
Detecting software implants using system decoys⋆

Dmytro Denysiuk1,∗,†, Oleg Savenko 1,† , Sergii Lysenko1,†, Bohdan Savenko1,† and Andrii
Nicheporuk1,†

1 Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine

Abstract
This paper presents a new method for detecting software implants based on the use of software decoys and
in-depth analysis of system parameters. The aim of the study was to compare the effectiveness of the
proposed method with existing approaches, such as signature analysis, behavioral analysis, and machine
learning-based methods. For this purpose, a relevant dataset was collected, including 5000 malware samples
and 5000 legitimate programs. Each sample was analyzed for detailed signs of interaction with the file
system, RAM, process behavior, and network activity. The research methodology included data collection
and labeling, feature extraction and normalization, and the use of recurrent neural networks (RNNs) to
analyze complex behavioral patterns. The proposed method used software decoys to attract malware, which
allowed detecting its activity at early stages. Experiments showed that the method achieves 95% accuracy,
94% completeness, 96% prediction accuracy, and 95% F1-measure, which significantly exceeds the
performance of signature analysis (85% accuracy), behavioral analysis (89% accuracy), and machine learning
methods (91% accuracy). The proposed approach has several key advantages: the active use of software
decoys increases the likelihood of detecting threats, in-depth analysis of system parameters provides a
comprehensive overview of program behavior, and the use of RNNs allows recognizing complex and
unknown patterns. In addition, the method demonstrates a high detection rate, which makes it suitable for
use in real-time systems. The results of the study indicate the high potential of the proposed method for
improving the cybersecurity of modern information systems. The method can be integrated into existing
protection systems, such as intrusion detection systems (IDS) and SIEM systems, providing a more efficient
and prompt response to cyber threats. In future research, it is planned to expand the dataset and optimize
the model to reduce computational costs, as well as conduct testing in real-world environments to assess
the practical effectiveness of the method. Thus, the proposed method represents a significant step forward
in the field of software implant detection, providing high accuracy, completeness and speed of detection,
which is critical for protecting information systems from modern and evolving cyber threats.

Keywords
malware detection, software implants, software decoys, behavioral analysis, machine learning, deep

learning, recurrent neural networks, cybersecurity, intrusion detection systems (IDS). 1

1. Introduction

The proliferation of software implants [1], such as malware, rootkits[2], and backdoors[3], poses a
significant threat to the information security of modern computer systems. These malicious
components hidden in software are capable of unauthorized access to system resources, stealing
confidential information, and compromising data integrity. The increasing complexity and
sophistication of software implants makes them difficult to detect using traditional methods based
on signature analysis or simple anomaly detection.

A software implant is a malicious code [4] or module that is secretly installed on computer
systems or devices to gain unauthorized access, collect confidential information, or perform other
destructive actions without the user's knowledge. They are often used as part of sophisticated

AdvAIT-2024: 1st International Workshop on Advanced Applied Information Technologies, December 5, 2024, Khmelnytskyi,
Ukraine - Zilina, Slovakia
∗ Corresponding author.
† These authors contributed equally.

 denysiuk@khmnu.edu.ua (D. Denysiuk); savenko_oleg_st@ukr.net (O. Savenko); sirogyk@ukr.net (S. Lysenko);
savenko_bohdan@ukr.net (B. Savenko); nicheporuka@khmnu.edu.ua (A. Nicheporuk)

 0000-0002-7345-8341 (D. Denysiuk); 0000-0002-4104-745X (O. Savenko); 0000-0001-7243-8747 (S. Lysenko); 0000-0001-
5647-9979 (B. Savenko); 0000-0002-7230-9475 (A. Nicheporuk)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:denysiuk@khmnu.edu.ua
mailto:savenko_oleg_st@ukr.net
mailto:sirogyk@ukr.net
mailto:savenko_bohdan@ukr.net
mailto:nicheporuka@khmnu.edu.ua
https://orcid.org/0000-0002-7345-8341
https://orcid.org/0000-0002-4104-745X
https://orcid.org/0000-0001-7243-8747
https://orcid.org/0000-0001-5647-9979
https://orcid.org/0000-0001-5647-9979
https://orcid.org/0000-0002-7230-9475

cyberattacks, such as advanced persistent threats (APTs) [5], providing long-term covert access to
compromised systems.

Software implants can be introduced into a system through various methods, including
exploitation of vulnerabilities [6] in software, social engineering, or infected updates. They are able
to operate undetected for a long time, carrying out malicious operations without detection, which is
a particular danger for organizations, as it can lead to significant financial losses, loss of reputation,
and leakage of confidential information.

