture of OSRCH with intensive changes of states, which concerns their flexibility and load. An 
overview of modern approaches to clustering and load balancing in real-time operating systems was 
performed, and their advantages and disadvantages were identified. The study is aimed at identifying the 
main problems that need to be solved in order to increase the efficiency of clustering and improve load 
balancing in the real conditions of the operation of real-time operating systems. The main challenges arising 
in the context of ensuring high performance of such systems are considered. The obtained results can be 
used to develop new methods that increase the efficiency of resource management and ensure the stability 
of real-time operating systems. 
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1. Introduction 

Real-time operating systems (RTOS) are essential in fields where precision and timely response are 
critical, such as avionics, automotive, healthcare, and telecommunications. They ensure system 
determinism and predictability, guaranteeing the completion of tasks within strictly defined time 
frames. However, modern RTOS face several challenges. Achieving full determinism is complicated 
by potential hardware and software failures, as well as the complexity of synchronizing parallel 
processes. Efficient resource management is not always accomplished, which can lead to system 
overload and delays in task execution. This is particularly critical in high-load environments, where 
the volume of data and the number of tasks exceed the system's capabilities. 

The flexibility and scalability of RTOS also remain challenges. Developing architectures that can 
easily adapt to new tasks and conditions without significant resource expenditure is necessary to 
maintain the relevance and effectiveness of systems in a rapidly changing technological environment 
[28]. 
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The purpose of this study is to analyze the existing methods of clustering and load balancing in 
RTOS, to identify their advantages and disadvantages, as well as to pinpoint the main issues that 
need to be addressed. This will contribute to the development of new approaches and algorithms 
that will enhance the efficiency, reliability, and flexibility of real-time operating systems in mission-
critical applications. 

2. Analysis of existing clustering methods 

Clustering in real-time operating systems (RTOS) is a method of grouping data or objects based on 
similar characteristics or properties. Various methods are used in this field, each with its own 
advantages and disadvantages. The main categories include time-based methods, machine learning 
methods, genetic algorithms, and graph-based approaches. Each of these approaches offers unique 
solutions for clustering tasks and has specific areas of application. 

Time Division Multiplexing (TDM) is used for efficient resource management in RTOS by 
allocating specific time intervals for different tasks [2,3,4]. This ensures predictable and regular 
access to resources, which is critically important for maintaining the properties of real-time systems 
[1].  

In TDM, each task or group of tasks receives exclusive access to processor resources during a pre-
defined time slot in a cyclic order. This approach supports high system performance and reliability 
by guaranteeing the regular execution of tasks [4]. 

It is a positive feature that each task is executed at a defined time, ensuring regular system 
operation. For example, in manufacturing processes, TDM can allocate fixed time slots to different 
sensors and mechanisms, preventing conflicts and ensuring seamless operation. The simplicity of 
implementing this method makes it easy to deploy and configure, which is crucial in embedded 
systems. Moreover, TDM promotes efficient resource usage through controlled time-slot allocation, 
optimizing their use. However, if a task does not use the entire allocated time slot, the unused 
resource is wasted, leading to inefficiency.  

In systems with variable loads, fixed time intervals may be inefficient because they do not adapt 
to current needs [5,6]. Scalability also becomes an issue: in large systems with many tasks, it is 
difficult to provide sufficient time slots for each task. Optimizing resource usage is critical, and there 
arises a need for methods to dynamically redistribute unused resources among tasks. Considering 
task priorities is also important to ensure timely execution of critical tasks, especially in systems 
where this can affect safety or efficiency [7]. 

Machine Learning (ML) methods are increasingly applied for clustering and load balancing in 
RTOS due to their ability to automatically find optimal solutions and adapt to changing conditions 
[9,10]. They include clustering algorithms, reinforcement learning, and neural networks, which 
provide efficient resource allocation and task management in real-time. ML algorithms can 
automatically detect optimal patterns and solutions based on large datasets, aiding effective load 
distribution. They can dynamically change resource allocation strategies in response to system 
demands, ensuring optimal performance even under varying conditions. ML methods also help 
optimize resource use by predicting system load and dynamically adjusting resource distribution 
[11].  

