
Improving Data Cleaning Quality
using a Data Lineage Facility

Helena Galhardas�

INRIA Rocquencourt
Helena.Galhardas@inria.fr

Daniela Florescu
Propel

Daniela.Florescu@propel.com

Dennis Shasha
Courant Institute, NYU,

shasha@cs.nyu.edu
Eric Simon

INRIA Rocquencourt
Eric.Simon@inria.fr

Cristian-Augustin Saita
INRIA Rocquencourt

Cristian-Augustin.Saita@inria.fr

Abstract

The problem of data cleaning, which consists of
removing inconsistencies and errors from origi-
nal data sets, is well known in the area of deci-
sion support systems and data warehouses. How-
ever, for some applications, existing ETL (Extrac-
tion Transformation Loading) and data cleaning
tools for writing data cleaning programs are insuf-
ficient. One important challenge with them is the
design of a data flow graph that effectively gener-
ates clean data. A generalized difficulty is the lack
of explanation of cleaning results and user inter-
action facilities to tune a data cleaning program.
This paper presents a solution to handle this prob-
lem by enabling users to express user interactions
declaratively and tune data cleaning programs.

1 Introduction

The development of Internet services often requires the
integration of heterogeneous sources of data. Often the
sources are unstructured whereas the intended service re-
quires structured data. The main challenge is to provide
consistent and error-free data (aka clean data).

�Founded by “Instituto Superior Técnico” - Technical University of
Lisbon and by a JNICT fellowship of Program PRAXIS XXI (Portugal)

The copyright of this paper belongs to the paper’s authors. Permission to
copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’2001)
Interlaken, Switzerland, June 4, 2001

(D. Theodoratos, J. Hammer, M. Jeusfeld, M. Staudt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-39/

To illustrate the difficulty of data cleaning applied to
sources of unstructured data, we first introduce a concrete
running example. The Citeseer Web site (see [Ins]) collects
all the bibliographic references in Computer Science that
appear in documents (reports, publications, etc) available
on the Web in the form of postscript, or pdf files. Using
these data, Citeseer enables Web clients to browse through
citations in order to find out for instance, how many times
a given paper is referenced. The data used to construct the
Citeseer site is a large set of string records. The next two
records belong to this data set:

[QGMW96] Dallan Quass, Ashish Gupta, Inderphal
Singh Mumick, and Jennifer Widom. Making Views
Self-Maintainable for Data Warehousing. In
Proceedings of the Conference on Parallel and
Distributed Information Systems. Miami Beach,
Florida, USA, 1996. Available via WWW at
www-db.stanford.edu as pub/papers/self-maint.ps.

[12] D. Quass, A. Gupta, I. Mumick, J. Widom,
Making views self-maintanable for data
warehousing, PDIS’95

Establishing that these are the same paper is a challenge.
First, there is no universal record key that could estab-
lish their identity. Second, there are several syntactic and
formatting differences between the records. Authors are
written in different formats (e.g. “Dallan Quass” and “D.
Quass”), and the name of the conference appears abbrevi-
ated (“PDIS”) or in full text (“Conference on Parallel ...”).
Third, data can be inconsistent, such as years of publication
(“1996” and “1995”). Fourth, data can be erroneous due to
misspelling or errors introducing during the automatic pro-
cessing of postscript or pdf files, as in the title of the second
record (“maintanable” instead of “maintainable”). Finally,
records may hold different information, e.g., city and coun-
try are missing in the second record.

The problem of data cleaning is well known for decision
support systems and data warehouses (see [CD97]). Ex-

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-1

traction, Transformation and Loading (ETL) tools and data
reengineering tools provide powerful software platforms to
implement a large data transformation chain, which can ex-
tract data flows from arbitrary data sources and progres-
sively combine these flows through a variety of data trans-
formation operations until clean and appropriately format-
ted data flows are obtained [RD00]. The resulting data can
then be loaded into some database. Some tools are compre-
hensive but offer only limited cleaning functionality (e.g.,
Sagent [Sag], ETI [Int], Informatica [Inf]), while others are
dedicated to data cleaning (e.g., Integrity [Val]).

It is important to realize that the more “dirty” the data
are, the more difficult it is to automate their cleaning with a
fixed set of transformations. In the Citeseer example, when
the years of publication are different in two records that ap-
parently refer to the same publication, there is no obvious
criteria to decide which date to use; hence the user must be
explicitly consulted. In existing tools, there is no specific
support for user consultation except to write the data to a
specific file to be later analyzed by the user. In this case,
the integration of that data, after correction, into the data
cleaning program is not properly handled. Finally, in exist-
ing tools, the process of data cleaning is unidirectional in
the sense that once the operators are executed, the only way
to analyze what was done is to inspect log files. This is an
impediment to the stepwise refinement of a data cleaning
program.

This paper presents a mechanism based on exceptions
offered by a data cleaning frameworkto support the refine-
ment of data cleaning criteria. The contributions we will
emphasize are:

� The explicit specification of user interaction based on
exceptions that are automatically generated by the ex-
ecution of data transformation operations.

� A data lineage facility that enables the user to interac-
tively inspect intermediate data and exceptions; back-
track the cleaning process in the graph of data trans-
formations; investigate the result of each data trans-
formation operation; and modify the input/output of a
data transformation interactively.

We illustrate these contributions with a data cleaning ap-
plication for the Citeseer set of bibliographic textual refer-
ences. The paper is organized as follows. Section 2 gives
an overview of the proposed framework. Section 3 presents
the way exceptions are specified and generated. The fourth
section explains the data lineage mechanism. Section 5
shows some results and section 6 concludes.

2 Data Cleaning Framework

The proposed framework supports the specification of a
data cleaning application as a graph of high-level transfor-
mations. Suppose we wish to migrate the Citeseer data set

(which is a set of strings corresponding to textual biblio-
graphic references) into four sets of structured and clean
data, modeled as database relations: Authors, identified by
a key and a name; Events, identified by a key and a name;
Publications, identified by a key, a title, a year, an event
key, a volume, etc; and the correspondence between pub-
lications and authors, Publications-Authors, identified by a
publication key and an author key.

A partial and high-level view of the data cleaning strat-
egy that we used is the following:

1. Add a key to every input record.

2. Extract from each input record, and output into four differ-
ent flows the information relative to: names of authors, titles
of publications, names of events and the association between
titles and authors.

3. Extract from each input record, and output into a publica-
tion data flow the information relative to the volume, num-
ber, country, city, pages, year and url of each publication.
Use auxiliary dictionaries for extracting city and country
from each bibliographic reference. These dictionaries store
the correspondences between standard city/country names
and their synonyms that can be recognized.