One of the key challenges in detecting software implants is their ability to bypass security
controls. Modern implants can use stealth techniques, such as rootkits, which modify the operating
system kernel or inject code into legitimate processes. This allows them to evade detection by
antivirus programs and other security tools that rely on checking known signatures or detecting
abnormal behavior.

Additionally, the development of obfuscation [7] and polymorphism [8] techniques allows
malware to change its code or behavior, making it difficult to detect [9] even with advanced
analyzers. This underscores the need to develop new methods that are independent of prior
knowledge of malware and can effectively respond to new threats.

One of the most promising areas in the fight against software implants is the use of system
decoys[10] that act as traps for malware. System decoys can be implemented in the form of specially
created files, processes, or network services that imitate vulnerable or attractive objects for attackers.
When malware interacts with such decoys, its presence is detected and the threat is neutralized.

Compared to traditional methods, the use of system decoys has several advantages. First, these
tools do not rely on known signatures[11] or malware behavioral patterns, making them effective
against new or modified threats. Secondly, decoys can be integrated at different levels of a system,
providing multi-level protection. Thirdly, interaction with the decoy can help collect additional
information about the malware, allowing for more detailed analysis and development of
countermeasures.

2. Overview of existing solutions

Honeypot systems continue to play an important role in ensuring the cybersecurity of modern
computer networks. They function as specialized tools that simulate[13] real systems or services in
order to attract attackers, allowing cybersecurity professionals to investigate their methods and
techniques in detail. Between 2021 and 2024, there have been significant advances in the
development of honeypot architectures and related software, including integration with artificial
intelligence[13] and machine learning[14] technologies to improve threat detection and analysis.
These systems not only help identify potential threats, but also provide in-depth analysis of
attackers' actions in various environments, including cloud computing, the Internet of Things (IoT),
industrial cyber-physical systems (CPS)[15], and traditional network infrastructures. In addition,
the improvement of honeypot systems contributes to the formation of more adaptive and proactive
cyber defense strategies, which is important in the context of the growing complexity and scale of
modern cyber threats.

2.1. Main categories of honeypot systems

Honeypot systems are divided into two main types depending on the level of interaction: low
interaction and high interaction. Low-interaction systems, such as Honey, are limited to emulating
a limited set of services. They involve only basic attack attempts such as port scans or entry-level
exploits. Although these systems are less resource-intensive, they are not capable of investigating
sophisticated attack methods in detail. In contrast, highly interoperable systems, such as Dionaea or
Kippo, offer attackers full operating systems or real services to interact with. This allows attackers
to perform more complex operations while remaining isolated from critical systems. Thanks to this,
experts can get more information about the penetration methods used by cybercriminals. T-Pot, for
example, is a comprehensive platform that integrates several honeypot solutions and provides in-

depth real-time analysis. The system has been active in recent years and has received updates aimed
at improving performance and monitoring capabilities.

2.2. Honeynet systems

Honeynet systems[16] consist of several honeypot services, which allows you to simulate an entire
network infrastructure, including servers, databases, and other important elements of corporate
systems. One important example of a modern honeynet architecture is HoneyFactory, which uses
container technologies to create virtual environments. This solution provides fast deployment of
complex network systems and enhances attack detection capabilities through the use of cyber
detection. Compared to previous versions of honeynet, HoneyFactory shows better results in terms
of protection efficiency due to the high speed of request processing and flexible system settings for
different business needs.

The use of honeynet systems has become popular in various environments, including IoT and
CPS. These technologies allow you to protect not only traditional network environments, but also
new-generation infrastructures, where it is important to monitor both internal and external threats.
Recent studies have emphasized the importance of integrating such systems into critical
infrastructure to obtain enhanced information about attack methods and their prevention.

2.3. Honeytoken, Honeypatch та Honeyclient

In addition to honeypot systems, other decoys are being actively developed that perform additional
functions in threat detection. Honeytoken[17] is one of the most common tools for detecting
unauthorized activities on the network. Programs such as Canarytokens allow you to create decoy files
that automatically generate alerts when they are accessed. For example, a file that looks like an important
document can be a signal to detect cybercriminals trying to read or modify it.

Honeypatch, introduced in 2023, is an innovative technology that allows you to test the security
of systems without risking productive environments. It creates vulnerable components that attackers
can attack, allowing you to study their behavior and find new threats. This method is effectively
used to collect information about attacks and to test the readiness of systems to exploit
vulnerabilities.