However, ML methods require large volumes of high-quality data for effective training, which 
can be challenging in many RTOS. The computational complexity of ML algorithms, especially 
neural networks, demands significant resources, which can be an issue for systems with limited 
capabilities. Implementing and tuning ML methods can be complex and require a high level of 
expertise [13, 14]. The complexity of algorithms may hinder understanding and trust in their results, 
affecting their integration and monitoring in real systems. 

Genetic Algorithms (GA), based on the principles of natural selection, are widely used to solve 
optimization problems, such as clustering and load balancing in RTOS [15]. They employ processes 
of selection, crossover, and mutation to find optimal or near-optimal solutions to complex problems. 
GAs can efficiently handle various types of tasks and resource constraints, finding global optima and 



adapting to different problems without significant changes to the algorithm [17]. They are also 
resilient to changes and uncertainties in the system, allowing stability and performance to be 
maintained under dynamic conditions. However, genetic algorithms have high computational 
complexity and require careful tuning of parameters, such as population size and crossover and 
mutation rates. Slow convergence can be an issue in real-time systems where timely decisions are 
critical. Scalability is also a concern because, as system size increases, computational requirements 
grow. Defining effective termination criteria and handling dynamic changes in the system remain 
challenges. 

Graph-based methods use graph theory to model interactions between tasks and resources in 
RTOS. Tasks and resources are represented as graph nodes, and the connections between them as 
edges. This allows for effective task distribution and management using spectral clustering 
algorithms, minimum cut/maximum flow, and graph partitioning. These methods can model 
complex interactions and dependencies between tasks and resources, which contributes to more 
precise clustering and load balancing. They scale well and can work with large systems [19], which 
is essential for RTOS with numerous tasks. Flexibility in optimization allows these methods to be 
adapted to various goals, such as minimizing communication costs or evenly distributing the load. 
However, it is important to consider that these methods have high computational complexity, as 
building and processing large graphs require significant resources. This can be a problem for RTOS 
with limited capabilities and strict timing constraints.  

The complexity of handling dynamic changes is also a challenge because these methods often 
assume a static graph structure. The need for accurate information on dependencies between tasks 
and resources can complicate their application in complex systems where such dependencies are not 
always clearly defined. Scalability remains an issue, as computational demands increase with system 
size and complexity. Developing more efficient algorithms and using parallel processing methods 
may help address these issues. 

Thus, the analysis of existing clustering methods in RTOS shows that each has its advantages and 
disadvantages. The choice of the optimal method depends on the specific requirements of the system, 
its size, complexity, and resource constraints.  

Further research is aimed at overcoming existing drawbacks and developing more efficient, 
adaptive, and scalable clustering methods for real-time operating systems [16,18]. This may include 
implementing hybrid approaches [20,21] that combine the advantages of different methods [22], and 
developing new algorithms that can work effectively in dynamic and complex RTOS environments, 
as well as monitoring security against viruses, such as with BOTNET [25, 26, 27]. 

3. Formulation of the problem 

To create a new architecture for real-time operating systems (RTOS), it is essential to conduct a 
thorough analysis of the limitations and shortcomings of existing clustering methods. Understanding 
why current approaches do not provide the desired efficiency, flexibility, and scalability is crucial. 
Based on this analysis, innovative solutions should be developed that combine the strengths of 
various methods and include mechanisms to counter malware [24]. 

The focus should be on developing new algorithms capable of effectively operating under 
dynamic real-time conditions. This may involve integrating the adaptability of machine learning 
with the efficiency of genetic algorithms and the ability of graph-based methods to model complex 
interactions. Such an approach would help overcome the limitations of each individual method, 
resulting in a more universal and effective solution.  