4. Eliminate duplicates from the flows of author names, titles
and events.

5. Aggregate the duplicate-free flow of titles with the flow of
publications.

The definition of each transformation consists in deter-
mining “quality” heuristics that automatically lead to the
best accuracy (level of cleaning quality) of the results. For
considerable amounts of data with a reasonable degree of
dirtiness, it is usually impossible to apply the automatic
criteria to every record of data. To illustrate this problem,
consider the first Extract operation (step 2) in the strategy
above. The separation between the author list and the ti-
tle is assumed to be done by one of the two punctuation
marks: ;.“. However, some citations use a comma between
these two informations, so it is not clear to detect where
does the author list finish and the title start. Another ex-
ample concerns step 4. The two titles presented in the mo-
tivating example (starting by “Making Views...”) are con-
sidered duplicates and need to be merged into a single title
(the correctly written instance in this case). Suppose the
consolidation phase used an automatic criteria that chooses
the longest title among duplicates. Then, it could not be
decided which is the correct one among these two. In such
situations, it is important to define interaction points in the
cleaning process that indicate operations which are not exe-
cuted automatically and their corresponding input records.
The user can then analyze these records and execute some
interactive procedure to handle them.

Our framework [GFS+01b] permits to model a data
cleaning program satisfying the strategy above as a data
flow graph where nodes are logical operators of the follow-
ing types: mapping, view, matching, clustering, and merg-
ing, and the input and output data flows of operators are

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-2

logically modeled as database relations. More specifically,
the mapping operator takes a single relation and produces
several relations as output; it can express any one-to-many
data mapping due to its use of external functions. The view
operator, which essentially corresponds to an SQL select
statement, takes several relations as input and returns a sin-
gle relation as output; it can express limited many-to-one
mappings. The matching operator takes two input relations
and produces a single output relation; it computes the simi-
larity between any two input records using an arbitrary dis-
tance function. The clustering operator transforms the re-
sult of a matching operation into a nested relation where
each nested set is a cluster of records from the input re-
lation; the clustering of records is arbitrary. Finally, the
merging operator takes a relation representing a set of clus-
ters and apply an arbitrary data mapping to the elements of
each cluster.
Example 2.1: The above data cleaning strategy is mapped into
the data flow graph of Figure 1. The numbering beside each data
cleaning operation corresponds to a step in the strategy. For each
output data flow of Step 2, the duplicate elimination is mapped
into a sequence of three operations of matching, clustering, and
merging. Every other step is mapped into a single operator.

Each logical operator can make use of externally defined
functions that implement domain-specific treatments such
as the normalization of strings, the extraction of substrings
from a string, the computation of the distance between two
values, etc. For each input, its execution creates one or
more regular output data flows and possibly one excep-
tional data flow. Regular data flows contain records au-
tomatically cleaned using the criteria specified in the op-
erator. However, the processing of the input records may
throw an exception specified by the operator, thereby en-
tailing the insertion of the corresponding input record into
an exceptional output data flow. The names of all the ex-
ceptions that were raised for each input record are attached
to each exceptional record.

At any stage of execution of a data cleaning program,
a data lineage mechanism enables users to browse into ex-
ceptions, analyze their provenance in the data flow graph
and interactively apply some corrections. As a first user
action, the cleaning criteria can be corrected. For instance,
the aforementioned criteria used to separate author names
and titles could be modified in order to include the follow-
ing heuristic: “if a word in lower case is recognized, it is
assumed the title has started just after the punctuation mark
that precedes it” (in the example above, the lower case word
is “views” and the punctuation mark that precedes it is the
“,” before “Making” so the beginning of the title would be
correctly recognized). The corrected logical operation is
then re-executed. As a second user action, the data that led
to the generation of exceptions may be interactively cor-
rected. For example, the user may interactively separate a
list of authors from a title that do not have any punctua-
tion mark between them. The corrected data can then be

re-integrated into the data flow graph and the logical oper-
ations that take them as input can then be re-executed. This
functionality proved to be essential in our experiments with
Citeseer reported in Section 5.

3 Management of Exceptions

This section describes how the generation of exceptions can
be explicitly specified within the data cleaning operators.
The semantics and syntax of each logical operator are pre-
sented by example. A formal description of our declarative
data cleaning language and the BNF grammar for its syntax
can be found in [GFS+01a].

3.1 Mapping Operator

The following mapping operator transforms the rela-
tion DirtyDatafpaperg into a “target” relation KeyDirty-
Datafpaperkey, paperg; this corresponds to Step 1 of Ex-
ample 2.1.

CREATE MAPPING AddKeytoDirtyData
FROM DirtyData
LET Key = generateKey(DirtyData.paper)
f SELECT Key.generateKey AS paperKey,

DirtyData.paper AS paper INTO KeyDirtyData g

The createclause indicates the name of the operation.
The from clause is a standard SQL from-clause that speci-
fies the name of the input relation of the mapping operator.
Then, the let keyword introduces a let-clause as a sequence
of one or more assignment statements.

In each assignment statement, a relation can be as-
signed a functional-expression which is an expression that
involves the invocation of one or more external functions
(that have been registered to the library of functions of the
system). If the functional-expression returns a value, it
is named atomic assignment statement. The let-clause in
the example contains an atomic assignment statement that
constructs a relation Key using an external (atomic) func-
tion generateKey that takes as argument a variable Dirty-
Data.paper ranging over attribute paper of DirtyData.
Relation Key is constructed as follows. For every tuple
DirtyData(a) in DirtyData1, if generateKey(a) does not
return an exception value exc, then a tuple Key(a, gen-
erateKey(a)) is added to relation Key. Otherwise, a tuple
DirtyDataexc(a) is added to relation DirtyDataexc. We shall
say that this statement “defines” a relation Keyfpaper,
generateKeyg2.

Finally, the schema of the target relation is specified by
the “f SELECT key.generateKey AS ...g” clause. It in-
dicates that the schema of KeyDirtyData is built using the
attributes of Key and DirtyData.

The mapping command below transforms KeyDirty-
Data defined above into four target relations, whose

1Where a is a string representing a paper.
2For convenience, we shall assume that the name of the attribute hold-

ing the result of the function is the same as the name of the function.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-3

Mapping

View

Matching

Clustering

Merging

Matching

Clustering

Merging

Mapping
Mapping

5

DirtyData

Publications

...

...DirtyPubs

Cities
Countries

1

KeyDirtyData

DirtyTitles DirtyAuthors

Authors...Titles

3 2

4

Figure 1: Framework for the bibliographic references

schemas are specified elsewhere in the sections of the data
cleaning program that declare the externally defined func-
tions. The schemas of the relations returned by table func-
tions extractAuthorTitleEvent and extractAuthors are
fauthorlist, title, eventg and fid, nameg respectively.
This operation corresponds to Step 2 in figure 1.