Honeyclient systems, such as Capture-HPC, are used to detect threats targeting client
applications. They actively interact with potentially malicious websites and analyze the methods
used to infect client applications. This technology allows you to effectively simulate real user
behavior and detect attacks such as drive-by downloads.

Thus, the development of malware detection systems using decoys is a promising and highly
sought-after area. The use of such technologies allows not only to detect and analyze modern cyber
threats more effectively, but also to predict possible attacks, increasing the overall level of security
of information systems. Further development and implementation of decoy software will help create
more adaptive and proactive protection strategies, which is important in the context of the ever-
increasing complexity and dynamics of malware.

3. Detection of software implants

Successful development of a malware decoy detection model requires an in-depth analysis of the
parameters that the system will monitor. Identifying these parameters is key to effectively detecting
and analyzing malicious activity on the system. The main aspects that need to be considered in detail
include file system interaction, changes in RAM usage, process behavior, and network activity.
Understanding the behavioral patterns typical of software implants is critical to developing an
effective model.

Successful development of a malware decoy detection model requires an in-depth analysis of the
parameters that the system will monitor. Identifying these parameters is key to effectively detecting
and analyzing malicious activity on the system. The main aspects that need to be considered in detail

include file system interaction, changes in RAM usage, process behavior, and network activity.
Understanding the behavioral patterns typical of software implants is critical to developing an
effective model.

Analyzing such patterns includes tracking the frequency and types of file operations, monitoring
changes in directory structure, and detecting unusual or suspicious changes in file sizes. To quantify
anomalies in the file system, you can use the anomaly indicator 𝐴𝐴𝑓𝑓:

𝐴𝐴𝑓𝑓 = � 𝜔𝜔𝑖𝑖 ∙ �
𝑓𝑓𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
, (1)

where:

• 𝑓𝑓𝑖𝑖 − frequency of the operation 𝑖𝑖′;
• 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 − average value and standard deviation of the frequency𝑓𝑓𝑖𝑖 in the normal state of

the system;
• 𝜔𝜔𝑖𝑖 − weighting factor for the operation 𝑖𝑖;

It is especially important to pay attention to operations with system files, configuration files, and
the registry, as changes to them may indicate attempts to compromise the system.

Changes in the operation of RAM are another significant indicator of a potential threat. Software
implants can load their code directly into memory, bypassing the file system, or inject it into the
memory of other processes, making them difficult to detect using traditional methods. Analysis of
memory usage patterns includes monitoring the creation of new memory segments, changes in
access rights to them, and analyzing the contents of memory for malicious signatures or abnormal
data structures.

To quantify changes in memory usage, you can consider the rate of change in the amount of
memory used:

∆𝑀𝑀 =
𝑑𝑑𝑀𝑀𝑡𝑡

𝑑𝑑𝑑𝑑

(2)

where 𝑀𝑀𝑡𝑡 − the amount of memory used at a given time𝑑𝑑. If the value ∆𝑀𝑀 exceeds the threshold
value𝑇𝑇𝑀𝑀, this may indicate abnormal activity. For example, the detection of executable code in
memory areas that usually do not contain such code can be described through the indicator function
𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡:

𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥) = �1,
0,
𝑖𝑖𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑑𝑑𝑖𝑖𝑚𝑚𝑙𝑙 𝑥𝑥 𝑙𝑙𝑚𝑚𝑙𝑙𝑑𝑑𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐 𝑚𝑚𝑥𝑥𝑚𝑚𝑙𝑙𝑒𝑒𝑑𝑑𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚 𝑙𝑙𝑚𝑚𝑑𝑑𝑚𝑚

𝑚𝑚𝑑𝑑ℎ𝑚𝑚𝑚𝑚𝑒𝑒𝑖𝑖𝑐𝑐𝑚𝑚
, (3)

If 𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥) = 1 for the region 𝑥𝑥, where the executable code is not expected, this may indicate a

software implantation.
The behavior of processes in a system also provides important information for detecting malicious

activity. Software implants can create new processes, modify existing ones, or interact with them in
unusual ways. They may try to gain elevated privileges, change system settings, disable or bypass
security features.

Analysis of process behavior patterns includes monitoring the creation and completion of
processes, analyzing their interaction, tracking system calls, and resource usage. Logistic regression
can be used to estimate the probability that a process is malicious:

𝑃𝑃(𝑒𝑒𝑙𝑙𝑚𝑚 | 𝑥𝑥) =
1

1 + 𝑚𝑚−�𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

, (4)

where:

• 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑖𝑖) − a vector of features related to the behavior of the process;

• 𝛽𝛽𝑖𝑖 − model coefficients.

