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Abstract 
This paper presents a new method for detecting software implants based on the use of software decoys and 
in-depth analysis of system parameters. The aim of the study was to compare the effectiveness of the 
proposed method with existing approaches, such as signature analysis, behavioral analysis, and machine 
learning-based methods. For this purpose, a relevant dataset was collected, including 5000 malware samples 
and 5000 legitimate programs. Each sample was analyzed for detailed signs of interaction with the file 
system, RAM, process behavior, and network activity. The research methodology included data collection 
and labeling, feature extraction and normalization, and the use of recurrent neural networks (RNNs) to 
analyze complex behavioral patterns. The proposed method used software decoys to attract malware, which 
allowed detecting its activity at early stages. Experiments showed that the method achieves 95% accuracy, 
94% completeness, 96% prediction accuracy, and 95% F1-measure, which significantly exceeds the 
performance of signature analysis (85% accuracy), behavioral analysis (89% accuracy), and machine learning 
methods (91% accuracy). The proposed approach has several key advantages: the active use of software 
decoys increases the likelihood of detecting threats, in-depth analysis of system parameters provides a 
comprehensive overview of program behavior, and the use of RNNs allows recognizing complex and 
unknown patterns. In addition, the method demonstrates a high detection rate, which makes it suitable for 
use in real-time systems. The results of the study indicate the high potential of the proposed method for 
improving the cybersecurity of modern information systems. The method can be integrated into existing 
protection systems, such as intrusion detection systems (IDS) and SIEM systems, providing a more efficient 
and prompt response to cyber threats. In future research, it is planned to expand the dataset and optimize 
the model to reduce computational costs, as well as conduct testing in real-world environments to assess 
the practical effectiveness of the method. Thus, the proposed method represents a significant step forward 
in the field of software implant detection, providing high accuracy, completeness and speed of detection, 
which is critical for protecting information systems from modern and evolving cyber threats. 
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1. Introduction 

The proliferation of software implants [1], such as malware, rootkits[2], and backdoors[3], poses a 
significant threat to the information security of modern computer systems. These malicious 
components hidden in software are capable of unauthorized access to system resources, stealing 
confidential information, and compromising data integrity. The increasing complexity and 
sophistication of software implants makes them difficult to detect using traditional methods based 
on signature analysis or simple anomaly detection. 

A software implant is a malicious code [4] or module that is secretly installed on computer 
systems or devices to gain unauthorized access, collect confidential information, or perform other 
destructive actions without the user's knowledge. They are often used as part of sophisticated 
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cyberattacks, such as advanced persistent threats (APTs) [5], providing long-term covert access to 
compromised systems. 

Software implants can be introduced into a system through various methods, including 
exploitation of vulnerabilities [6] in software, social engineering, or infected updates. They are able 
to operate undetected for a long time, carrying out malicious operations without detection, which is 
a particular danger for organizations, as it can lead to significant financial losses, loss of reputation, 
and leakage of confidential information.  

One of the key challenges in detecting software implants is their ability to bypass security 
controls. Modern implants can use stealth techniques, such as rootkits, which modify the operating 
system kernel or inject code into legitimate processes. This allows them to evade detection by 
antivirus programs and other security tools that rely on checking known signatures or detecting 
abnormal behavior. 

Additionally, the development of obfuscation [7] and polymorphism [8] techniques allows 
malware to change its code or behavior, making it difficult to detect [9] even with advanced 
analyzers. This underscores the need to develop new methods that are independent of prior 
knowledge of malware and can effectively respond to new threats. 

One of the most promising areas in the fight against software implants is the use of system 
decoys[10] that act as traps for malware. System decoys can be implemented in the form of specially 
created files, processes, or network services that imitate vulnerable or attractive objects for attackers. 
When malware interacts with such decoys, its presence is detected and the threat is neutralized. 

Compared to traditional methods, the use of system decoys has several advantages. First, these 
tools do not rely on known signatures[11] or malware behavioral patterns, making them effective 
against new or modified threats. Secondly, decoys can be integrated at different levels of a system, 
providing multi-level protection. Thirdly, interaction with the decoy can help collect additional 
information about the malware, allowing for more detailed analysis and development of 
countermeasures. 