CREATE MAPPING Extraction
FROM KeyDirtyData kdd
LET AuthorTitleEvent = extractAuthorTitleEvent(kdd.paper),

AuthId = SELECT id, name
FROM extractAuthors(AuthTitleEvent.authorlist)

WHERE length(kdd.paper) > 10
f SELECT kdd.paperKey AS pubKey, AuthorTitleEvent.title AS title,

kdd.paperKey AS eventKey INTO DirtyTitles g
f SELECT kdd.paperKey AS eventKey,

AuthorTitleEvent.event AS event INTO DirtyEvents
CONSTRAINT NOT NULL eventg
f SELECT AuthId.id AS authorKey,

AuthId.name AS name INTO DirtyAuthors
CONSTRAINT NOT NULL name g
f SELECT AuthId.id AS authorKey,

kdd.paperKey AS pubKey INTO DirtyTitlesDirtyAuthorsg

The assignment statements in the let-clause are named
table assignment statementssince the corresponding
functional-expressions return tables. A relation can also be
assigned the result of an SQL select from whereexpres-
sion that can make use of previously defined relations.

The where keyword introduces a filter expressed as a
conjunctive normal form in a syntax similar to an SQL
where-clause.

The syntax of the output-clause consists of one or more
select intoexpressions that specify the schema of each tar-
get relation, and the constraints associated with each target

relation. Constraints can be of the following kinds: not
null , unique, foreign key and check. Their syntax is the
same as SQL assertions, but their meaning is different due
to the management of exceptions when constraints are vio-
lated. If one of the output constraints is violated, the exe-
cution of the mapping does not stop and the corresponding
input tuple is added to the relation Extractionexc.

We now explain the semantics of the mapping opera-
tor. The assignment statements that compose a let-clause
are evaluated in their order of appearance in the let-clause
for each tuple of the input relation. The syntax of an as-
signment statement also allows to assign a relation using
an if then elsecontrol structure, in order to expose within
the operator the logic of the assignment. If the evaluation
of the let-clause does not throw any exception, the filter
specified by the where-clause is checked. If it returns true
and the output constraints are satisfied, the corresponding
tuples are added to the regular output relations of the map-
ping.

Exceptions may arise during the evaluation of the let-
clause or when output constraints are violated. The excep-
tions can be classified as non-anticipatedor anticipated,
depending on the place where they occur. Non-anticipated
exceptions are not explicitly declared. They are thrown by
the external functions called within the let-clause. The im-
plementation of the let-clause is able to handle any excep-
tion thrown within it. If the evaluation of the let-clause
for an input relation S returns an exception value, then the
corresponding input tuple is added to a special output ta-
ble named Sexc. The external functions extractAuthorTi-

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-4

tleEvent()or extractAuthors()called in the Extraction map-
ping presented may generate non-anticipated exceptions.
Consider the second citation given as example in the in-
troduction. As suggested before, extractAuthorTitleEvent()
may not be able to recognize the end of the list of authors
since there are only commas to separate the different ele-
ments of the citation. Therefore, an exception is thrown by
this function notifying there is no title extracted.

Anticipated exceptions are declared and may be either
explicit or implicit. Explicit exceptions arise when a throw
clause is specified in the let-clause. There is the possibility
to explicitly throw an exception, introduced by the throw
keyword, in an if-then-else expression. Implicit exceptions
occur when some output constraint (constraint keyword) is
violated. An implicit exception is thrown in the Extraction
operation whenever one of the output constraints is violated
(e.g. a null event is extracted from one citation).

Next, we briefly present the matching, clustering and
merging operations that model the duplicate elimination of
author names represented by step 4 and the view operation
that model step 5 in figure 1. The semantics, syntax and
exceptions for each operator are presented by example and
differences with respect to the mapping operator are high-
lighted.

3.2 Matching Operator

The (self-)matching operator that follows takes as input
the relation DirtyAuthorsfauthorKey, nameg twice. Its
intention is to find possible duplicates within DirtyAu-
thors. The let-clause has the same meaning as before
with the additional constraint that it must define a rela-
tion, named distance, within an atomic function assign-
ment. Here, distance is defined using an atomic func-
tion editDistanceAuthors computing an integer distance
value between two author names. The let-clause produces
a relation distancefauthorKey1, name1, authorKey2,
name2, editDistanceAuthorsg that contains one tuple for
every possible pair of tuples taken from DirtyAuthors. The
WHERE clause filters out the tuples of distance for which
editDistanceAuthors returned a value greater than a value
computed (by maxDist) as 15% of the maximal length of
the names compared. Finally, the INTO clause specifies the
name of the target relation (here, MatchAuthors) whose
schema is the same as distance.

CREATE MATCHING MatchDirtyAuthors
FROM DirtyAuthors a1, DirtyAuthors a2
LET distance = editDistanceAuthors(a1.name, a2.name)
WHERE distance < maxDist(a1.name, a2.name, 15)
INTO MatchAuthors

The syntax for the components of the operator have al-
ready been presented before. The only subtlety in the SQL-
like syntax of the matching operator is the use of the sym-
bol “+” after an input predicate in the from clause (it would
be “a1 +” in the above example). It indicates that a rela-
tion containing all the tuples of DirtyAuthors that did not

match (called DirtyAuthorsno�match), must be returned by
the operator.

The matching operator cannot generate implicit excep-
tions since there is no explicit output/constraint-clauses.
Non-anticipated or explicit exceptions may be thrown in
the let-clause. Nevertheless, the general application of a
matching operator is required to be completely automatic
and no user interaction is usually required.

3.3 Clustering Operator

Consider the relation MatchAuthors generated by the
matching operation above presented. The purpose of a
clustering operation over MatchAuthors is to produce a
set of clusters, each consisting of a set of DirtyAuthors
tuples that are sufficiently close to each other and proba-
bly correspond to the same author. One possible clustering
method is to view each tuple of MatchAuthors as a binary
relationship between DirtyAuthors tuples, and group in the
same cluster all tuples that are transitively connected. The
result of the clustering operation is a relation that has one
attribute, clust id, and as many attributes as there are input
relations to the matching operation that defined MatchAu-
thors, each of which holds the identifier of a tuple in the
corresponding input relation. Thus, in our example, the
output of the clustering operation over MatchAuthors is
formally a relation with three attributes, one for each of
the two DirtyAuthors relations, and one clust id attribute.
Suppose that we apply the clustering operation using a tran-
sitive closure to the following tuples of MatchAuthors:

MatchAuthors: 1 j D Quass j 6 j Dallan Quass j 1
1 j D Quass j 7 j Quass j 1
2 j A Gupta j 10 j H Gupta j 1

Then, assuming that o1;o2;o3;o4, and o5 are the identi-
fiers for authors 1, 2, 6, 7, 10, we would have the following
tuples in the output relation, say clusterAuthors:

clusterAuthors: 1 j o1 j null
1 j o3 j null
1 j o4 j null
1 j null j o1
1 j null j o3
2 j o2 j null
2 j o5 j null
2 j null j o2
2 j null j o5

The following is a specification of the clustering oper-
ation by transitive closure; and the schema of the target
relation clusterAuthors is:
fcluster id,DirtyAuthors key1,DirtyAuthors key2g.