For example, a process that unexpectedly makes a large number of system calls related to network
activity or file manipulation may have high values for the following attributes𝑥𝑥𝑖𝑖 , which will increase
the likelihood of 𝑃𝑃(𝑒𝑒𝑙𝑙𝑚𝑚 | 𝑥𝑥). In addition, you should pay attention to processes that run in the
background without user interaction or try to hide their presence by changing their attributes.

Network activity of software implants is often one of the most obvious indicators of their
presence. They may attempt to establish unauthorized connections to remote servers to transmit
collected data, receive commands, or download additional modules. Analysis of network behavior
patterns includes tracking the initiation of network connections, analyzing the protocols, ports, and
IP addresses used. To quantify anomalies in network activity, you can use the anomaly indicator 𝐴𝐴𝑛𝑛:

𝐴𝐴𝑛𝑛 = � 𝜔𝜔𝑗𝑗 ∙ �
𝑙𝑙𝑗𝑗 − 𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

�
2𝑀𝑀

𝑗𝑗=1
,

(5)

where:

• 𝑙𝑙𝑗𝑗 − measure parameter value 𝑗𝑗 (for example, the number of connections to a specific IP
address);

• 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 − the average value and standard deviation of this parameter in the normal state;
• 𝜔𝜔𝑗𝑗 − weighting factor;

For example, suddenly establishing connections to geographically remote or suspicious
addresses, using non-standard or high ports, bypassing proxy servers or firewalls can indicate
malicious activity. It's also important to analyze the volume and nature of the data being transmitted,
including whether confidential information or large amounts of data are being transmitted for no
apparent reason.

For in-depth analysis of these patterns, it is necessary to use modern machine learning and
artificial intelligence methods. Deep learning algorithms, such as recurrent neural networks
(RNNs)[19] or convolutional neural networks (CNNs)[20], can be used to analyze sequences of
actions and identify complex dependencies between different system parameters.

For example, a recurrent neural network models a sequence of input data {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑖𝑖} by
calculating hidden states ℎ𝑡𝑡 by the formula:

ℎ𝑡𝑡 = 𝜑𝜑�𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑒𝑒ℎ�, (6)
where:

• 𝑊𝑊𝑥𝑥ℎ ,𝑊𝑊ℎℎ − weight matrices;
• 𝑒𝑒ℎ − displacement vector;
• 𝜑𝜑 − activation function ReLU;

Network output 𝑚𝑚𝑡𝑡 can be calculated as:

𝑚𝑚𝑡𝑡 = 𝑊𝑊ℎ𝑦𝑦ℎ𝑡𝑡 + 𝑒𝑒𝑦𝑦 (7)
where:

• 𝑊𝑊ℎ𝑦𝑦 − output weight matrix;
• 𝑒𝑒𝑦𝑦 − displacement vector.

Analyzing time series of network activity using RNNs can help detect hidden patterns of
communication between malware and command-and-control[21] servers that can be disguised as
legitimate traffic. In addition, it is important to consider contextual factors and profiles of normal

system behavior. The use of behavioral analysis allows the model to detect deviations from the norm
that may not be obvious when considering individual parameters. The Mahalanobis distance can be
used to quantify the deviation[22]:

𝐷𝐷𝑀𝑀 = �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇𝑆𝑆−1(𝑥𝑥 − 𝜇𝜇) (8)
where:

• 𝑥𝑥 − vector of sporasterzhuvannye signs;
• 𝜇𝜇 − is a vector of average values of features in the normal state;
• 𝑆𝑆 − is the covariance matrix.

For example, a program that does not perform network activity under normal conditions but
suddenly starts sending data to the network[23] may have a significant 𝐷𝐷𝑀𝑀 deviation, indicating an
anomaly. Temporal aspects, such as the time of day when certain activities occur or the duration of
sessions, should also be considered, which can help identify anomalies.

Software implants often use sophisticated techniques to bypass detection tools, such as
polymorphism, metamorphism, code obfuscation, rootkits, and other concealment methods.
Therefore, the model must be able to detect not only known signatures or patterns, but also new,
previously unknown threats. This can be achieved by using unsupervised learning and clustering
methods. One of them, the k-means algorithm[24], allows you to divide data into k clusters by
minimizing the sum of squares of the distances between points and cluster centroids:

𝑙𝑙𝑚𝑚𝑎𝑎 𝑚𝑚𝑖𝑖𝑙𝑙𝑆𝑆� � ‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘‖2
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

(9)

where:

• 𝑆𝑆𝑘𝑘 − cluster𝑘𝑘′;
• 𝜇𝜇𝑘𝑘 − cluster centroid 𝑘𝑘;

Identifying new behavioral clusters can signal the emergence of new malicious patterns.
Integration of the model with existing security and monitoring tools is an important component that
provides an expanded picture of the system state and facilitates rapid response to threats. For
example, integration with intrusion detection systems (IDS)[25], event log management tools, or
SIEM systems[26] provides additional data for analysis, which increases the model's accuracy.
Performance and optimization issues are equally important: the model must operate in real time or
close to it to ensure timely detection and response to threats[27]. This requires optimization of
algorithms and the use of efficient data processing methods, such as streaming processing or
hardware acceleration.