It is important to optimize the computational complexity of new algorithms to ensure their 
operation under resource-constrained environments with strict timing requirements [23]. This can 
be achieved by utilizing parallel processing methods or developing lighter algorithms that do not 
require extensive computations. 

Adaptation to dynamic changes within the system is critical. New approaches should include 
mechanisms that allow for rapid response to changes in load and resource availability, maintaining 



stable performance and reliability of the system in real-time. Additionally, addressing the issue of 
data availability and quality for training algorithms is essential. 

In conclusion, creating a new architecture will require a comprehensive approach that combines 
innovative technologies, resource optimization, and a deep understanding of the specifics of real-
time operating systems. This will enable the development of solutions that enhance the efficiency, 
flexibility, and reliability of such systems, meeting modern demands and challenges. 

4. Main part 

4.1. Architecture model of a task scheduler with intelligent clustering on an 
external module 

The architecture model of a task scheduler with intelligent clustering is based on the principle of 
collecting datasets that are sent to a separate system. This system analyzes the data and uses it to 
improve resource management efficiency in the future.  

The first step in developing a new approach is to collect data that includes information about 
tasks, resources, time parameters, and other important factors. This may involve metrics like task 
execution time, resource consumption, priorities, interdependencies between tasks, and other critical 
characteristics. Each task is linked to the corresponding parameters that reflect its requirements and 
behavior in the system. 

Let 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛} — be a set of tasks, and 𝑅𝑅 = {𝑟𝑟1,𝑟𝑟2, … ,𝑟𝑟𝑚𝑚} — be a set of resources. 
Each task 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 is described by a set of characteristics 𝐹𝐹𝑖𝑖 = {𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑘𝑘}, where 𝑓𝑓𝑗𝑗 represents 
one of the parameters, such as execution time, resource consumption, priorities, and 
interdependencies. 

 
Figure 1: The architecture model of an intelligent clustering system with an external module. 

Thus, data is collected to determine the set of features 𝐹𝐹𝑖𝑖 for each task 𝑥𝑥𝑖𝑖 , meaning each task is 
linked to a set of characteristics.: 

𝐹𝐹𝑖𝑖  =  {𝑓𝑓1(𝑥𝑥𝑖𝑖),𝑓𝑓2(𝑥𝑥𝑖𝑖), … ,𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)},∀𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, (1) 
where 𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖),  — is the value of the j-th characteristic for problem 𝑥𝑥𝑖𝑖 . 
For the correct functioning of machine learning algorithms, feature vectors 𝐹𝐹𝑖𝑖 are normalized. Let 

𝐹𝐹�𝑖𝑖 — be the normalized feature vector: 



𝐹𝐹�𝑖𝑖 = �
𝑓𝑓1(𝑥𝑥1) −𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓1
𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓1

, … ,
𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑘𝑘

� 
(2) 

This brings all features to a common scale for further analysis.  
From the set of all features 𝐹𝐹𝑖𝑖 , the most significant features 𝑆𝑆 ⊂ 𝐹𝐹, which have the greatest 

impact on system performance, are selected. Let 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … ,𝑠𝑠𝑝𝑝}, where 𝑠𝑠𝑗𝑗 — is a selected 
feature from the set 𝐹𝐹𝑖𝑖 , with 𝑝𝑝 < 𝑘𝑘. 