CREATE CLUSTERING clusterAuthorsByTranstiveClosure
FROM MatchAuthors
BY METHOD transitive closure
INTO clusterAuthors

The clustering operator does not generate any excep-
tions. Its semantics consists on applying an automatic clus-
tering method to the bi-dimensional space generated by a
matching operation.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-5

3.4 Merging Operator

Consider the clusterAuthors relation obtained in the pre-
vious example. Each cluster contains a set of names. For
each cluster, a possible merging strategy is to generate a tu-
ple composed of a key value, e.g., generated using a gener-
ateKey function, and a name obtained by taking the longest
author name among all the author names belonging to the
same cluster. Thus, the format of the output relation of
the merging operation would be a relation, say Authors, of
schema fauthorKey, nameg.

The usingclause is similar to a from clause with the fol-
lowing differences. A let clause is always defined wrt the
relation(s) indicated in the from . In the case of merging,
the let clause is defined wrt to the relation and attributes of
that relation indicated in the using clause. In this case we
are interested to merge each cluster into a single tuple so
the clusterAuthors relation and the cluster id attribute are
specified in the using clause. Essentially, each assignment
statement is evaluated by iterating over the clusters of the
input relation.

The let clause is used to construct the attribute values
that will compose each tuple over the target relation. A
specific notation is introduced to ease the access to the at-
tribute values of the elements of a cluster, which are iden-
tifiers. Suppose that the identifier’s attributes of the input
relation, say P, are associated with relations S1;S2 (inputs
of the matching). Let A be an attribute of S1. Then, if p is
a variable ranging over the attribute domain clust id of P,
the expression S1(p):A refers to the set of tuples: fx.A j x
is a tuple over S1 and the identifier of x belongs to cluster
pg.

The specification that follows describes the merging op-
eration introduced intuitively above.

CREATE MERGING MergeAuthors
USING clusterAuthors(cluster id) ca
LET name = getLongestAuthorName(DirtyAuthors(ca).name)

key = generateKey()
f SELECT key AS authorKey,

name AS name INTO Authors g
In this example, ca is a variable ranging over the

clust id attribute of clusterAuthors. Therefore, expression
(DirtyAuthors(ca).name) refers to the set of author names
associated with all the DirtyAuthors identifiers of cluster
ca. This set is passed to the function getLongestAuthor-
Name that throws an exception if there is more than one
author with maximum length belonging to the same clus-
ter. This is a non-anticipated exception and the input tuple
corresponding to the cluster that caused it is added to the
relation MergeAuthorsexc. In general, the merging operator
can also throw explicit and implicit exceptions if a throw-
clause is specified in the let-clause and a constraint clause
is indicated, respectively.

3.5 View operator

The last logical operator corresponds to an SQL query aug-
mented with some integrity checking over its result. The

interpretation of this clause is first to compute the result
of the SQL select statement formed from the select-into
clause, the from clause, and the where clause. Then, the
set of constraints is evaluated against this result. If a con-
straint is violated, exceptions are generated.

The following example specifies an SQL join that aggre-
gates together the informations that result from extraction
of volume, number, year, etc of each citation with the cor-
responding titles and event information free of duplicates.

CREATE VIEW viewPublications
FROM DirtyPubs p, Titles t
WHERE p.pubKey = t.pubKey
fSELECT p.pubkey AS pubKey, t.title AS title,

t.eventKey AS eventKey, p.volume AS volume,
p.number AS number, p.country AS country, p.city AS city,
p.pages AS pages, p.year AS year,
p.url AS url INTO Publications

CONSTRAINT NOT NULL title g

4 Data Lineage Facility

In this section, we present the functionality supplied to the
user for correcting exceptions and the methodology to ef-
fectively interact during the execution of the cleaning pro-
gram. Furthermore, we present algorithms for the incre-
mental execution of a cleaning program. They ensure the
consistent integration of interactively modified data into the
data flow of transformations.

4.1 Data lineage definition

We first introduce a useful definition of tuple data lineage
taken from [CW00].

Definition 4.1: (Tuple Lineage for an Operator). Given
a logical operator Op and its output relations O1; :::;On,
Oi = Op(I1; :::; Im), where I1; :::; Im are the operator input
relations. For a tuple t 2 Oi , tuple t lineage for Op in
I1; :::; Im is defined as Op�1

<I1;:::;Im>
(t) =< I�1 ; :::I

�

m >, where
I�1 ; :::; I

�

m are maximal subsets of I1; :::; Im such that:
(i) Op(I �1 ; :::; I

�

m) = t;
(ii) 8I �i ;8t� 2 I�i ;Op(I �1 ; :::;ft

�g; :::; I�m) 6= φ
We say in that case that tuple t� 2 I�i contributes to t ac-
cording to Op.

This definition tells that the lineage tuple sets, given by
I�i ’s, derive exactly tuple t, and each tuple t � in the lin-
eage sets does in fact contribute to t. In our framework,
the input relations of an operator are those specified in the
from-clause. Relations that are used in the let-clause, con-
sumed by external functions called within the let-clause,
or by clustering algorithms are named external input rela-
tions and are not considered for data lineage. Given the
above definition, the following two propositions apply to
our cleaning operators.

Proposition 4.1: If Op is a matching, mapping, clustering,
or a SPJ(Select-Project-Join)view:
8I1; :::; Im;Op�1

<I1;:::;Im>
(t) =< t�1 ; :::; t

�

m >

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-6

Our data lineage mechanism builds on this proposition.
For every tuple t 2 Oi = Op(I1; :::Im), we keep the identi-
fiers of the tuples t�1 ; :::; t

�

n that are such that Op�1(t) =<

t�1 ; :::t
�

m >. These identifiers permit to obtain the lineage of
any output tuple. For instance, in the Extraction mapping
specified in Section 3, the schema of the output relations
DirtyAuthors, DirtyEvents, etc contains the identifier of the
input relation (paperKey).

In the case of a merging operator, we have:

Proposition 4.2: If Op is a merging, its input relation I
has the schema (A1; :::;Ap;B1; :::;Bk), in which A1; :::;Ap

represents the attributes with respect to which the merging
operation is defined, then 8t;merge�1

I (t) = I�, where I � is
a partition3 of I according to A1; :::;Ap.