4. Results

To evaluate the effectiveness of the proposed method of detecting software implants using software
decoys, a detailed experimental analysis was conducted. The purpose of the experiment was to
compare the proposed method with existing malware detection methods, such as signature
analysis[28], behavioral analysis, and machine learning-based methods[29].

The first step of the experiment was to prepare a relevant dataset that would adequately reflect
the real conditions of the system. For this purpose, we collected a large dataset consisting of various
types of malware[30] and legitimate programs. Malicious samples included trojans, rootkits,
backdoors, spyware, and other types of software implants. These samples were obtained from open
sources, such as VirusTotal, MalwareBazaar, and other specialized repositories. To ensure a
representative dataset, 5000 samples of malware and 5000 samples of legitimate programs were
selected, including system utilities, office applications, browsers, and other legitimate software. Each
sample was thoroughly tested for errors and correct operation. An even distribution between the

different types of malware was ensured to avoid bias in the results of the experiment. Next, the data
was labeled. Malicious samples were labeled as negative (label "1") and legitimate programs as
positive (label "0"). This allowed us to use binary classification methods[31] to analyze the data. For
each sample, information was collected on file system interaction, RAM usage, process behavior, and
network activity. This data was obtained using specialized monitoring tools such as Sysinternals
Suite, Wireshark, and custom software decoys integrated into the system[32]. Special attention was
paid to the feature extraction process. About 100 different features were identified for each sample,
including:

• File operations - the number of files created, deleted, modified, file types interacted with,
changes in attributes and access rights.

• Memory operations - number of memory segments created, changes in memory access
rights, amount of memory used, code injections.

• Process behavior - the number of processes created and terminated, the use of system calls,
interaction between processes, attempts to gain elevated privileges.

• Network activity - the number of established connections, ports and protocols used, IP
addresses, and the amount of data transmitted and received.

To ensure data quality, the features were normalized and scaled. This allowed us to avoid the
influence of the scales of various parameters on the modeling results. A correlation analysis was also
performed to identify and eliminate redundant data.

After preparing the dataset, a series of experiments was launched to compare the effectiveness of
different methods for detecting software implants. The experiments were conducted in a controlled
environment using specialized hardware and software.

In the first experiment, we applied signature analysis. For this purpose, antivirus software with
up-to-date signature databases was used[33]. The dataset was run through the antivirus and the
results were recorded. The signature analysis allowed us to detect most of the known samples of
software implants, but showed low efficiency in relation to new or modified samples.

The second experiment involved the use of behavioral analysis. A monitoring system was
deployed that analyzed the behavior of programs in real time. This method made it possible to detect
malware that exhibited abnormal activity, but had limitations regarding hidden or well-camouflaged
software implants. The third experiment was conducted using machine learning methods. The
dataset was divided into training and test samples in the ratio of 70/30. Classification algorithms such
as logistic regression, SVM, and decision trees were used. The models were trained on the training
set and tested on the test set. The results showed better performance compared to previous methods,
but still had shortcomings in detecting new types of software implants [34].

In the fourth experiment, the proposed method was applied using software decoys and in-depth
analysis of system parameters. Additional software decoys were created to simulate critical system
resources[35]. This made it possible to attract software implants and detect their activity at early
stages. Deep neural networks were also used to analyze complex behavioral patterns.

The model was trained on the full dataset using cross-validation to improve overall performance.
Metrics such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
were used to accurately assess the effectiveness of each method. These metrics allow us to analyze
the classification results in detail and determine the number of correct and incorrect detections.

Table 1
Classification results for each method

Method TP TN FP FN
Signature analysis 4000 4500 500 1000
Behavioral analysis 4250 4600 400 750
Machine learning 4400 4650 350 600
Request method 4700 4800 200 300

The TP (True Positive) value shows the number of correctly detected malicious samples. TN (True
Negative) indicates the number of legitimate programs correctly identified. FP (False Positive)
indicates the number of legitimate programs that were mistakenly[36] recognized as malicious. FN
(False Negative) shows the number of malicious samples that were not detected.