2. Overview of existing solutions 

Honeypot systems continue to play an important role in ensuring the cybersecurity of modern 
computer networks. They function as specialized tools that simulate[13] real systems or services in 
order to attract attackers, allowing cybersecurity professionals to investigate their methods and 
techniques in detail. Between 2021 and 2024, there have been significant advances in the 
development of honeypot architectures and related software, including integration with artificial 
intelligence[13] and machine learning[14] technologies to improve threat detection and analysis. 
These systems not only help identify potential threats, but also provide in-depth analysis of 
attackers' actions in various environments, including cloud computing, the Internet of Things (IoT), 
industrial cyber-physical systems (CPS)[15], and traditional network infrastructures. In addition, 
the improvement of honeypot systems contributes to the formation of more adaptive and proactive 
cyber defense strategies, which is important in the context of the growing complexity and scale of 
modern cyber threats. 

2.1. Main categories of honeypot systems 

Honeypot systems are divided into two main types depending on the level of interaction: low 
interaction and high interaction. Low-interaction systems, such as Honey, are limited to emulating 
a limited set of services. They involve only basic attack attempts such as port scans or entry-level 
exploits. Although these systems are less resource-intensive, they are not capable of investigating 
sophisticated attack methods in detail. In contrast, highly interoperable systems, such as Dionaea or 
Kippo, offer attackers full operating systems or real services to interact with. This allows attackers 
to perform more complex operations while remaining isolated from critical systems. Thanks to this, 
experts can get more information about the penetration methods used by cybercriminals. T-Pot, for 
example, is a comprehensive platform that integrates several honeypot solutions and provides in-



depth real-time analysis. The system has been active in recent years and has received updates aimed 
at improving performance and monitoring capabilities. 

2.2. Honeynet systems 

Honeynet systems[16] consist of several honeypot services, which allows you to simulate an entire 
network infrastructure, including servers, databases, and other important elements of corporate 
systems. One important example of a modern honeynet architecture is HoneyFactory, which uses 
container technologies to create virtual environments. This solution provides fast deployment of 
complex network systems and enhances attack detection capabilities through the use of cyber 
detection. Compared to previous versions of honeynet, HoneyFactory shows better results in terms 
of protection efficiency due to the high speed of request processing and flexible system settings for 
different business needs.  

The use of honeynet systems has become popular in various environments, including IoT and 
CPS. These technologies allow you to protect not only traditional network environments, but also 
new-generation infrastructures, where it is important to monitor both internal and external threats. 
Recent studies have emphasized the importance of integrating such systems into critical 
infrastructure to obtain enhanced information about attack methods and their prevention. 

2.3. Honeytoken, Honeypatch та Honeyclient 

In addition to honeypot systems, other decoys are being actively developed that perform additional 
functions in threat detection. Honeytoken[17] is one of the most common tools for detecting 
unauthorized activities on the network. Programs such as Canarytokens allow you to create decoy files 
that automatically generate alerts when they are accessed. For example, a file that looks like an important 
document can be a signal to detect cybercriminals trying to read or modify it. 

Honeypatch, introduced in 2023, is an innovative technology that allows you to test the security 
of systems without risking productive environments. It creates vulnerable components that attackers 
can attack, allowing you to study their behavior and find new threats. This method is effectively 
used to collect information about attacks and to test the readiness of systems to exploit 
vulnerabilities. 

Honeyclient systems, such as Capture-HPC, are used to detect threats targeting client 
applications. They actively interact with potentially malicious websites and analyze the methods 
used to infect client applications. This technology allows you to effectively simulate real user 
behavior and detect attacks such as drive-by downloads. 

Thus, the development of malware detection systems using decoys is a promising and highly 
sought-after area. The use of such technologies allows not only to detect and analyze modern cyber 
threats more effectively, but also to predict possible attacks, increasing the overall level of security 
of information systems. Further development and implementation of decoy software will help create 
more adaptive and proactive protection strategies, which is important in the context of the ever-
increasing complexity and dynamics of malware. 

3. Detection of software implants 

Successful development of a malware decoy detection model requires an in-depth analysis of the 
parameters that the system will monitor. Identifying these parameters is key to effectively detecting 
and analyzing malicious activity on the system. The main aspects that need to be considered in detail 
include file system interaction, changes in RAM usage, process behavior, and network activity. 
Understanding the behavioral patterns typical of software implants is critical to developing an 
effective model. 

Successful development of a malware decoy detection model requires an in-depth analysis of the 
parameters that the system will monitor. Identifying these parameters is key to effectively detecting 
and analyzing malicious activity on the system. The main aspects that need to be considered in detail 



include file system interaction, changes in RAM usage, process behavior, and network activity. 
Understanding the behavioral patterns typical of software implants is critical to developing an 
effective model. 