Thus, it is sufficient to keep, for every tuple in the output
of a merging, the identifier of the partition from which it is
generated. This identifier is given by a tuple of values over
A1; :::;Ap. In the merging operator MergeAuthors specified
in section 3, which is applied after a clustering operation,
attributes A1; :::;Ap correspond to the clust id attribute.

This technique does not work in the case of an
aggregate-select-project-join (ASPJ) view, because the set
of tuples of an input relation that contribute to a given out-
put tuple t cannot be summarized by a compound identifier.
However, additional techniques such as keeping auxiliary
views could be used to support the tuple lineage of ASPJ
views, as suggested in [CW00].

We shall say that the mapping, matching, clustering,
merging, and SPJ views are traceable, which means that
a tuple lineage for these operators can be supported by
propagating the record identifiers through operators. For
each traceable operator Op, we can define a lineage trac-
ing querythat returns the lineage of each output tuple t,
according to the operator Op:

Proposition 4.3: If Op is a mapping, matching, clustering,
or a SPJ view, with input relations I(Id1; :::; Idk;A1; :::;An)
and output relation O(B1; :::;Bp; Id1; :::; Idk), where
Id1; :::; Idk are the attributes that uniquely identify each in-
put tuple, LineageQuery(O;Op; I) is given by:

π(I :�)[σI :Id1=O:Id1;:::;I :Idk=O:Idk(I �O)]

Proposition 4.4 : If Op is a merging with input re-
lation I(A1; :::;Ap;B1; :::;Bk), in which A1; :::;Ap repre-
sent the attributes with respect to which the merging
is defined, and output relation O(E1; :::;El ;A1; :::;Ap),
LineageQuery(O;Op; I) is given by:

π(I :�)[σI :A1=O:A1;:::;I :Ap=O:Ap(I �O)]

We have defined the notion of lineage of a tuple accord-
ing to a single traceable operator. Now, we introduce the
definition of lineage of a tuple according to a sequence of
traceable operators, i.e. a traceable data cleaning program.
Again, our definition is adapted from [CW00].

3that is the result of a group-by operation on attributes A1; :::;Ap

Definition 4.2 : (Tuple Lineage for a Traceable Data
Cleaning Program). Let D be a set of tables R1; :::Rn, and
let O� p(D) be an output table of a data cleaning program
p over D.
(i) if p = identity mapping of Ri then every tuple of Ri con-
tributes itself according to p;
(ii) if p = Op(O1; :::;Ok), where each Oi � pi , where 1 �
i � k, for some program pi over D, then suppose that t 0 2Oi

contributes to some t 2O according to Opand t � 2 Ri con-
tributes to t 0 according to program pi , then t� contributes to
t according to p.
Then, the lineage of t according to pis p�1

D (t) =<

R�

1; ::::R
�

n >, where R�

1; ::::R
�

n are subsets of R1; :::Rn, such
that t� 2 R�

i iff t� contributes to t according to p, for
i = 1; :::;n. In that case, R�

i is the lineage of t in Ri ac-
cording to p and is denoted by p�1

Ri
(t).

We are now able to describe the algorithm, in Figure
2, to compute the lineage of any relation O according to a
traceable cleaning program p.

Lineage(O, p, D) f
if p= Identity(O) then return < O>

/* else p= Op(I1; :::; Ik) */
/* Ii = pi(D) is the result of a */
/* cleaning (sub-)program pi */
< I�1 ; :::; I

�

k > LineageQuery(O;Op;fI1 ; :::; Ikg)
D� φ;
for (i := 1 to k) do

/* Concatenates the lineage of each */
/* cleaning (sub-)program */
D� D� ÆLineage(I�i ; pi ;D);

return D�; g

Figure 2: Algorithm for data lineage

4.2 Tuning data cleaning programs

During the execution of a data cleaning program, the data
lineage facility offers the following functionality: (i) the
user may inspect the set of exceptional tuples, (ii) backtrack
in the data flow graph and discover how the exceptional
tuples were generated, and (iii) modify attribute values of
tuples, insert or delete a tuple of any relation of the data
flow graph in order to remedy the exceptions.

The use of this functionality permits to tune a data clean-
ing program. We describe the method for tuning a program
through a sequence of steps modeled by the state-transition
diagram of Figure 3. This diagram represents the data
cleaning process which corresponds to the execution of the
whole cleaning program specified or the execution of any
(sub-)program that compose it. A node represents a state of
the data cleaning process. Arrows correspond to transitions
with a label of the form: event[condition].action, which in-
dicates that the actionis performed whenever eventoccurs
and conditionis satisfied.

The run action corresponds to the execution of any data
cleaning program. When the execution is finished, the
process is in the state transformations executed. Three
situations may then arise. First, if no exceptions were

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-7

thrown during the execution and no more data transforma-
tions need to be executed, the cleaning process halts and
reaches its final state. Second, if there were no exceptions
thrown and there are other transformations to be executed,
their execution is triggered by the run action. The third
situation corresponds to the occurrence of exceptions dur-
ing the execution of the cleaning program and is handled as
follows.

When exceptional tuples exist, the user is allowed to in-
spectthe exceptional and regular output relations that were
generated. In order to discover the tuples that contributed to
any exceptional tuple, according to Definition 4.1, the user
may obtain the lineage of an exceptional tuple according to
the lineage algorithm presented in Figure 2. In this case, we
say the user backtracksan exceptional tuple. Once the in-
spection of exceptions is finished, represented by the data
inspected state in the diagram, the user is able to decide
among two procedures to correct the exceptional situations.

The first procedure consists in refining the logic of some
operators that were wrongly specified; rewrite incorrect
code of external functions (for example, refine the extrac-
tAuthorTitleEvent() to properly separate authors from title
in the citation: “D. Quass, A. Gupta, I. Mumick, J. Widom,
Making views ...”) or clustering algorithms; or add entries
to auxiliary dictionaries that are incomplete. When the re-
finement needed is concluded (code/dictionaries refined
state), the operators modified must be re-executed, as well
as those operators in the data cleaning program whose input
relations are affected by the output of the refined operators.
The run action is thus re-triggered for the data cleaning
program that encloses the sub-graph constituted by those
data transformation operators.

The second procedure for correcting exceptional tuples
takes place once exceptions were thrown during the exe-
cution of a cleaning program, and no refining actions can
help to correct them. This situation occurs when the pro-
cess is in the data inspected stateand refinement is not
useful. The user interactive data modification is then trig-
gered (modify action). In this phase, the user may update
any relation generated by the cleaning program in order to
disambiguate an exceptional situation that cannot be au-
tomated (for example, decide the correct title among the
two equally sized and similar titles in our motivating ex-
ample). The user modifications can be insertion, deletion
or updating of a tuple. Each tuple interactively modified
usually contributes, according to Definition 4.1, to one or
more tuples of arbitrary output relations in the graph of data
transformations that compose the cleaning program. The
operators that produce those output relations must then be
re-executed and the run action is thus re-triggered. As we
will detail next, the re-execution of data cleaning operators
after interactive data modifications should and can, some-
times, be performed in incremental mode.