Based on these indicators, we calculated the metrics of accuracy, completeness, prediction
accuracy, and F1-measure.

Table 2
Comparison of the effectiveness of detection methods

The results obtained indicate a significant advantage of the proposed method for detecting
software implants over traditional approaches. In particular, the proposed method achieved the
highest accuracy (95%), completeness (94%), prediction accuracy (96%), and F1-measure (95%). This
demonstrates the method's ability to effectively detect both known and new malware samples[37].
The analysis of TP, TN, FP, and FN indicators shows that the proposed method has the lowest number
of false positives (FP = 200) and undetected threats (FN = 300) compared to other methods. This is
especially important in the context of detecting hidden or well-camouflaged software implants that
may go undetected using traditional methods

Comparison with machine learning methods shows that even when using modern algorithms
such as logistic regression, SVM, and decision trees, there are limitations in detecting new types of
malware. The proposed method, through the use of software decoys and in-depth analysis of
behavioral patterns, outperforms these approaches by all major metrics.

Thus, the experimental results confirm the feasibility of implementing the proposed method in
cybersecurity systems. It not only improves the detection rate of software implants, but also reduces
the risk of missing new or modified threats, which is critical to ensuring the protection of
information systems.

5. Discussion

Experimental results show that the proposed method significantly outperforms other methods in all
major metrics. In particular, the high number of True Positive (TP) and True Negative (TN) indicates
the method's ability to accurately identify both malware and legitimate software. Low values of False
Positive (FP) and False Negative (FN) indicate a minimum number of false positives and missed
threats, which is critical for cybersecurity.

The analysis of Accuracy shows that the proposed method reaches 95%, which is a significant
improvement over signature analysis (85%), behavioral analysis (89%), and machine learning
methods (91%). This indicates that an integrated approach that includes the use of software decoys
and in-depth analysis of system parameters is more effective in detecting modern complex threats.

The high Recall and Precision values also confirm the effectiveness of the proposed method. The
94% completeness means that the method is able to detect most of the available malicious samples,
while the 96% prediction accuracy indicates that most of the detected threats are indeed malicious.
This is important to reduce the number of false positives that can divert resources and attention of
security professionals.

Detection time is also an important factor. The proposed method provides fast data analysis,
which allows detecting threats in almost real time. Compared to the machine learning method, which

Method Accuracy
(%)

Reproduced
(%)

Prediction accuracy
(%)

F1-measure
(%)

Signature analysis 85 80 88 84
Behavioral analysis 89 85 91 88
Machine learning 91 88 93 90
Request method 95 94 96 95

requires an average of 1.5 seconds per sample, the proposed method performs analysis in 1.0 seconds,
which can be critical in scenarios where response time is critical.

A detailed analysis of the results for different types of malware shows that the proposed method
is effective for a wide range of threats. For example, for rootkits, which are usually difficult to detect
due to their ability to hide their presence, the method achieved a detection rate of 93%, which is
significantly higher than the results of other methods.

The use of software decoys has proven to be particularly effective in detecting software implants
that attempt to interact with critical system resources or gain unauthorized access to data. This
allows you to detect threats at an early stage, before they can cause significant damage to the system.
In addition, the use of deep neural networks to analyze complex behavioral patterns allowed the
model to learn to recognize even those threats that use modern detection bypass techniques such as
code obfuscation, polymorphism, and metamorphism.

However, it should be noted that the proposed method requires significant computing resources
to process a large amount of data and train the model. This can be a challenge for systems with
limited resources or in environments where data from a large number of endpoints must be
processed.

6. Conclusion

The experimental analysis confirms the high efficiency of the proposed method for detecting
software implants using software decoys and in-depth analysis of system parameters. The method
demonstrates a significant improvement in all key metrics compared to traditional methods based
on signature analysis, behavioral analysis, and machine learning.

The proposed approach allows not only detecting known threats but also effectively detecting
new and previously unknown malware that uses sophisticated techniques to bypass detection tools.
The use of software decoys provides an additional level of protection, allowing to detect attempts of
unauthorized access to critical system resources.

The high accuracy, completeness, and speed of detection make this method promising for use in
cybersecurity systems where it is necessary to ensure the maximum level of protection with minimal
false positives. In future research, it is advisable to consider optimizing the model to reduce
computational costs, as well as conducting real-world testing to assess the practical effectiveness and
resistance of the method to various types of attacks.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: grammar and spelling
check; DeepL Translate in order to: some phrases translation into English. After using these
tools/services, the authors reviewed and edited the content as needed and take full responsibility for
the publication’s content.