Tasks are clustered based on their features. Algorithms such as k-means or hierarchical clustering 
are used for this [8]. Clustering defines the function of task 𝑥𝑥𝑖𝑖  belonging to cluster 𝐶𝐶𝑗𝑗 : 

∀𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋,𝑥𝑥𝑖𝑖 → 𝐶𝐶𝑗𝑗 , where  𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
𝑑𝑑 (𝐹𝐹�𝑖𝑖 ,𝜇𝜇𝑗𝑗), (3) 

where 𝑑𝑑(⋅,⋅) — is the distance between feature vectors, and 𝜇𝜇𝑗𝑗 — is the center of cluster 𝐶𝐶𝑗𝑗 . 
After clustering, a machine learning model 𝑀𝑀 is built and trained on clusters 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑡𝑡 . The 

model uses the feature values 𝑆𝑆 to classify new tasks 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 : 

𝑀𝑀(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)  =  𝐶𝐶𝑗𝑗 , (4) 

where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 — is a new task, and 𝐶𝐶𝑗𝑗 — is the cluster it belongs to. 
The machine learning model predicts future resource needs based on the current system state. 

The prediction function 𝑃𝑃(𝑡𝑡)determines resource requirements at time 𝑡𝑡:  

𝑃𝑃(𝑡𝑡) = {𝑟𝑟1(𝑡𝑡), 𝑟𝑟2(𝑡𝑡) , … ,𝑟𝑟𝑚𝑚 (𝑡𝑡)}, (5) 
where 𝑟𝑟𝑗𝑗(𝑡𝑡)  — is the predicted load on resource 𝑟𝑟𝑗𝑗 at time 𝑡𝑡. 
For optimal task distribution, a minimization function is used to reduce deviations between actual 

load 𝑟𝑟𝑗𝑗
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) and predicted 𝑟𝑟𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡): 

𝑚𝑚𝑚𝑚𝑚𝑚��𝑟𝑟𝑗𝑗
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) − 𝑟𝑟𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)�
2

𝑚𝑚

𝑗𝑗=1

, 
(6) 

This enables balanced load distribution and resource management, prioritizing the execution of 
the most critical tasks and improving the system's overall performance.  

The model predicts future load and dynamically allocates tasks between processors or cores to 
achieve optimal balance. This helps prevent bottlenecks and ensures smooth system operation 
without failures. 

In summary: 

• The system collects data on tasks and resources in parallel with their execution in real time, 
without affecting its performance.  

• Data processing is offloaded to a separate module or service.  
• Information analysis and machine learning model updates are performed periodically to keep 

the data current.  

The results are used for decision-making regarding resource allocation and task scheduling in 
real-time mode. 

5. Experimental research 

5.1. Prototype preparation 

To implement the prototype, it is proposed to use the FreeRTOS operating system with modified 
tasks.c and main.c files. In tasks.c, which is the main file for the FreeRTOS scheduler and contains 
task management functions, the vTaskSwitchContext() function is modified to call a custom method 



for task distribution. In main.c, code is added to create data collection tasks and call a custom 
scheduler, which will be implemented in a new file custom_scheduler.c. This file will define functions 
for data collection, task classification, and optimization of their distribution. 

The algorithm consists of the following steps: 

1. Data Collection in FreeRTOS: Data is collected by recording parameters during system 
operation or through simulation. Key parameters to be used in the model are defined, such 
as task type, resource usage (CPU), task execution time, and task priority. Based on this, a 
software model is created. Task execution in the system is simulated, with parameters being 
recorded during execution. This can be implemented using loops and timers to simulate 
real-time operation. The collected data is analyzed and transformed into the required 
format for further use in training machine learning models. Data is sent from the 
microcontroller via a configured HTTP client to an online server built on C# .NET 8, which 
receives this data. 

2. Data Preparation for Modeling: Based on the collected data, a dataset is formed containing 
information about tasks, their characteristics, and time parameters. An external 
mathematical library, Math.NET Numerics, is used to process and prepare data for sending 
to the TinyML service. 

3. Sending Data for Training: Using the .NET service, the data is converted into a format 
compatible with TinyML, sent for training, and a trained model is obtained. 

4. Model Analysis and Prediction: After successful model training on the server, the next step 
is to use it for predictions. In this case, the model will be applied for prediction to optimize 
task distribution. 

5. Sending Results to the Microcontroller: After performing predictions, the results are sent 
back to the microcontroller to update decision-making processes in the custom_scheduler.c 
file. 

