
N. Karayannidis, T. Sellis 10-1

SISYPHUS: A Chunk-Based Storage Manager for OLAP Cubes

Abstract

In this paper, we present SISYPHUS, a storage
manager for data cubes that provides an efficient
physical base for performing OLAP operations.
On-Line Analytical Processing (OLAP) poses
new requirements to the physical storage layer of
a database management system. Special
characteristics of OLAP cubes such as
multidimensionality, hierarchical structure of
dimensions, data sparseness, etc., are difficult to
handle with ordinary record-oriented storage
managers. The SISYPHUS storage manager is
based on a chunk-based data model that enables
the hierarchical clustering of data with a very low
storage cost. Moreover, it provides an access
interface that is “hierarchy aware” and thus native
to the OLAP data space. This interface can be
used to implement efficient access paths to cube
data.

1 Introduction
On-Line Analytical Processing (OLAP) is a trend in
database technology, based on the multidimensional view
of data. A good definition of the term OLAP is found in
[OLAP97]: "…On-Line Analytical Processing (OLAP) is
a category of software technology that enables analysts,
managers and executives to gain insight into data through
fast, consistent, interactive access to a wide variety of
possible views of information that has been transformed
from raw data to reflect the real dimensionality of the
enterprise as understood by the user. OLAP functionality

is characterized by dynamic multidimensional analysis of
consolidated enterprise data supporting end user analytical
and navigational activities including calculations and
modeling applied across dimensions, through hierarchies
and/or across members, trend analysis over sequential
time periods, slicing subsets for on-screen viewing, drill-
down to deeper levels of consolidation, rotation to new
dimensional comparisons in the viewing area etc. …".
The OLAP data space is composed of measures
(alternatively facts1) and dimensions. In the real world, a
measure would be typically an attribute in some enterprise
model that changes constantly and there is interest in
measuring its values in regular periods. Common
examples of measures are total sales during a day, balance
snapshots of a bank account, inventory levels of a
warehouse etc.
A dimension is another enterprise attribute that does not
change with time (and if it does this happens very slowly
compared to measures) and has a constant value for a
specific measure value. For example, the date of the day,
the name of the store and the specific product that a total
refers to, characterize a sales total at the end of a day for a
large retail store. At least one of these constants will have
a different value for a different measure value. Therefore,
dimension values can uniquely identify a fact value in the
same sense that a set of coordinates uniquely identifies a
point in space.
A cube can be envisioned as a multi-dimensional grid
built from the dimension values. Each cell in this grid
contains a set of measure values, which are all
characterized by the same combination of coordinates.
Note that in the literature the term "cube" usually implies
a set of pre-computed aggregates along all possible
dimension combinations. In what follows by "cube" we
will mean just a set of facts organized as described above
(in SISYPHUS, a cell is simply defined as a set of
measures).
OLAP poses new requirements to storage management.
Ordinary record-oriented storage managers have been
designed to fulfill mainly the needs of on-line transaction

1 The terms "fact" and "measure" will be used interchangeably

through this text.

Nikos Karayannidis
Knowledge and Database

Systems Laboratory
Department of Electrical and

Computer Engineering
National Technical University of

Athens (NTUA)
Zografou 15773, Athens Greece

nikos@dblab.ece.ntua.gr

Timos Sellis
Knowledge and Database

Systems Laboratory
Department of Electrical

and Computer Engineering
National Technical University

of Athens (NTUA)
Zografou 15773, Athens Greece

timos@dblab.ece.ntua.gr

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW'2001)
Interlaken, Switzerland, June 4, 2001
(D. Theodoratos, J. Hammer, M. Jeusfeld, M. Staudt, eds.)

KWWS���VXQVLWH�LQIRUPDWLN�UZWK�DDFKHQ�GH�3XEOLFDWLRQV�&(85�:6�9RO����

N. Karayannidis, T. Sellis 10-2

processing (OLTP) systems and thus fail to serve as an
efficient storage basis for doing OLAP. Therefore the
need for storage managers that adapt well to OLAP
characteristics is essential.
Our contribution to this problem can be summarized as
follows:

• We present the design of a storage manager
specific to OLAP cubes, based on a chunk-
oriented file system, called SISYPHUS.

• The chunk-oriented file system offered by
SISYPHUS:

o is natively multi-dimensional and
supports hierarchies,

o clusters data hierarchically,
o is space conservative in the sense that it

copes with the cube sparseness, and
o adopts a location-based data-addressing

scheme instead of a content-based one.
• SISYPHUS provides a data-access interface that

enables navigation in the multi-dimensional and
multi-level data space of a cube. This interface
can be used for defining more elaborate cube-
oriented access paths.

SISYPHUS is implemented on top of the SHORE Storage
Manager (SSM), a C++ library for building object
repository servers developed at the University of
Wisconsin-Madison [SSMP97].
The structure of this paper is as follows: in section 2 we
argue on the new requirements posed to storage managers
in the context of OLAP. In section 3, we present a
hierarchy of abstraction levels offered by the SISYPHUS
modules. In section 4, we present the heart of SISYPHUS,
which is the chunk-oriented file system. In section 5, we
present a set of access operations offered by SISYPHUS
with which more elaborate OLAP access methods and
operations can be defined. We begin though, with a small
hint on chunking.
Chunking is not a new concept in the relevant literature.
Several papers exploit chunks; to our knowledge, the first
paper to introduce the notion of the chunk was [SaSt94].
Very simply put, a chunk is a sub-cube within a cube with
the same dimensionality as the encompassing cube. A
chunk is created by defining distinct ranges of members
along each dimension of the cube. In other words, by
applying chunking to the cube we essentially perform a
kind of grouping of data. It has been observed ([SaSt94,
DeRaSh+98]) that chunks provide excellent clustering of
cells, which results in less I/O cost when reading data
from a disk and also better caching, if a chunk is used as a
caching unit.
Chunks can be of uniform size [SaSt94, ChIo99] or of
variant size [DeRaSh+98]. Our approach of chunking
deals with variant size chunks that are built according to
the parent-child relationships of the dimension members
along an aggregation path. A similar approach has been
adopted in [DeRaSh+98] for caching OLAP query results.