References

[1] T. Flügge, J. Kramer, K. Nelson, S. Nahles, and F. Kernen, Digital implantology—a review of virtual
planning software for guided implant surgery. Part II: Prosthetic set-up and virtual implant
planning, BMC Oral Health, vol. 22, no. 1, p. 23, 2022.

[2] M. Nadim, D. Akopian, and W. Lee, A review on learning-based detection approaches of the
kernel-level rootkit, in: 2021 International Conference on Engineering and Emerging Technologies
(ICEET), IEEE, 2021, pp. 1–6.

[3] Y. Li, Y. Jiang, Z. Li, and S. T. Xia, Backdoor learning: A survey, EEE Transactions on Neural
Networks and Learning Systems, vol. 35(1) (2022) 5–22.

[4] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, A study on malicious software behaviour
analysis and detection techniques: Taxonomy, current trends and challenges, Future Generation
Computer Systems, vol. 130 (2022) 1–18,.

[5] A. Sharma, B. B. Gupta, A. K. Singh, and V. K. Saraswat, Advanced persistent threats (APT):
Evolution, anatomy, attribution and countermeasures, Journal of Ambient Intelligence and
Humanized Computing, 14 (7) (2023) 9355–9381.

[6] J. Yin, M. Tang, J. Cao, H. Wang, M. You, and Y. Lin, Vulnerability exploitation time prediction:
An integrated framework for dynamic imbalanced learning, World Wide Web, 2022, pp. 1–23.

[7] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, A. Nicheporuk. A Technique for detection
of bots which are using polymorphic code. Communications in Computer and Information
Science. 2014.Vol. 431. PP.265-276, ISSN: 1865-0929.

[8] H. Chakraborty and R. Vemuri, "ROBUST: RTL Obfuscation Using Bi-functional Polymorphic
Operators, in: 2024 37th International Conference on VLSI Design and 2024 23rd International
Conference on Embedded Systems (VLSID), IEEE, 2024, pp. 499–504.

[9] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova A Technique for the Botnet
Detection Based on DNS-Traffic Analysis. Communications in Computer and Information
Science. 2015. Vol. 522. PP.127-138, ISSN: 1865-0929.

[10] J. You, S. Lv, Y. Sun, H. Wen, and L. Sun, Honeyvp: A cost-effective hybrid honeypot architecture
for industrial control systems, in: ICC 2021-IEEE International Conference on Communications,
IEEE, 2021, pp. 1–6.

[11] F. Manders, A. M. Brandsma, J. de Kanter, M. Verheul, R. Oka, M. J. van Roosmalen, et al.,
MutationalPatterns: The one stop shop for the analysis of mutational processes, BMC Genomics,
vol. 23, no. 1, p. 134, 2022.

[12] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk. Multi-Agent Based Approach for Botnet
Detection in a Corporate Area Network Using Fuzzy Logic. Communications in Computer and
Information Science. 2013. Vol. 370. PP.243-254, ISSN: 1865-0929.

[13] I. Ahmed, G. Jeon, and F. Piccialli, From artificial intelligence to explainable artificial intelligence
in industry 4.0: A survey on what, how, and where, IEEE Transactions on Industrial Informatics,
18 (8) (2022) 5031–5042.

[14] C. Janiesch, P. Zschech, and K. Heinrich, Machine learning and deep learning, Electronic Markets,
31(3) (2021) 685–695,.

[15] D. Moroz, Research of network characteristics of the communication interface of multiprocessor
modular systems, Computer Systems and Information Technologies, 3 (2022) 82–90.

[16] K. Zhang, Y. Shi, S. Karnouskos, T. Sauter, H. Fang, and A. W. Colombo, Advancements in
industrial cyber-physical systems: An overview and perspectives, IEEE Transactions on Industrial
Informatics, 19(1) (2022) 716–729.

[17] L. Tan, K. Yu, F. Ming, X. Cheng, and G. Srivastava, Secure and resilient artificial intelligence of
things: A HoneyNet approach for threat detection and situational awareness, IEEE Consumer
Electronics Magazine,. 11(3) (2021) 69–78.

[18] V. Papaspirou, L. Maglaras, M. A. Ferrag, I. Kantzavelou, H. Janicke, and C. Douligeris, A novel
two-factor honeytoken authentication mechanism, in: 2021 International Conference on
Computer Communications and Networks (ICCCN), IEEE, 2021, pp. 1–7.