Analyzing such patterns includes tracking the frequency and types of file operations, monitoring 
changes in directory structure, and detecting unusual or suspicious changes in file sizes. To quantify 
anomalies in the file system, you can use the anomaly indicator 𝐴𝐴𝑓𝑓: 

𝐴𝐴𝑓𝑓 = � 𝜔𝜔𝑖𝑖 ∙ �
𝑓𝑓𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
, (1) 

where: 

• 𝑓𝑓𝑖𝑖 − frequency of the operation 𝑖𝑖′; 
•  𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 − average value and standard deviation of the frequency𝑓𝑓𝑖𝑖 in the normal state of 

the system; 
• 𝜔𝜔𝑖𝑖 − weighting factor for the operation 𝑖𝑖; 

It is especially important to pay attention to operations with system files, configuration files, and 
the registry, as changes to them may indicate attempts to compromise the system. 

Changes in the operation of RAM are another significant indicator of a potential threat. Software 
implants can load their code directly into memory, bypassing the file system, or inject it into the 
memory of other processes, making them difficult to detect using traditional methods. Analysis of 
memory usage patterns includes monitoring the creation of new memory segments, changes in 
access rights to them, and analyzing the contents of memory for malicious signatures or abnormal 
data structures. 

To quantify changes in memory usage, you can consider the rate of change in the amount of 
memory used: 

∆𝑀𝑀 =
𝑑𝑑𝑀𝑀𝑡𝑡

𝑑𝑑𝑑𝑑
 

(2) 

where 𝑀𝑀𝑡𝑡 − the amount of memory used at a given time𝑑𝑑. If the value ∆𝑀𝑀 exceeds the threshold 
value𝑇𝑇𝑀𝑀, this may indicate abnormal activity. For example, the detection of executable code in 
memory areas that usually do not contain such code can be described through the indicator function 
𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡: 

𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥) = �1,
0,
𝑖𝑖𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑑𝑑𝑖𝑖𝑚𝑚𝑙𝑙 𝑥𝑥 𝑙𝑙𝑚𝑚𝑙𝑙𝑑𝑑𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐 𝑚𝑚𝑥𝑥𝑚𝑚𝑙𝑙𝑒𝑒𝑑𝑑𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚 𝑙𝑙𝑚𝑚𝑑𝑑𝑚𝑚
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If 𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥) = 1 for the region 𝑥𝑥, where the executable code is not expected, this may indicate a 

software implantation. 
The behavior of processes in a system also provides important information for detecting malicious 

activity. Software implants can create new processes, modify existing ones, or interact with them in 
unusual ways. They may try to gain elevated privileges, change system settings, disable or bypass 
security features. 

Analysis of process behavior patterns includes monitoring the creation and completion of 
processes, analyzing their interaction, tracking system calls, and resource usage. Logistic regression 
can be used to estimate the probability that a process is malicious: 

𝑃𝑃(𝑒𝑒𝑙𝑙𝑚𝑚 | 𝑥𝑥) =
1

1 + 𝑚𝑚−�𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 �
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where: 

• 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑖𝑖) − a vector of features related to the behavior of the process; 



• 𝛽𝛽𝑖𝑖 − model coefficients. 

For example, a process that unexpectedly makes a large number of system calls related to network 
activity or file manipulation may have high values for the following attributes𝑥𝑥𝑖𝑖 , which will increase 
the likelihood of 𝑃𝑃(𝑒𝑒𝑙𝑙𝑚𝑚 | 𝑥𝑥). In addition, you should pay attention to processes that run in the 
background without user interaction or try to hide their presence by changing their attributes. 

Network activity of software implants is often one of the most obvious indicators of their 
presence. They may attempt to establish unauthorized connections to remote servers to transmit 
collected data, receive commands, or download additional modules. Analysis of network behavior 
patterns includes tracking the initiation of network connections, analyzing the protocols, ports, and 
IP addresses used. To quantify anomalies in network activity, you can use the anomaly indicator 𝐴𝐴𝑛𝑛: 

𝐴𝐴𝑛𝑛 = � 𝜔𝜔𝑗𝑗 ∙ �
𝑙𝑙𝑗𝑗 − 𝜇𝜇𝑗𝑗
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where: 

• 𝑙𝑙𝑗𝑗 − measure parameter value 𝑗𝑗 (for example, the number of connections to a specific IP 
address); 

• 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 − the average value and standard deviation of this parameter in the normal state; 
• 𝜔𝜔𝑗𝑗 − weighting factor; 

For example, suddenly establishing connections to geographically remote or suspicious 
addresses, using non-standard or high ports, bypassing proxy servers or firewalls can indicate 
malicious activity. It's also important to analyze the volume and nature of the data being transmitted, 
including whether confidential information or large amounts of data are being transmitted for no 
apparent reason. 