2 OLAP requirements relative to storage
management
A typical RDBMS storage manager offers the storage
structures, the operations, and in one word the framework,
in order to implement a tuple (or record) oriented file
system on top of an operating system’s file system or
storage device interface. Precious services, such as the
management of a buffer pool, in which pages are fetched
from permanent storage and “pinned” into some page slot
in main memory, or the concurrency control with different
kind of locks offered at several granularities, and even the
recovery management done by a log manager, can all
gracefully be included in a storage manager system. The
record-oriented SHORE storage manager [SSMP97]
offers all of these functionalities.
However, in the context of OLAP some of these services
have “restricted usefulness”, while some other
characteristics that are really needed are not supported by
a record-oriented storage manager. For example, it is
known that in OLAP there are no transaction-oriented
workloads with frequent updates to the database. Most of
the loads are read-only. Moreover, queries in OLAP are
much more demanding than in OLTP systems and thus
pose an imperative need for small response times, which
in storage management terms translates to efficient access
to the stored data. Also, concurrent access to the data is
not as important in OLAP as it is in OLTP. This is due to
the read-oriented profile of OLAP workloads and the
different end-user target groups between the two.
Additionally, OLAP data are natively multi-dimensional.
This means that the underlying storage structures should
provide efficient access to the data, when the latter are
addressed by dimension content. Unfortunately, record-
oriented storage managers are natively one-dimensional
and cannot adapt well to this requirement. Moreover, the
intuitive view of the cube as a multidimensional grid with
facts playing the role of the data points within this grid,
points out the need for addressing data by location and not
by content, as it is in ordinary storage managers.
Finally, dimensions in OLAP contain hierarchies. The
most typical dimensional restriction is to select some point
at a higher aggregation level, e.g. year “1998” that will
next be interpreted possibly to some range on the most
detailed data. Again, ordinary storage managers do not
support hierarchies in particular.
The need for smaller response times makes the issue of
good physical clustering of the data a central point in
storage management. Sometimes this might cause
inflexibility in updating. However, considering the profile
of typical OLAP workloads this is acceptable.
As a last point, we should not forget that OLAP cubes are
usually very sparse. [Co96] argues that only 20% of the
cube contains real data. Therefore, the storage manager
must cope with sparseness and make good space
utilization.

N. Karayannidis, T. Sellis 10-3

3 Levels of abstraction in SISYPHUS
The levels of abstraction in a storage manager are guided
by the principles of data abstraction and module design
[GrRe93]. Each level plays its own role in storage
management by hiding details of the levels below from the
levels above. Figure 1 depicts the abstraction levels
implemented in SISYPHUS. This hierarchy of levels had
to stand upon the corresponding abstraction levels
provided by the record-oriented SHORE storage manager
(SSM) [SSMP97]. We will start our description of Figure
1 in a bottom up approach.
The SSM provides a hierarchy of storage structures. A
device corresponds to a disk partition or an operating
system file used for storing data. A device contains
volumes. A volume is a collection of files and indexes
managed as a unit. A file is a collection of records. A
record is an un-typed container of bytes consisting
basically of a header and a body. The body of a record is
the primary data storage location and can range in size
from zero bytes to 4-GB.
The SISYPHUS file manager’s primary task is to hide all
the SSM details. The higher levels don’t have to know
anything about devices, disk volumes, SSM files, SSM
records, etc. The abstraction provided by this module is
that the basic file system consists of a collection of cubes,
where each cube is a collection of buckets.
Each cube is stored in a single SSM file. We use an SSM
record to implement a bucket. In our case however, a
bucket is of fixed size. This typically equals the size of the
operating system’s disk page (e.g. 8,192 bytes). A bucket
is recognized within a cube with its bucket id, which
encapsulates its record counterpart.
The file manager communicates with the SSM level with
record access operations provided by SSM. A typical
subset of operations offered by the file manager is:

• Create cube: allocates a new file for the new
cube and registers the new cube in the catalog

• Destroy cube: the destruction of a cube.
• Create bucket: allocate a new bucket for a cube.
• Destroy bucket: destroy a specified bucket.
• Bucket scan: iterate through all buckets of a cube

in the order of their physical storage.
The next level of abstraction is the buffer manager. This
level’s basic concern is to hide all the file system specific
details and give the impression of a virtual memory space
of buckets, as if the whole database were in main memory.
It is a client of the file manager in the sense that buckets
have to be pinned from a cube into a page in the buffer
pool. The underlying page-oriented SSM buffer manager
implements the replacement policies and also the
collaboration with the log manager, for logging of
transactions and recovery precautions. Typical operations
offered are:

• Pin bucket: pins a bucket in the buffer pool.
Also, locks the bucket with a read (shared) or
write (exclusive) lock.

• Unpin bucket: unpins the bucket from the buffer
pool and, if it has been updated, it writes it back
to permanent storage.

The interface provided by the buffer manager to the next
higher level is viewing a bucket as an array of chunks.
Therefore, appropriate chunk-access operations are used
in this interface.

Figure 1: The abstraction levels in SISYPHUS storage

manager

The access manager is concerned with all the details of
managing the chunks such as which chunks to place in
what bucket, etc. A typical sample of these administrative
operations is the following:

• Create cube: actually this is just a wrapper that
calls the underlying counterpart offered by the
file manager.

• Drop cube: similarly, this method calls the file
manager’s counterpart.

• Load cube: receives as input a file containing the
detailed data and the schema of the cube (i.e.
dimensions, hierarchies, etc.) and loads these into
a SISYPHUS cube.