The data collection process will occur at intervals defined in constants and will automatically 
repeat. 

5.2. Conducting experiments and comparing efficiency 

FreeRTOS uses a time management principle through its task scheduler, which is very similar to 
Time Division Multiplexing (TDM). We can compare the results of default FreeRTOS and the results 
of FreeRTOS with the modified task scheduler.  

To compare the efficiency of standard FreeRTOS and FreeRTOS with the modified architecture, 
several key metrics will be used: 

• Task: This could be a data processing task, input/output, computational task, or simply a 
background task.  

• Resource Usage (CPU): Measurement of CPU usage during task execution. 
• Task Execution Time: Measurement of the time required to complete a task. 

First, we will run the program using the standard task scheduler and collect data on task execution 
time, resource usage, throughput, and latency through logging. After this, we will analyze the 
performance of the task scheduler in FreeRTOS with the modified architecture. For statistical 
purposes, we will set the number of tasks to 4. We will connect the DSView program, which typically 
works with the DS Logic logic analyzer. 

Based on the results of the standard FreeRTOS task scheduler and the modified one (Figure 2, 
figure 3), several conclusions can be drawn.  

Standard Scheduler: 



• Tasks 1, 2, and 4 have equal priority, as seen from their even distribution on the graph. They 
run in parallel or take turns, but without clear prioritization. 

• Task 3 has high priority and is executed first after every interrupt generated by the system 
timer "tick".  

• The idle process does not run often because the processor is continuously occupied with task 
execution.  

 
Figure 2: Graph of CPU time distribution between tasks in the standard FreeRTOS scheduler and 
the modified scheduler. 

 
Figure 3: Graph of CPU time distribution between tasks in the standard FreeRTOS scheduler and 
the modified scheduler. 

Modified Scheduler: 

• Priority-based task allocation: This graph shows that the modified scheduler implements task 
distribution based on their priority and execution time. There is a clear division of time 
between tasks. More controlled and structured use of CPU time is observed. 



• Preemptive scheduling: Tasks are interrupted by other higher-priority tasks, demonstrating 
preemptive scheduler behavior where lower-priority tasks are paused to allow more 
important tasks to execute. 

• Idle process: The idle process now runs more actively when other tasks finish their execution 
time or are in a waiting state. This indicates that the system operates more efficiently as CPU 
power is used more evenly. 

In the standard scheduler, resources are not fully optimized because tasks with equal priorities 
can interrupt each other, and the high-priority task completely occupies the CPU time. 

In the modified scheduler, priority-based preemptive scheduling is clearly implemented, allowing 
the system to dynamically allocate task execution time and use CPU power more efficiently, enabling 
the system to respond faster to changes. 

6. Conclusions 

This work conducted a detailed analysis of existing clustering methods in real-time operating 
systems (RTOS), including time-based methods, machine learning methods, genetic algorithms, and 
graph-based approaches. It was found that each of these methods has its advantages and 
disadvantages, which limit their effectiveness, flexibility, and scalability in modern dynamic systems. 

To overcome the identified limitations, intelligent clustering based on the use of machine learning 
methods on external modules was considered. This approach involves collecting and analyzing data 
on system tasks and resources, classifying tasks based on their characteristics, and optimizing 
resource allocation based on machine learning model predictions. 

Experimental results show improved performance, including reduced CPU usage and decreased 
task execution time compared to the classic FreeRTOS scheduler. 

Thus, intelligent clustering demonstrates the potential of using machine learning methods, and 
shifting the analysis logic to external modules for resource management and load balancing in real-
time operating systems does not burden already limited resources.  

Further research may focus on improving machine learning models, optimizing the 
computational complexity of algorithms, and adapting the system to dynamic changes and scaling 
for operation in more complex and demanding environments. Efforts to increase the efficiency of 
CPU time distribution are ongoing. 
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