For in-depth analysis of these patterns, it is necessary to use modern machine learning and 
artificial intelligence methods. Deep learning algorithms, such as recurrent neural networks 
(RNNs)[19] or convolutional neural networks (CNNs)[20], can be used to analyze sequences of 
actions and identify complex dependencies between different system parameters. 

For example, a recurrent neural network models a sequence of input data {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑖𝑖} by 
calculating hidden states ℎ𝑡𝑡 by the formula: 

ℎ𝑡𝑡 = 𝜑𝜑�𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑒𝑒ℎ�, (6) 
where: 

• 𝑊𝑊𝑥𝑥ℎ ,𝑊𝑊ℎℎ −  weight matrices; 
• 𝑒𝑒ℎ −  displacement vector; 
• 𝜑𝜑 − activation function ReLU; 

Network output 𝑚𝑚𝑡𝑡 can be calculated as: 

𝑚𝑚𝑡𝑡 = 𝑊𝑊ℎ𝑦𝑦ℎ𝑡𝑡 + 𝑒𝑒𝑦𝑦 (7) 
where: 

• 𝑊𝑊ℎ𝑦𝑦 −  output weight matrix; 
• 𝑒𝑒𝑦𝑦 −  displacement vector. 

Analyzing time series of network activity using RNNs can help detect hidden patterns of 
communication between malware and command-and-control[21] servers that can be disguised as 
legitimate traffic. In addition, it is important to consider contextual factors and profiles of normal 



system behavior. The use of behavioral analysis allows the model to detect deviations from the norm 
that may not be obvious when considering individual parameters. The Mahalanobis distance can be 
used to quantify the deviation[22]: 

𝐷𝐷𝑀𝑀 = �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇𝑆𝑆−1(𝑥𝑥 − 𝜇𝜇) (8) 
where: 

• 𝑥𝑥 − vector of sporasterzhuvannye signs; 
• 𝜇𝜇 − is a vector of average values of features in the normal state; 
• 𝑆𝑆 − is the covariance matrix. 

For example, a program that does not perform network activity under normal conditions but 
suddenly starts sending data to the network[23] may have a significant 𝐷𝐷𝑀𝑀 deviation, indicating an 
anomaly. Temporal aspects, such as the time of day when certain activities occur or the duration of 
sessions, should also be considered, which can help identify anomalies.  

Software implants often use sophisticated techniques to bypass detection tools, such as 
polymorphism, metamorphism, code obfuscation, rootkits, and other concealment methods. 
Therefore, the model must be able to detect not only known signatures or patterns, but also new, 
previously unknown threats. This can be achieved by using unsupervised learning and clustering 
methods. One of them, the k-means algorithm[24], allows you to divide data into k clusters by 
minimizing the sum of squares of the distances between points and cluster centroids: 

𝑙𝑙𝑚𝑚𝑎𝑎 𝑚𝑚𝑖𝑖𝑙𝑙𝑆𝑆� � ‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘‖2
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1
 

(9) 

where: 

• 𝑆𝑆𝑘𝑘 − cluster𝑘𝑘′; 
• 𝜇𝜇𝑘𝑘 − cluster centroid 𝑘𝑘; 

Identifying new behavioral clusters can signal the emergence of new malicious patterns. 
Integration of the model with existing security and monitoring tools is an important component that 
provides an expanded picture of the system state and facilitates rapid response to threats. For 
example, integration with intrusion detection systems (IDS)[25], event log management tools, or 
SIEM systems[26] provides additional data for analysis, which increases the model's accuracy. 
Performance and optimization issues are equally important: the model must operate in real time or 
close to it to ensure timely detection and response to threats[27]. This requires optimization of 
algorithms and the use of efficient data processing methods, such as streaming processing or 
hardware acceleration. 

4. Results 

To evaluate the effectiveness of the proposed method of detecting software implants using software 
decoys, a detailed experimental analysis was conducted. The purpose of the experiment was to 
compare the proposed method with existing malware detection methods, such as signature 
analysis[28], behavioral analysis, and machine learning-based methods[29]. 