• Incremental load: receives detailed data that are
incrementally loaded to an already loaded with
data, cube.

 However, the most important responsibility of the access
manager is to give the illusion of a multi-dimensional and
multi-level space of cube cells, i.e. cube data points. The
important thing to emphasize here is that this is also the
native data space of an OLAP cube consisting of many
dimensions with each dimension having at least one
hierarchy of levels.
Each cell in this data space is characterized by a chunk-id,
which we will discuss in detail later. The access manager
provides a set of access operations for seamless
navigation in the multi-dimensional and multi-level space

&XEH

$FFHVV

0HWKRGV

$FFHVV

0DQDJHU

%XIIHU

0DQDJHU

)LOH 0DQDJHU

660

&HOO�2ULHQWHG

$FFHVV

&KXQN�2ULHQWHG

$FFHVV

%XFNHW�2ULHQWHG

$FFHVV

660

5HFRUG�2ULHQWHG

$FFHVV

2/$3 3URFHVVLQJ

&KXQN�2ULHQWHG)LOH 0DQDJHPHQW�

2IIVHW�%DVHG $FFHVV

%XIIHU 0DQDJHPHQW

/RJJLQJ

5HFRYHU\

%XFNHW�2ULHQWHG)LOH 0DQDJHPHQW

5HFRUG�2ULHQWHG 6WRUDJH 0DQDJHU

N. Karayannidis, T. Sellis 10-4

of cube data cells. These operations are the interface used
by higher-level access methods, or OLAP operators, in
order to access the cube data. We defer to mention these
“access operations” until section 5.1, where we will take a
detailed look at them.

4 A chunk-oriented file system
The basic file system based on fixed size buckets
mentioned earlier is used as the foundation for
implementing a chunk-oriented file system. Each chunk
represents a semantic subset of the cube and therefore,
chunks are of variable size. The semantics are drawn from
the parent-child relationships along aggregation paths on
each dimension. A chunk-oriented file system destined for
a storage base for OLAP cubes, has to provide the
following services:

• Storage allocation: It has to store chunks into the
buckets provided by the underlying bucket-
oriented file system.

• Chunk addressing: A single chunk must be made
addressable from other modules. This means that
an identifier must be assigned to each chunk.
Moreover, an efficient access path must exist via
that identifier.

• Enumeration: There must be a fast way to get
from one chunk to the “next” one. However, as
we will see, in a multi-dimensional multi-level
space, “next” can have many interpretations.

• Data point location addressing: Cube data points
should be made accessible via their location in
the multi-dimensional multi-level space.

• Data sparseness management: Space allocated
should not be wasteful and must handle
efficiently the native sparseness of cube data.

• Maintenance: Although, transaction oriented
workloads are not expected in OLAP
environments, the system must be able to support
at least periodic incremental loads in a batch
form.

In the following sections we will describe the chunking
method used, called hierarchical chunking and discuss the
details of mapping chunks into buckets. However, first we
begin with a small discussion on how we model dimension
data.

4.1 Dimension Data

In many cases, dimension values are organized into levels
of consolidation defining a hierarchy, i.e. an aggregation
path. For example, the Time dimension consists of day
values, month values and year values, which belong to the
day level, month level and year level respectively. It is
typical for a dimension to be comprised of more than one
aggregation path. In our model, all the paths of a
dimension have always a common level containing the
most detailed data possible. We call this the grain level of
the dimension.

As an example in Figure 2, we depict a CUSTOMER
dimension consisting of two paths. We call a specific
instantiation of a level L of a dimension D a member of L,
e.g. “1997” is a member of the Year level of dimension
Date.

Figure 2: An example of a dimension

The chunk-oriented file system will be based on a single
hierarchy path from each dimension. We call this path the
primary path of the dimension. Data will be physically
clustered according to the dimensions’ primary paths.
Since, queries based on primary paths are likely to be
favored in terms of response time, it is crucial for the
designer to decide on the paths that will play the role of
the primary paths.
A very useful characteristic in OLAP is that the members
of a level are typically known a priori. Moreover, this
domain remains unchanged for sufficiently long periods.
A very common trend in the literature [Sa97, RoKoRo97,
DeRaSh+98, MaRaBa99, VaSk00] is to impose a specific
ordering on these members. One can implement this
ordering through an integer mapping for the members of
each level. Obviously, this total ordering among the
members can be either inherent (e.g. for day values), or
arbitrarily set (e.g. for city values). Either way, it is very
useful to assign a distinct value to each member. This
distinct value can play the role of a surrogate key [Ki96]
in relational OLAP (ROLAP) systems or the role of an
index value for computing cell offsets in multidimensional
OLAP (MOLAP) systems [Sa97]. Moreover, it is far more
efficient to handle simple integers than non-numeric data
types e.g. character strings. We will call this distinct value
the order code of a member.
In our model, we choose to order the members of a level
according to the primary path that this level belongs. We
start from 0 and assign consecutive order codes to
members with a common parent member. The sequence is
never reset but continuously incremented until we reach
the end of a level’s domain. This way an order code
uniquely specifies a member within a level. Moreover,
order codes can be easily implemented with common
RDBMS data types such as sequence, or serial, where the
increment is taken care of automatically by the system.
Similar “hierarchical” ordering approaches have been
used in [DeRaSh+98, MaRaBa99].

 Country (3)

 State (2)

 City (1)

 Store (0)

Sales region (3)

 City (2)

Sales district (1)

 Store (0)

PATH 0 PATH 1

CUSTOMER dimension

Grain level

N. Karayannidis, T. Sellis 10-5

Figure 3: A member code denotes the whole path of a

member in a specific level hierarchy

In order to uniquely identify a member within a dimension
we also assign to each member a member code. This is
constructed by the order codes of all its ancestor members
along the primary path, separated by dots. For example,
the member code of CityC along path 0 is "0.1.2"
(Figure 3).