[19] G. M. Makrakis, C. Kolias, G. Kambourakis, C. Rieger, and J. Benjamin, Industrial and critical
infrastructure security: Technical analysis of real-life security incidents, IEEE Access, 9 (2021)
165295–165325.

[20] J. Zhu, Q. Jiang, Y. Shen, C. Qian, F. Xu, and Q. Zhu, Application of recurrent neural network to
mechanical fault diagnosis: A review," Journal of Mechanical Science and Technology, vol. 36, no.
2, pp. 527–542, 2022.

[21] N. Ketkar, et al Convolutional neural networks, in: Deep Learning with Python: Learn Best
Practices of Deep Learning Models with PyTorch, pp. 197–242, 2021.

[22] M. Chornobuk, V. Dubrovyn, and L. Deineha, Cybersecurity: Research of DDoS detection
methods, Computer Systems and Information Technologies, 4 (2023) 6–9.

[23] S. Lysenko, O. Pomorova, O. Savenko, A. Kryshchuk, K. Bobrovnikova DNS-based Anti-evasion
Technique for Botnets Detection. Proceedings of the 8-th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications,
Warsaw (Poland), September 24–26, 2015.Warsaw, 2015. Pp. 453–458.

[24] I. Kok, F. Y. Okay, O. Muyanli, and S. Ozdemir, Explainable artificial intelligence (XAI) for Internet
of Things: A survey, arXiv preprint, arXiv:2206.04800, 2022.

[25] D. Kim, et al, Class scatter ratio based Mahalanobis distance approach for detection of Internet of
Things traffic anomalies, Mobile Networks and Applications, (2023) 1–12.

[26] A. Fahim, K and starting means for k-means algorithm, Journal of Computational Science,. 55
(2021) 101445.

[27] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, A systematic literature review on
Windows malware detection: Techniques, research issues, and future directions," Journal of
Systems and Software, vol. 2023, p. 111921, 2023. doi:10.1016/j.jss.2023.111921.

[28] J. Lansky, et al., Deep learning-based intrusion detection systems: A systematic review, IEEE
Access, 9 (2021) 101574–101599.

[29] S. Vladov, Z. Avkurova, V. Lytvyn, and Y. Zhovnir, Analytical neural network system for the
helicopter turboshaft engines operating modes classification, International Journal of Computing,
23(3) (2024) 342–359. doi:10.47839/ijc.23.3.3653.

[30] R. Berdibayev, et al., A concept of the architecture and creation for SIEM system in critical
infrastructure, in: Systems, Decision and Control in Energy II, Cham: Springer International
Publishing, 2021, pp. 221–242.

[31] O. Savenko, S. Lysenko, A. Kryshchuk, Y. Klots. Proceedings of the 7-th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, Berlin (Germany), September 12–14, 2013. Berlin, 2013. Pp. 363–368.

[32] Z. Yu, Precision Marketing Optimization Model of e-Commerce Platform Based on Collaborative
Filtering Algorithm, Wireless Communications and Mobile Computing 2022 (2022) 1–10.

[33] S. K. J. Rizvi, W. Aslam, M. Shahzad, S. Saleem, and M. M. Fraz, PROUD-MAL: Static analysis-
based progressive framework for deep unsupervised malware classification of Windows portable
executable, Complex & Intelligent Systems, (2022) 1–13.

[34] S. Ritwika and K. B. Raju, Malicious software detection and analyzation using the various machine
learning algorithms, in: 2022 13th International Conference on Computing Communication and
Networking Technologies (ICCCNT), IEEE, 2022, pp. 1–7.

[35] I. Obeidat and M. AlZubi, Developing a faster pattern matching algorithm for intrusion detection
system," International Journal of Computing, 18(3) (2019) 278–284.

[36] E. M. Cherrat, R. Alaoui, and H. Bouzahir, Score fusion of finger vein and face for human
recognition based on convolutional neural network model, International Journal of Computing,
19(1) (2020) 11–19. doi:10.47839/ijc.19.1.1688.

[37] N. Kayhan, S. Fekri-Ershad, Content based image retrieval based on weighted fusion of texture
and color features derived from modified local binary patterns and local neighborhood difference
patterns, Multimedia Tools and Applications, 80(21) (2021) 32763- 32790.

	1. Introduction
	2. Overview of existing solutions
	2.1. Main categories of honeypot systems
	2.2. Honeynet systems
	2.3. Honeytoken, Honeypatch та Honeyclient

	3. Detection of software implants
	4. Results
	5. Discussion
	6. Conclusion
	Declaration on Generative AI
	References