In addition to the methodology above described, the in-
spection of exceptions should obey to the following princi-

ple in order to prevent the user from doing redundant data
analysis and correction: the order by which the user ana-
lyzes and corrects exceptions should always be the order
determined by the graph of transformations that model the
data cleaning program. This means that exceptions of an
operator whose regular output relation(s) contribute to the
output tuples of other operators should always be analyzed
and corrected before the exceptional tuples occurring for
those operators. Considering the Citeseer example and the
sequence of logical operations represented in figure 1, the
correction of exceptions thrown during the mappings that
implement extractions (steps 2 and 3 of the strategy) should
precede the correction of exceptions occurring during the
merging operation that composes duplicate eliminations in
step 4.

All cleaning programs considered in the rest of the paper
are considered to be traceable.

4.3 Incremental execution

There are two possible modes of execution for a data
cleaning program. First, when the current state of the
cleaning process in Figure 3, is the initial state or the
code/dictionaries refinedstate, the run action must mate-
rialize the output of all operators that compose the clean-
ing program being runned. This materialization is required
since the execution of these operators potentially produces
new values for all output tuples. The operators are then
said to be executed in non-incremental mode. The second
mode of execution may be possible and advisable after tu-
ples have been interactively inserted, deleted or updated by
the user (this corresponds to the data modifiedstate in Fig-
ure 3). If a given modified tuple t 0 contributes to the output
of a cleaning program p, according to Definition 4.2, then
p should be only applied to t 0. The operators that constitute
p are then said to be executed in incremental mode. The
advantage of running operators in incremental mode is to
prevent useless computations for those input tuples ftg in
the operator input relation I that did not undergo any mod-
ification, i.e. ftg= I �ft 0g.

Now, let us define the condition an operator must satisfy
to be executed in incremental mode. A logical operator can
be executed in incremental mode if the additivity property
on its input wrt union and differenceis satisfied. This is
specified by definition 4.3 which follows the incremental
view maintenance approach [CW91] [AGS93].

Definition 4.3: (Execution in Incremental Mode). A log-
ical operator Op can be executed in incremental modewrt
input I1 if it satisfies the property: Op((I1� I�1)[I+1 ; I2) =
(Op(I1; I2)�Op(I�1 ; I2))[Op(I+1 ; I2) where I1; I2 are the
input relations of Op and I �1 and I+1 contain the tuples
deleted from and inserted to I1, respectively.

A generalization of this definition to both inputs is
straightforward. A further generalization to any kind of tu-

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-8

Final
State

Data

Run

Run

Run
Data

Initial
State Inspected

Refined

Modified

Code/Dictionaries

Exceptions.Inspect

No Exceptions[No Transformations].Stop

[Refinement Not Usefull].Modify

No Exceptions[Transformations].Run

[Refinement Useful].Refine

Transformations
Executed

Figure 3: Methodology for cleaning data using the data lineage facility

ple modification can be stated as follows. Any tuple update
can be modeled as the deletion of a tuple, whose attributes
are assigned the old values, followed by the insertion of a
new tuple, whose attributes are assigned the new values,
and keeping the same tuple identifier.

As a consequence of Definition 4.3, we have that when-
ever an operator Op, such that O = Op(I) where I is the
input relation of Op, runs in non-incremental mode, all the
operators of the cleaning programs whose output tuples’
lineage belongs to relation O must be executed in non-
incremental mode. This means the non-incremental exe-
cution of an operator forces the non-incremental execution
of the operators whose inputs are affected by its output re-
lations. We also would like to remark that the incremental
mode is not possible for operators wrt to their external input
relations, as defined before. This is the case of the mapping
operator that extracts year, volume, city, etc represented by
step 3 in Figure 1, and whose let-clause invokes external
functions that accept dictionaries of cities and countries as
input. If these dictionaries entries are modified, the map-
ping must be re-applied to the entire set of input tuples.

We will now present the types of operators for which an
incremental execution is possible and those that must be ex-
ecuted in non-incremental mode. Clustering and SPJ views
with an order-by clauses do not support the incremental
mode, since they do not satisfy the property presented in
Definition 4.3, i.e. their results depend on the whole set of
input tuples, and a modification on a subset of the input re-
lation potentially modifies the whole output relation4. The
logical operators that support the execution in incremental
mode are: mappings, matchings, mergings, and remaining
SPJ views.

Consider a tuple t(id1; :::; idp;a1; :::;ak) that belongs to
a relation I with schema I(Id1; :::; Idp;A1; :::;Ak), where at-
tributes Id1; :::; Idp uniquely identify each tuple t 2 I . Now,
suppose the modified tuple t 0(id1; :::; idp;a01; :::;a

0

k), where
t 0 2 I and an operator Op(I) whose output relation O has
the schema O(B1; :::;Bl ; Id1; :::; Idp). Recall that each oper-

4In fact, for some classes of clustering algorithms and views, an incre-
mental execution algorithm could be envisaged. This is object of future
work.

ator satisfies Propositions 4.1 and 4.2 and is thus traceable.
Based on this principle, each incremental operator is able
to determine the output tuples that need to be re-computed
as being those tuples to 2 O : to:Id1 = t 0i :Id1; :::; to:Idp =
t 0i :Idp;8t 0i 2 I .

The mapping operator iterates over each input tuple and
produces one or more tuples per output relation. For a
a single tuple modification (t ! t 0) in the input relation,
its incremental execution deletes mapping(t) and then in-
serts mapping(t 0). The remaining output tuples will be the
same. The incremental execution of the matching operator
over input relations I1 and I2 where one of the input rela-
tions, let us say I1, contains the modified tuple t 0, consists
in deleting matching(t; t j), where 1 � j � cardinality(I2)
and inserting matching(t 0; t j). An analogous reasoning is
valid for SPJ views. The merging operator collapses the
tuples of the input relation that have the same value of
a given attribute, let us say Ai . Suppose t:Ai = ai . If
t 0:Ai = a0i , the incremental execution of the merging con-
sists in the following two steps. First, merging(t j), where
ft j :Ai = ai ^ t j :Ai = a0i)g and 1 � j � cardinality(I), is
deleted from the output relation O. Second, merging(t j),
where ft j :Ai = ai^ t j :Ai = a0i)g and 1� j � cardinality(I),
is recomputed and inserted in the merging output relation.
Figure 4 intuitively illustrates the incremental execution for
a merging operator assuming the user replaces tuple t that
belongs to its input relation I by tuple t 0.