4.2 The hierarchically chunked cube

In this sub-section we discuss our proposal for a chunking
method in order to organize the data of the cube. We
believe that this method is close to the OLAP
requirements that we have posed in section 0. Intuitively,
one can support that a typical OLAP workload, where
consecutive drill-downs into detail data or roll-ups to
more consolidated views of the data are common,
essentially involves swing movements along one or more
aggregation paths. Moreover, in [DeRaSh+98] this
property of OLAP queries is characterized as
"hierarchical locality". The basic incentive behind
hierarchical chunking is to partition the data space by
forming a hierarchy of chunks that is based on the
dimensions' hierarchies.
We model the cube as a large multidimensional array,
which consists only of the most detailed data possible. In
this primary definition of the cube, we assume no pre-
computation of aggregates. Therefore, a cube C is
formally defined as the following (n+m)-tuple:

C ≡ (D1,…,Dn, M1,… Mm)
where Di, for 1<= i <=n, is a dimension and Mj, for 1<= j
<=m, is a measure.
Initially we partition the cube in a very few regions (i.e.
chunks) corresponding to the most aggregated levels of
the dimensions' hierarchies. Then we recursively re-
partition each region as we drill-down to the hierarchies of
all dimensions in parallel. We define a measure in order to
distinguish each recursion step called chunking depth D.
For visualization reasons we will use an example of a 2-
dimensional cube, hosting sales data for a fictitious
company. The dimensions of our cube are depicted in
Figure 4. Namely, these are location and product. In
Table 1 and Table 2, we can see the members for each
level of these dimensions, each appearing with its member
code.
In order to apply our method, we need to have hierarchies
of equal length. For this reason, we insert pseudo-levels P

into the shorter hierarchies until they reach the length of
the longest one. This "padding" is done after the level that
is just above the grain level. In our example, the PRODUCT
dimension has only three levels and needs one pseudo-
level in order to reach the length of the LOCATION
dimension. This is depicted next, where we have also note
the order code range at each level:
LOCATION:[0-2].[0-4].[0-10].[0-18]
PRODUCT:[0-1].[0-2].P.[0-5]
In Figure 5, we show the hierarchical chunking of our
example cube. We begin our chunking method at
chunking depth D = 1. We choose the top level from each
dimension and insert it into a set called the set of pivot
levels PVT. Therefore initially, PVT = {LOCATION:
continent, PRODUCT: category}. This set will guide
the chunking process at each step.

Figure 4: Dimensions of our 2-dimensional example cube

On each dimension, we define discrete ranges of grain-
level members, denoted in the figure as [a..b], where a and
b are grain-level order-codes. Each such range is defined
as the set of members with the same parent (member) in
the pivot level. Due to the imposed ordering, these
members will have consecutive order codes, thus, we can
talk about "ranges" of grain-level members on each
dimension. For example, if we take member 0 of pivot
level continent of the LOCATION dimension, then the
corresponding range at the grain level is cities [0..5].

Table 1: Members of dimension PRODUCT

Category Type Item

Books
0

Literature
0.0

“Murderess”, A. Papadiamantis
0.0.0

 “Karamazof brothers” F.
Dostoiewsky

0.0.1
 Philosophy

0.1
“Zarathustra”, F. W. Nietzsche

0.1.2
 “Symposium”, Plato

0.1.3
Music

1
Classical

1.2
“The Vivaldi Album Special

Edition”
1.2.4

 “Mozart: The Magic Flute”
1.2.5

CityA
 (0)

CityB
 (1)

CityC
 (2)

CityD
 (3)

StateA
 (0)

StateB
 (1)

CountryA
 (0)

city item

category

product

region

country

continent

type

location

N. Karayannidis, T. Sellis 10-6

Table 2: Members of dimension LOCATION

Continent Country Region City

Europe
0

Greece Greece-North
0.0.0

Salonica
0.0.0.0

 Greece-South
0.0.1

Athens
0.0.1.1

 Rhodes
0.0.1.2

 U.K.
0.1

U.K.-North
0.1.2

Glasgow
0.1.2.3

 U.K.-South
0.1.3

London
0.1.3.4

 Cardiff
0.1.3.5

North America
1

USA
1.2

USA-East
1.2.4

New York
1.2.4.6

 Boston
1.2.4.7

 USA-West
1.2.5

Los Angeles
1.2.5.8

 San Francisco
1.2.5.9

 USA-North
1.2.6

Seattle
1.2.6.10

Asia
2

Japan
2.3

Kiusiu
2.3.7

Nagasaki
2.3.7.11

 Hondo
2.3.8

Tokyo
2.3.8.12

 Yokohama
2.3.8.13

 Kioto
2.3.8.14

 India
2.4

India-East
2.4.9

Calcutta
2.4.9.15

 New Delhi
2.4.9.16

 India-West
2.4.10

Karachi
2.4.10.17

 Bombay
2.4.10.18

The definition of such a range for each dimension defines
a chunk. For example a chunk defined from the 2,1
members of the pivot levels continent and category
respectively, consists of the following grain data
(LOCATION:2.[3-4].[7-10].[11-18],

PRODUCT:1.2.P.[4-5]). The '[]' notation denotes a
range of members. This chunk appears with gray in Figure
5 at D = 1. Ultimately at D = 1 we have a chunk for each
possible combination between the members of the pivot
levels, that is a total of [0-1]x[0-2] = 6 chunks in this
example.
Next we proceed at D = 2, with PVT =
{LOCATION:country, PRODUCT:type} and we
recursively re-chunk each chunk of depth D = 1. This time
we define ranges within the previously defined ranges. For
example, on the range corresponding to continent
member 2 that we saw before, we define discrete ranges
corresponding to each country of this continent (i.e. to
each member of the country level, which has parent 2).
Let's look at the chunk defined from the 2.3, 1.2
members of the pivot levels country and type
respectively. It consists of the following grain data