The first step of the experiment was to prepare a relevant dataset that would adequately reflect 
the real conditions of the system. For this purpose, we collected a large dataset consisting of various 
types of malware[30] and legitimate programs. Malicious samples included trojans, rootkits, 
backdoors, spyware, and other types of software implants. These samples were obtained from open 
sources, such as VirusTotal, MalwareBazaar, and other specialized repositories. To ensure a 
representative dataset, 5000 samples of malware and 5000 samples of legitimate programs were 
selected, including system utilities, office applications, browsers, and other legitimate software. Each 
sample was thoroughly tested for errors and correct operation. An even distribution between the 



different types of malware was ensured to avoid bias in the results of the experiment. Next, the data 
was labeled. Malicious samples were labeled as negative (label "1") and legitimate programs as 
positive (label "0"). This allowed us to use binary classification methods[31] to analyze the data. For 
each sample, information was collected on file system interaction, RAM usage, process behavior, and 
network activity. This data was obtained using specialized monitoring tools such as Sysinternals 
Suite, Wireshark, and custom software decoys integrated into the system[32]. Special attention was 
paid to the feature extraction process. About 100 different features were identified for each sample, 
including: 

• File operations - the number of files created, deleted, modified, file types interacted with, 
changes in attributes and access rights. 

• Memory operations - number of memory segments created, changes in memory access 
rights, amount of memory used, code injections. 

• Process behavior - the number of processes created and terminated, the use of system calls, 
interaction between processes, attempts to gain elevated privileges. 

• Network activity - the number of established connections, ports and protocols used, IP 
addresses, and the amount of data transmitted and received. 

To ensure data quality, the features were normalized and scaled. This allowed us to avoid the 
influence of the scales of various parameters on the modeling results. A correlation analysis was also 
performed to identify and eliminate redundant data. 

After preparing the dataset, a series of experiments was launched to compare the effectiveness of 
different methods for detecting software implants. The experiments were conducted in a controlled 
environment using specialized hardware and software. 

In the first experiment, we applied signature analysis. For this purpose, antivirus software with 
up-to-date signature databases was used[33]. The dataset was run through the antivirus and the 
results were recorded. The signature analysis allowed us to detect most of the known samples of 
software implants, but showed low efficiency in relation to new or modified samples. 

The second experiment involved the use of behavioral analysis. A monitoring system was 
deployed that analyzed the behavior of programs in real time. This method made it possible to detect 
malware that exhibited abnormal activity, but had limitations regarding hidden or well-camouflaged 
software implants. The third experiment was conducted using machine learning methods. The 
dataset was divided into training and test samples in the ratio of 70/30. Classification algorithms such 
as logistic regression, SVM, and decision trees were used. The models were trained on the training 
set and tested on the test set. The results showed better performance compared to previous methods, 
but still had shortcomings in detecting new types of software implants [34]. 

In the fourth experiment, the proposed method was applied using software decoys and in-depth 
analysis of system parameters. Additional software decoys were created to simulate critical system 
resources[35]. This made it possible to attract software implants and detect their activity at early 
stages. Deep neural networks were also used to analyze complex behavioral patterns.  

The model was trained on the full dataset using cross-validation to improve overall performance. 
Metrics such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 
were used to accurately assess the effectiveness of each method. These metrics allow us to analyze 
the classification results in detail and determine the number of correct and incorrect detections. 

Table 1 
Classification results for each method 

Method TP TN FP FN 
Signature analysis 4000 4500 500 1000 
Behavioral analysis 4250 4600 400 750 
Machine learning 4400 4650 350 600 
Request method 4700 4800 200 300 



The TP (True Positive) value shows the number of correctly detected malicious samples. TN (True 
Negative) indicates the number of legitimate programs correctly identified. FP (False Positive) 
indicates the number of legitimate programs that were mistakenly[36] recognized as malicious. FN 
(False Negative) shows the number of malicious samples that were not detected. 

Based on these indicators, we calculated the metrics of accuracy, completeness, prediction 
accuracy, and F1-measure. 