4.4 Data modification

Let us now analyze the behaviour of an operator that
can be executed in incremental mode. The follow-
ing conflict situation (see Figure 5) may arise. Sup-
pose Op1;Op2;Op3;Op4 are operators that can be exe-
cuted in incremental mode. They are all executed, non-
incrementally, a first time so their outputs are fully ma-
terialized. Suppose output tuples of Op1 are t1; :::; ti ; :::tn
and for simplicity, assume they are propagated, and ade-
quately modified, to the other three operators outputs. Sup-
pose operator Op2 generates exceptions. In order to correct
them, the user interacts by deleting tuple t i from O2. Con-
sequently, the incremental execution of Op3 and Op4 that

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-9

t

Merging (non-incremental) Merging (incremental)

t’

t .A = a

t .A = a’

t .A = a

t .A = a’

j i i j i i

I I

O O

j i i j i i

Figure 4: Execution in incremental mode of merging
follows removes ti from their output relations, according
to Definition 4.3. Now, imagine that, when inspecting the
exceptional tuples generated by operator Op4, the user de-
cides to correct one of its exceptional tuples by inserting
tuple ti in the output of operator Op1. The incremental ex-
ecution of Op2 that follows will then re-generate tuple t i

thus invalidating the previous user action that had deleted
it. Some special handling must then be provided to avoid
these possible conflicting situations.

Mapping, Merging, SPJ Views:
delete(Op;t;Out put) f

Out put� = Out put� [ftg g

Matching:
delete(Op;t;O; Ino�match

1) f
O� = O�[ftg
if (6 9t 0 2O such that t 0:Id1 = t:Id1) then

Ino�match
1 = Ino�match

1 [ft:Id1g
if (6 9t 0 2O such that t 0:Id2 = t:Id2) then

Ino�match
1 = Ino�match

1 [ft:Id2g g

Mapping, Merging, SPJ Views:
insertion(Op;t;O) f

O+ = O+[ftg g

Matching:
insertion(Op;t;O; Ino�match

1) f
O+ = Out put+ [ftg
Ino�match
1 = Ino�match

1 �ft:Id1g

Ino�match
1 = Ino�match

1 �ft:Id2g g

Figure 6: Algorithms for logging interactive tuple deletion
or insertion

The execution of an operator in incremental mode that
takes into account previous user actions applied to its out-
put is now sketched out. Three possible user actions are
distinguished: tuple deletion, insertion or updating. As al-
ready mentioned, a tuple update corresponds to the deletion
followed by the insertion of a tuple. We will thus explain
just the deletion and insertion user actions. If an output
tuple t is deleted by the user, the operator Op should, in
principle, never again generate t in its output relation. The

operator must then memorize that tuple t has been deleted
from its output, by an user action, and recall this informa-
tion during further re-executions. If a later user action re-
generates the previously deleted tuple t in the Op input re-
lation, Op should automatically recognize the possible ex-
istence of a conflict. Analogously, when an output tuple t
is inserted as result of a user action, Op should log the user
insertion. When further user actions direct or indirectly re-
generate tuple t, the possibility of conflict should also be
notified.

Before we detail the new execution algorithm, we in-
troduce some auxiliary relations and define the notion of
conflict. Any operator Op, executing in incremental mode,
must take into account the user modifications applied to its
input relation I , by definition of incremental mode. These
user mofications are inserted in relations I + and I� that
have the same schema as relation I . In addition, Op must
be able to consistently integrate user tuple modifications
previously applied to its output O. These user-modified tu-
ples are stored in relations O+, for tuple insertions, and
O� for tuple deletions, where O+ and O� have the same
schema as O. A conflictsituation may arise during the in-
tegration of the different types of user modifications if the
user modifications applied to input I concern the same tu-
ple as the user modifications applied to output O. More
concretely, a conflict exist for any two tuples t 2 I +;(t 0 2
O�_ t 0 2O+)^Op(t) = t 0, where = means the two tuples
have the same values for all attributes except the attributes
that compose their identifiers. This means the incremen-
tal execution of Op re-inserts a tuple in output O that was
already deleted or inserted by the user.

We now describe the components of the execution al-
gorithm in incremental mode for an operator Op such that
it consistently integrates the user modifications applied to
its output relation O. This algorithm is an extension of the
incremental execution presented in Definition 4.3.

First, two algorithms that permit to record user inser-
tions and deletions in the output relation of an operator are
presented in figure 6. We consider tuple t is deleted from

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-10

delete(t)i

 1 i nt ...t ...t

insert(t)i

(1)

Op 2

Op 1

Op 3

Op 4

(EXCEPTIONS)

(EXCEPTIONS)

O3: t ...t , t , t ...t

USER

O1: t ...t ...t

O2: t ...t , t , t ...t

 1 i n

USER

(2)

1 i-1 i i+1 n

1 i-1 i i+1 n

Figure 5: Conflict situation

the output relation O of operator Op or is inserted in same
relation O. In the case of matching, we consider two in-
put relations, I1 and I2 and the additional output relation
Ino�match
1 that stores the tuples of the input relation I1 that

do not match with any tuple of the input relation I2, as intro-
duced in section 3. For each operator whose output relation
tuples may be modified by the user, two additional output
relations are updated: O� that records tuples the user has
deleted; and O+ that records tuples the user has inserted.
The matching operator needs a supplementary automatic
procedure that updates the relation I no�match

i according to
the user modifications.

Second, the execution algorithm of an operator Op in
incremental mode that copes with data modifications in the
input relation, represented by I+ and I�, and data modifi-
cations applied to the output relation recorded in O+ and
O�, is presented in Figure 7. The input modifications re-
sult from the incremental execution of the operators that
produce the input relation I of Op. The output modifica-
tions correspond to user actions in order to correct excep-
tions occurred during the execution of Op. The algorithm
manages conflicts that may exist when integrating the in-
put and output tuple modifications. We consider the sim-
plest case of an operator accepting a single input relation
I and returning a simple output relation O. Besides up-
dating output relation O, according to data modifications,
the execution of operator Op in incremental mode gener-
ates an additional table of exceptions named UserOpexc.
Whenever there exists a conflict between two user modi-
fications reflected in the same operator output, the tuples
that generate this conflict are added to this exceptional
table. For input table I+=�(Id;A1; :::;Ak) and output ta-
ble O+=�(Id;B1; :::;Bl ; IId), where Id is the identifier of
each table, the exceptional table UserOpexc has the schema
(O:Id;O:B1; :::;O:Bl ;O:IId; I:Id;con f lictDescription).
This additional exceptional relation stores the user modi-

fied tuples and the identifier of the user-modified input ta-
ble that generate the conflict as well as a textual description
of the conflict.