(LOCATION: 2.3.[7-8].[11-14], PRODUCT:

1.2.P.[4-5]). This chunk is a child chunk of the chunk
mentioned in the previous paragraph and is also grayed in
the figure at D = 2.
Similarly, we proceed the chunking by descending in
parallel all dimension hierarchies and at each depth D we
create new chunks within the existing ones. The total
number of chunks created at each depth D (#chunks(D))
equals the number of possible combinations between the
members of the pivot levels. That is,
#chunks(D) = card(pivot_level_dim1)x …x
card(pivot_level_dimN)
where card() denotes the cardinality of a pivot level. We
assume N dimensions for the cube.
If at a particular depth one or more pivot-level is a
pseudo-level, then this level does not take part in the
chunking. This means that we don't define any new ranges
within the previously defined range for the specific
dimension(s) but instead we keep the old one with no
further refinement. In our example this occurs at D = 3 for
the PRODUCT dimension. In the case of a pseudo level for
a dimension, in the above formula we use the pivot level
of the previous step for this dimension.
The procedure ends when the next levels to include in the
pivot set are the grain levels. Then we do not need to
perform any further chunking because the chunks that
would be produced from such a chunking would be the
cells of the cube. In this case, we have reached the
maximum chunking depth Dmax. Note that with this
scheme, we handle chunks and cells in a completely
uniform way in the sense that the cells of a chunk at depth
D = d represent the chunks at depth D = d+1. Depth 3 is
the maximum depth in our running example, since at the
next step we hit the grain levels of the dimensions.
If we interleave the member codes of the pivot level
members that define a chunk, then we get a code that we
call chunk id. This is a unique identifier for a chunk within
a cube in our model. Moreover, this id depicts the whole
path of a particular chunk. Let's look at the previously
defined chunk at D = 2 from the pivot level members
LOCATION:2.3 and PRODUCT:1.2. For an interleaving
order O = (LOCATION, PRODUCT) (major-to-minor from
left-to-right), the chunk id in question is 2|1.3|2, with
“|” character acting as a dimension separator. This id
describes the fact that this is a chunk at depth D = 2 and it
is defined within chunk 2|1 at D = 1 (parent chunk).
Finally, the cells of the cube also have chunk ids, since as
we have already mentioned, we can consider them as the
smallest possible chunks. For instance, the cell with
coordinates (LOCATION:0.1.2.3 and
PRODUCT:0.0.P.1), can be assigned the chunk id
0|0.1|0.2|P.3|1. The part of a chunk id that is
contained between dots and corresponds to a specific
depth D is called D-domain.

N. Karayannidis, T. Sellis 10-7

Figure 5: The cube from our running example

hierarchically chunked

The formal definition of a chunk Ch of a cube C, is given
from the following triplet:

Ch ≡ (PL,MB,D)
PL is the set of pivot levels that generated this chunk, MB
is the set of members, one from each pivot level, that
define –through member hierarchies- the grain level
ranges on each dimension of the chunk and D is the
chunking depth of the chunk. For example the grayed
chunk at D=1 of Figure 5 is defined as Ch =
({LOCATION:continent, PRODUCT:category }, {2,1},
1}. A cell is a chunk where PL contains all the grain levels
and D = Dmax + 1.
Next we will see how the chunks of Figure 5, at D = 3 can
be stored into the buckets provided by the underlying file
system.

4.3 Mapping of chunks into buckets

We will begin our discussion with a description of the
internal organization of a bucket, which is our basic chunk
container. In order to store chunks into buckets, we will
need some sort of an internal directory that will guide us
to the appropriate chunk. Moreover, since we have

devised a unique identifier for each chunk within a cube,
called chunk id, chunks should be made addressable by
their chunk id. We have seen that the hierarchical
chunking method described previously results in chunks at
different depths (Figure 5). One idea would be to use the
intermediate depth chunks as directory chunks that will
guide us to the Dmax + 1 depth chunks containing the data
and thus called data chunks. This is depicted in Figure 6
for our example cube.
In Figure 6 we have expanded our hierarchically chunked
cube, the chunk sub-tree under the root-chunk cell with
chunk id 00. Above each chunk we note its chunk id. We
can see the directory chunks containing “pointer” entries
that lead to larger depth directory chunks and finally to
data chunks.
In general, a chunk sub-tree consists of some directory
chunks and some data chunks. In Figure 7, we depict the
structure of a bucket. It is composed of three parts: the
bucket header and two vectors for storing chunks, one for
the directory chunks and one for the data chunks. In the
same figure we can see the implementation of a bucket
over an SSM record.
Chunk vectors are essentially arrays of chunks with the
capability of handling variable size chunk entries.
Actually, the in-memory structure used for a chunk vector
is the C++ STL vector container [STL99]. Prior to disk
storage, we “pack” the whole memory vector to a byte
stream and then we store it in secondary media.
The basic idea in this file organization is to try to include
in the same bucket as many chunks of the same family
(i.e. sub-tree) as possible. The incentive behind this lies in
the hierarchical nature of OLAP query loads. By imposing
this “hierarchical clustering” of data we aim at
improving query response time by reducing page accesses
significantly.
The order in which chunks are laid out in their
corresponding vector is as follows: When we have to store
a sub-tree in a bucket, we descend the sub-tree in a depth-
first manner and we store each chunk the first time we
visit it. The chunk is stored to one of the two vectors,
depending whether it is a directory or a data chunk. Parent
cells are visited in the lexicographic order of their chunk
ids, thus their corresponding child chunks are stored
accordingly. The discrimination between directory and
data chunks is done based on the depth depicted on the
length of the chunk ids. In Figure 6 we show the
corresponding index value for each directory and data
chunk respectively.