Table 2  
Comparison of the effectiveness of detection methods 

The results obtained indicate a significant advantage of the proposed method for detecting 
software implants over traditional approaches. In particular, the proposed method achieved the 
highest accuracy (95%), completeness (94%), prediction accuracy (96%), and F1-measure (95%). This 
demonstrates the method's ability to effectively detect both known and new malware samples[37]. 
The analysis of TP, TN, FP, and FN indicators shows that the proposed method has the lowest number 
of false positives (FP = 200) and undetected threats (FN = 300) compared to other methods. This is 
especially important in the context of detecting hidden or well-camouflaged software implants that 
may go undetected using traditional methods 

Comparison with machine learning methods shows that even when using modern algorithms 
such as logistic regression, SVM, and decision trees, there are limitations in detecting new types of 
malware. The proposed method, through the use of software decoys and in-depth analysis of 
behavioral patterns, outperforms these approaches by all major metrics. 

Thus, the experimental results confirm the feasibility of implementing the proposed method in 
cybersecurity systems. It not only improves the detection rate of software implants, but also reduces 
the risk of missing new or modified threats, which is critical to ensuring the protection of 
information systems. 

5. Discussion 

Experimental results show that the proposed method significantly outperforms other methods in all 
major metrics. In particular, the high number of True Positive (TP) and True Negative (TN) indicates 
the method's ability to accurately identify both malware and legitimate software. Low values of False 
Positive (FP) and False Negative (FN) indicate a minimum number of false positives and missed 
threats, which is critical for cybersecurity. 

The analysis of Accuracy shows that the proposed method reaches 95%, which is a significant 
improvement over signature analysis (85%), behavioral analysis (89%), and machine learning 
methods (91%). This indicates that an integrated approach that includes the use of software decoys 
and in-depth analysis of system parameters is more effective in detecting modern complex threats.  

The high Recall and Precision values also confirm the effectiveness of the proposed method. The 
94% completeness means that the method is able to detect most of the available malicious samples, 
while the 96% prediction accuracy indicates that most of the detected threats are indeed malicious. 
This is important to reduce the number of false positives that can divert resources and attention of 
security professionals. 

Detection time is also an important factor. The proposed method provides fast data analysis, 
which allows detecting threats in almost real time. Compared to the machine learning method, which 

Method Accuracy  
(%) 

Reproduced 
(%) 

Prediction accuracy  
(%) 

F1-measure 
(%) 

Signature analysis 85 80 88 84 
Behavioral analysis 89 85 91 88 
Machine learning 91 88 93 90 
Request method 95 94 96 95 



requires an average of 1.5 seconds per sample, the proposed method performs analysis in 1.0 seconds, 
which can be critical in scenarios where response time is critical. 

A detailed analysis of the results for different types of malware shows that the proposed method 
is effective for a wide range of threats. For example, for rootkits, which are usually difficult to detect 
due to their ability to hide their presence, the method achieved a detection rate of 93%, which is 
significantly higher than the results of other methods. 

The use of software decoys has proven to be particularly effective in detecting software implants 
that attempt to interact with critical system resources or gain unauthorized access to data. This 
allows you to detect threats at an early stage, before they can cause significant damage to the system. 
In addition, the use of deep neural networks to analyze complex behavioral patterns allowed the 
model to learn to recognize even those threats that use modern detection bypass techniques such as 
code obfuscation, polymorphism, and metamorphism. 

However, it should be noted that the proposed method requires significant computing resources 
to process a large amount of data and train the model. This can be a challenge for systems with 
limited resources or in environments where data from a large number of endpoints must be 
processed. 

6. Conclusion 

The experimental analysis confirms the high efficiency of the proposed method for detecting 
software implants using software decoys and in-depth analysis of system parameters. The method 
demonstrates a significant improvement in all key metrics compared to traditional methods based 
on signature analysis, behavioral analysis, and machine learning. 

The proposed approach allows not only detecting known threats but also effectively detecting 
new and previously unknown malware that uses sophisticated techniques to bypass detection tools. 
The use of software decoys provides an additional level of protection, allowing to detect attempts of 
unauthorized access to critical system resources.  

The high accuracy, completeness, and speed of detection make this method promising for use in 
cybersecurity systems where it is necessary to ensure the maximum level of protection with minimal 
false positives. In future research, it is advisable to consider optimizing the model to reduce 
computational costs, as well as conducting real-world testing to assess the practical effectiveness and 
resistance of the method to various types of attacks. 

Declaration on Generative AI 

During the preparation of this work, the authors used Grammarly in order to: grammar and spelling 
check; DeepL Translate in order to: some phrases translation into English. After using these 
tools/services, the authors reviewed and edited the content as needed and take full responsibility for 
the publication’s content. 
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