 [0] [1 ..2]

[2 ..3]

[0 ..1]

[0 ..2] [3 ..5]

[4 ..5]

[0 ..3]

[6 ..10] [0 ..5]

[0 ..5]

[0 ..18]

C ube

LOC ATION

PR O DUC T

[11..18]

D = 1

[4..5]

[6 ..10] [11-14] [15-18]

D = 2

[0..1]

[2 ..3]

[4 ..5]

 [3] [4 ..5] [6 ..7] [8 ..9] [10] [11][12..14][15..16][17..18]

D = 3

N. Karayannidis, T. Sellis 10-8

Figure 6: The whole sub-tree up to the data chunks under

chunk 00

To increase space utilization we have imposed a bucket
occupancy threshold B. A typical value for B could be
50%. We distinguish four different cases regarding the
storage of a sub-tree inside a bucket. In a bucket we can
store:

a) A single sub-tree of chunks.
b) Many sub-trees of chunks that form a cluster (or

bucket region).
c) A single data chunk.
d) A single tree of directory chunks (root bucket).

The first case occurs when a sub-tree’s size falls in the
range between B and the bucket size. The second case
occurs, when a sub-tree’s size is below B. Then, we look
for other sub-trees with the same property and we “pack”
them all in one bucket, calling this grouping of sub-trees a
cluster or a bucket region. The third case refers to the
situation where we have descended the chunk-tree, we are
unable to find a sub-tree that can fit in a bucket, and have
finally hit a leaf (i.e. a data chunk). In this case, either we
store the entire data chunk in a bucket, or, if it still does
not fit we partition it and store it in a bucket overflow
chain. Last is the case of a bucket used for storing the root
chunk and also all the “roots” of sub-trees that are stored
in other buckets. This is called the root bucket. In case of
an overflow of the root bucket, we resort to a bucket
overflow chain again.

4.3.1 Chunk Internal Organization

The data structure used for implementing a chunk is the
multidimensional array (md-array). Multidimensional
arrays are very similar in concept with cubes in the sense
that values are accessed by specifying a coordinate (index
value) on each dimension. Moreover, we have seen that
each chunk corresponds essentially to a data point in the
multi-dimensional multi-level data space. The chunk id
that we have assigned to each chunk, contains both
information regarding the specific level and coordinate
(i.e. member) within a level for each dimension of the
cube that a chunk corresponds. Thus, the access-by-
location and not by-content that is offered by md-arrays,
is native to our case and gives us the chance to exploit
chunk ids. Moreover, exactly because of the address
computing accessing, we don’t have to store the chunk id
for each cell, as would have been the case in a record-
oriented storage manager, where the coordinates of the
cell would have also been stored with the fact values. In
addition, the simple offset computation needed in order to
access an md-array cell is very efficient.
Clearly, there are several issues that need to be dealt with
caution concerning md-arrays. For one, not to waste space
when one has to store a sparse chunk, or for another one,
to choose such an ordering to set the cells out that will
minimize dispersed data in range queries.

Figure 7: The structure of a bucket

Another argument against would be that md-arrays are not
so flexible with deletions and updates, because a cell
rearrangement might be needed. However, since we only
aim at incremental bulk updating and not transaction
oriented updating that would require very frequent
reorganization of each chunk, we thought that we
shouldn't impose the overhead of using complicated
structures based on linked lists that would also slow down
query processing. These were the major justifications for
our design choice.
Note that, we don’t allocate all the cells for a data chunk,
just the non-empty ones. Usually the data cube is sparse,
so it is reasonable to assume that most of the chunks will
also be sparse. We have used a simple compression
method that helps us keep track of the “holes” of each
data chunk. In particular, we maintain a bitmap for each

0 0 . 0 0

0 0 . 0 1

in d e x : 7 in d e x : 6

in d e x : 4

in d e x : 3

in d e x : 3 in d e x : 2

1

3

G r a in le v e l
(D a ta C h u n k s)

R o o t C h u n k

P P

0 1 2 3

D = 1

D = 2

L O C A T I O N

P R O D U C T

0 1 2

0

1

0

0 0 . 1 0

D = 3 (M a x D e p th)

0

0 0 . 0 0 . 0 P

0

1

1 2

0 0 . 0 0 . 1 P

0

1

0 0 . 1 0 . 2 P

0

1

4 5

0 0 . 1 0 . 3 P

0

1

0 1

0 0

P P

0 1 2 3

0 0 . 1 1

3 0

0 0 . 0 1 . 0 P

2

3

1 2

0 0 . 0 1 . 1 P

2

3

0 0 . 1 1 . 2 P

2

3

4 5

0 0 . 1 1 . 3 P

2

3

in d e x : 0

in d e x : 1

in d e x : 0 in d e x : 1

in d e x : 2

in d e x : 4 in d e x : 5

'LUHFWRU\ &KXQN 9HFWRU%XFNHW +HDGHU 'DWD &KXQN 9HFWRU

660 UHFRUG

KHDGHU
660 UHFRUG ERG\

���

N. Karayannidis, T. Sellis 10-9

data chunk indicating which cell is empty and which is
not.
Since, all the information of data existence is kept in the
compression bitmap, we can allocate space only for the
non-empty cells and still be able to reach a cell on disk
with just an algebraic computation.
The “compression” that we apply on directory chunks is
somewhat different. Likewise, we might find many cells
with no values. In this case however, an empty cell
corresponds to the absence of a whole sub-tree of chunks.
For the directory chunks we allocate all the cells for
chunks that contain at least one non-empty cell and we
mark empty cells with a special value. However, no
allocation is done for empty sub-trees. Therefore large
families of chunks that end-up to many data chunks and
are empty will not consume any space.
Finally, we briefly refer to the issue of maintenance. As
already mentioned before, an OLAP environment is
heavily inclined to read operations than it is to transaction
oriented updates. Moreover, deletions are significantly
rare in OLAP and data warehousing in general, since we
are always interested on the history of our data. We
therefore, anticipate mainly incremental batch updates. A
typical situation that falls in this category is the loading of
new data at the end of some time period (e.g. day).
However, there might be other less frequent updates, such
as the sales for some new product category, etc.
In the chunk-oriented file system the advent of e.g. the
sales of a new day, would trigger the need for creating the
chunks corresponding to the current month. Therefore, we
have to spot the directory chunks that contain an empty
cell entry corresponding to this month. Then we have to
remove the empty tag from the respective cells and "hang"
the new sub-tree. Each new sub-tree will be stored either
in the same bucket as its “parent” chunk or if there is no
space, in a new bucket allocated for it. This will not result
to poor bucket space utilization, even if the new sub-tree’s
size is below the bucket threshold B. This is because we
will use the new bucket in the future to store more new
sub-trees corresponding to the other months following up
and thus form a bucket region.
In the next section we will discuss the issue of the access
interface provided by our chunk oriented file system.

5 Access Paths
In this section we will look in more detail the access
manager abstraction level of Figure 1. Essentially, the
basic operations offered by this module play the role of
the data access interface of SISYPHUS. As mentioned
earlier, the primary responsibility of the access manager is
to provide the illusion of a multi-dimensional and multi-
level space of cube cells, a space that represents naturally
the OLAP data space. Moreover, we will see that through
this set of primary access operations more elaborate
access paths on cube data can be defined.

5.1 Primary access operations to cube data

In previous sections we have seen that the data space is
modeled as a hierarchy of chunks (refer to Figure 6). At
the bottom of this hierarchy lie the actual data of the most
detailed level, contained inside data chunks. Each chunk is
assigned a chunk id, depicting its location with respect to
the dimensions and to the hierarchy levels.
At the access manager level the access to a cube begins
with the instantiation of a special Cube class. This class
implements the notion of the current position in the cube
file. It simulates a “pointer”, which points to the current
cell of the current chunk in the hierarchy, which resides in
the current bucket of the file hosting the cube’s data.
An instantiation of this class generates an in-memory
representative of a cube, which normally resides on disk.
For each cube “opened” for access, it is sufficient to keep
a pointer to an in-memory instance of the root chunk. This
discriminates one cube from another, as well as can
provide access to all the cube’s data. The Cube

instantiation is achieved with the operation open_cube.
This operation returns a pointer to an instance of the Cube
class. open_cube searches by the cube name in the
SISYPHUS catalog and retrieves an appropriate
CubeInfo structure containing the cube’s meta-data.
Then, it accesses the underlying SSM file dedicated for
this cube, retrieves the root bucket and creates the
corresponding Bucket object. Finally, it creates a Cell
object with coordinates set by default to 0 for all
dimensions of the cube.
A Cube instance has a state that is characterized from the
values that are stored in its members. A change in this
state implements a “move” from the current position in the
multi-dimensional multi-level space. There are four basic
operations offered by the access manager level for
achieving this. Namely these are: move_to(),
get_next(), roll_up(), drill_down(). In addition,
there is a read() operation for retrieving the content of
the cell at the current position, and a write() operation
for updating the current position’s entry, only if this
position corresponds to a data chunk cell. These
operations enable seamless navigation in the cube data
space and access to any cell of the hierarchically chunked
cube. We discuss them in more detail next.
move_to operation
The primary goal of this operation is to provide an easy
way to navigate in the hierarchy enabled multidimensional
space, exploiting the chunk id representation that we have
proposed. In particular, this method receives as input a
chunk id corresponding to a specific point in our data
space (i.e. cell), that we would like to set as the current
position. The outcome of this operation is a change to the
state of the corresponding Cube object, in order to reflect
the new position in the cube file.
roll_up & drill_down operations
These two operations provide the ability to navigate along
the chunk hierarchy. With the former, we "roll up" to the

N. Karayannidis, T. Sellis 10-10

parent cell of the current cell, and with the latter we "drill
down" to the child chunk node and set the current position
to the first non-empty cell of this chunk.
get_next operation
The get_next operation provides an enumeration facility
for visiting the cells at a specific depth in the
hierarchically chunked cube space. Actually this is an
overloaded method. There are two flavors of get_next.
The first form of this method offers cell enumeration
along a certain dimension. The desired dimension is
specified through its position in the interleaving order.
For example, if the interleaving order is (LOCATION,
PRODUCT), then by position 0 we mean LOCATION and by
1 PRODUCT. We can get to the “next” cell from the current
position along a dimension D, if we simply move on to the
next member in the domain of level L of D that
corresponds to the current chunk. Note that the “next
member” has a twofold meaning in this case. It might
mean that we have to increase by one the corresponding
order code, or that we have to decrease it by one, thus
obtaining essentially the “previous” cell. The input
arguments consist of the dimension along which we will
move and a direction specification with possible values
“above” (default value) and “below” corresponding to
the two aforementioned cases.
The second form of get_next receives no input
arguments. It enables an enumeration of the cells at a
specific depth in the order of physical storage. A call to
this get_next will place the current position at the next
stored non-empty cell within the current chunk. This new
cell will have the “next” chunk id in the lexicographic
order, corresponding to a non-empty cell. When we reach
the end of the current chunk we move to the next stored
chunk of the same depth in the current bucket. Recall from
section 0 that chunks are stored in one of the two bucket
vectors in the lexicographic order of their chunk ids (see
also Figure 6). When there are no more chunks with the
desired depth in the current bucket we advance to the next
stored bucket in the cube (i.e SSM file).
Finally, there is a read, write, and close_cube
operation with the obvious meanings.

5.2 Defining Access Methods

Next, we will give an example of how the primary
operations of the previous sub-section can be used in
order to create access paths2 to cube data. These access
paths actually correspond to the topmost abstract level of
Figure 1.
In our example, we will define a very common access
method for multi-dimensional data, the Range-scan. The
operator will be defined with an iterator interface [Gr93].
Essentially this means, that it will receive as input a range

2 The terms access path and access method are identical for our

discussion and will be used interchangeably.

and then it will provide a “next” operation for iterating
through the values falling into this range. The range will
be provided in the form of a chunk id, thus it refers to the
data cells in the leaves (i.e. data chunks) of a specific sub-
tree hanging from this point.
Range-scan is made up of three methods: Open, Next and
Close. Open is responsible for the opening of the cube
for data access and positioning the current cell at the first
data cell in the specified range. This can be easily
achieved with a call to open_cube for initializing data
access to the cube, then a call to move_to for changing
the current position in the cube file to the location
represented by the input chunk id and finally repeatedly
drilling down (i.e. calling access operation drill_down)
until we hit the first non-empty data cell in the specified
range.
Method Next returns the data entry at the current position
and advances to the next cell. If the next cell is out of
range, or if we have reached the end of data, it fails. The
preservation of the range limits is guaranteed through the
chunk id prefixes, denoting chunks of the same sub-tree.
This can be easily implemented with two calls to
operations read and get_next respectively and with a
subsequent check of whether the “new” position’s chunk
id is not prefixed by the input chunk id or we have
reached the end of file. Note also that due to the
hierarchical clustering imposed, the retrieved data points
are very much likely to reside in the same bucket. Thus,
this should be quite an efficient operation. Finally, Close
invokes the close_cube method to perform all cleaning
up tasks.
This was a rather simple case of an access path. However,
other more elaborate access methods can be defined in a
similar way. For example a range-scan that operates on an
arbitrary range and not only on the range defined by a
specific sub-tree. Or, a range-scan-sort could be defined,
in order the returned values to be sorted along a
dimension and so on.

6 Conclusions and future work
In this paper we have focused on the special requirements
posed by OLAP applications on storage management. We
have argued that conventional record-oriented storage
managers fail to fulfill these requirements to a large
extend. To this end, we have presented the design of a
storage manager specific to OLAP cubes, based on a
chunk-oriented file system, called SISYPHUS.
SISYPHUS has been implemented on top of a record
oriented storage manager [SSMP97] and provides a set of
typical to storage management abstraction levels, which
have been modified to fit the multidimensional, hierarchy-
enabled data space of OLAP.
We have seen the hierarchical chunking method used in
SISYPHUS and the corresponding file organization
adopted. The chunk-oriented file system offered by
SISYPHUS is natively multi-dimensional and supports

N. Karayannidis, T. Sellis 10-11

hierarchies. It clusters data hierarchically and it is space
conservative in the sense that copes with cube sparseness.
Also, it adopts a location-based data-addressing scheme
instead of a content-based one. Finally, we have seen the
data-access interface provided by SISYPHUS that enables
navigation in the multi-dimensional and multi-level data
space of a cube. This interface can be used for defining
more elaborate cube-oriented access paths.
In the future, we plan to extensively test experimentally
the proposed file organization. In addition we will design
and implement algorithms for typical OLAP operations.
From the viewpoint of research, several issues remain
open such as: finding optimal clusters (i.e. bucket regions)
for a specific workload, developing efficient file system
operations for typical OLAP updating loads (e.g. slowly
changing dimensions). Finally, open remains the issue of
an efficient file organization for dimension data.

Acknowledgements

This work has been partially funded by the European
Union's Information Society Technologies Programme
(IST) under project EDITH (IST-1999-20722).

7 References
[ChIo99] C.-Y. Chan, Y. Ioannidis. Hierarchical Cubes

for Range-Sum Queries, In Proc. of the 25th
International Conference on Very Large Data
Bases, Edinburgh, UK, 1999.

[Co96] G.Colliat. Olap relational and multidimensional

database systems. SIGMOD Record, 25(3):64-
69, Sept 1996.

[DeRaSh+98] P. Deshpande, K. Ramasamy, A. Shukla,

J. Naughton. Cashing multidimensional Queries
using Chunks. Proc. ACM SIGMOD Int. Conf.
On Management of data, 259-270, 1998.

[Gr93] G.Graefe. Query Evaluation Techniques for Large

Databases. ACM Computing Surveys 25(2),
1993.

[GrRe93] J.Gray, A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann,
1993.

[Ki96] R.Kimball. The Data Warehouse Toolkit, John

 Wiley & Sons, 1996.

[MaRaBa99] V. Markl, F. Ramsak, and R. Bayer.

Improving OLAP Performance by
Multidimensional Hierarchical Clustering. Proc.
of IDEAS Conf., Montreal, Canada, 1999

[OLAP97] OLAP Council. OLAP AND OLAP Server

Definitions. 1997. Available at
http://www.olapcouncil.org/research/glossaryly.h
tm

[RoKoRo97] N. Roussopoulos, Y. Kotidis, and M.

Roussopoulos. Cubetree: Organization of and
Bulk Incremental Updates on the Data Cube. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, p.89-99,
Tuscon, Arizona, May 1997.

[Sa97] S. Sarawagi. Indexing OLAP data. IEEE Data

 Engineering Bulletin, March 1997.

[SaSt94] S. Sarawagi and M. Stonebraker. Efficient

Organization of Large Multidimensional Arrays.
Proc. Of the 11th Int. Conf. On Data Eng., 1994.

[SSMP97] The Shore Project Group. The Shore Storage

Manager Programming Interface. CS Dept.,
Univ. of Wisconsin-Madison, 1997.

[STL99] Standard Template Programmer’s Guide.

Available at:
http://www.sgi.com/Technology/STL/index.html

[VaSk00] P. Vassiliadis, S. Skiadopoulos. Modelling and

Optimization Issues for Multidimensional
Databases. In Proc. 12th Conference on
Advanced Information Systems Engineering
CAiSE '00), pp. 482-497, Stockholm, Sweden, 5-
9 June 2000.