IncOpWithUser(Op; I; I+ ; I�;O;O+;O�) f
/* If there are conflicts, insert into UserOpexc */
if(t 2 I+ ^ t 0 2 O+^Op(t) = t0)

UserOpexc =UserOpexc[ft;t0g
else if (t 2 I+ ^ t 0 2 O�^Op(t) = t0)

UserOpexc =UserOpexc[ft;t0g
else f /* there are no conflicts */

/* executes incrementally for data modifications
applied to previous operators */
O = (O�Op(I�))[Op(I+) gg

Figure 7: Algorithm for incremental execution

The following proposition states the validity of this al-
gorithm:

Proposition 4.5: Given any operator Op that can be exe-
cuted in incremental mode, with input relations I, I+, and
I�, and output relations O, O+ and O�, and considering
any cleaning program p = Op(I), the algorithm for incre-
mental execution:

IncOpWithUser(Op; I; I+; I�;O;O+;O�)
guarantees that all conflicts are detected whatever is the or-
der by which the user applies data modifications interac-
tively.

5 Experiments
In this section, we show how exceptions are used in the
Citeseer data cleaning application and report results of ap-
plying the methodology for cleaning data, proposed in Sec-
tion 4, using exceptions and data lineage.

5.1 Use of exceptions and data lineage

We present two examples to illustrate the use of the mecha-
nism of exceptions and data lineage facility that lead to the

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-11

refinement of the cleaning criteria and interactive merging,
respectively.

The extraction of authors, title and event name (as speci-
fied in Section 3) throws the following exception when try-
ing to separate its elements for the second citation in the
motivating example:

KeyDirtyData:
12jD. Quass, A. Gupta, I. Mumick, J. Widom, Making views
self-maintanable for data, PDIS’95

Extractionexc :
12jCiteSeerException - TitleIsEmpty

This happens because “Making views self-maintanable
for data” is considered to be yet another author according
to the first extraction criteria that expects . ; “ to sepa-
rate the author list from the title. After modifying (as ex-
plained in Section 2) the logic of the function extractAu-
thorTitleEvent(), called within the extraction mapping, the
correct tuples are returned as output of the Extraction oper-
ation:

DirtyAuthors:
1jD. Quassj12
2jA. Guptaj12 ...

DirtyEvents:
12jPDIS’95

DirtyTitles:
12jMaking views self-maintanable for data

DirtyTitlesDirtyAuthors:
12j1
12j2 ...

Let us consider the merging operator MergeAuthors pre-
sented in Section 3. The function getLongestAuthorName()
throws an exception if there are distinct author names in
the same cluster and more than one with maximum length.
In that case, a tuple is written in the exceptional out-
put data flow named MergeAuthorsexc. Suppose the tuple
MergeAuthorsexc: 2 j EqualSizeException is inserted in
the exception relation generated by the MergeAuthors op-
erator. The user can then trace this tuple back to the input
tuples of ClusterAuthors and DirtyAuthors that have gener-
ated it, by soliciting the lineage of the corresponding merg-
ing exceptional tuples and clustering output tuples.

ClusterAuthors: 2 j o2, o5 DirtyAuthors: 2 j A Gupta
10 j H Gupta

The tuples that constitute the lineage of this exceptional
tuple permit the user to discover that her interaction is
needed because the system failed to choose an author name.
The user may thus insert directly the correct author name
into the Authors relation, if “A Gupta” and “H Gupta” are
indeed the same person. Otherwise, the user may update
the corresponding DirtyAuthors tuples so that they are no
longer considered as candidate matches by the matching

operator (e.g., expand to “Ashish Gupta” and “Himanshu
Gupta”).

A similar interaction is required for merging titles (re-
call the two titles of the motivating example: “Making
views...”) since the same criteria (longest one) is used to
merge automatically and these titles have the same length.

5.2 Application of the methodology

We perform some experiments in order to validate the
mechanisms and methodology proposed to refine data
cleaning programs and correct data not handled automat-
ically.

Given the set of dirty bibliographic references used to
construct the Citeseer site (containing 2 million citations),
we chose two sets of 1,000 tuples: a training set to refine
criteria and construct auxiliary dictionaries, and a running
set to assess the approach.

We apply the methodology described in Section 4 to the
training set and tune the data cleaning program to the do-
main of bibliographic references. Then, we run the clean-
ing program for the running set and obtained the results
presented in Table 5.2. Two kinds of results were ob-
tained for the following three sequences of <action(s) +
state[condition]> of the diagram in Figure 3: (1) run +
data inspected[refinement useful]; (2) refine + run + data
inspected[refinement not useful]; (3) modify + run + final
state. First, the number of exceptions thrown for each type
of operation is shown. Second, the accuracy of the data
transformed in each phase is shown in terms of the recall
and precision metrics.

Table 1: Number of exceptions and accuracy of data ob-
tained

Phase Extract. Normalz. Merg. R/P
(1) 81 16 48 0.32/0.40
(2) 58 3 48 0.36/0.41
(3) 0 0 0 0.74/0.65

We consider the whole set of exceptions classified ac-
cording to three types of data transformations. Extraction
criteria enclose the extraction of author names, title and
event name (Step 2 in the strategy presented in the intro-
duction); and the extraction of volume, year, number, city
name, month, etc from each citation (Step 3 in the strategy).
A normalization transformation is applied to the extracted
event names (and before duplicate elimination is applied to
events) and aims at finding the standard event name from
a dictionary that maps significative keywords to standard
event names (e.g. the keywords “parallel, distributed, infor-
mation, conference” identify the standard event name: “In-
ternational Conference on Parallel and Distributed Infor-
mation Systems (PDIS)”). If more than one standard event
name is matched, an exception is thrown. The user can

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-12

correct these either by refining the dictionary or writing di-
rectly the correct standard event when no more refinement
is possible. The merging operations refer to the duplicate
elimination of author names, titles and event names (Step
4 in the strategy). Merging exceptions are thrown when no
unique, author name, title and event name, respectively can
be automatically determined for each cluster.

From the analysis of the table, we remark that some ex-
ceptions, as normalization (column Normalz.) are mostly
solved by refining criteria/dictionaries and others, as merg-
ing (Merg. column) require interactive cleaning of data.
The extraction (Extract. column) operations benefit partly
from the refinement of extraction functions (the number of
extraction exceptions was reduced in 30%) and partly from
the user procedure.

The last column of the table (R/P) represents two met-
rics, usually used in the Information Retrieval domain, that
assess the quality of the data transformed. We used the run-
ning set of 1,000 citations manually cleaned as reference
and call it the set of correct citations. Recall gives the frac-
tion of correct citations returned by the automatic cleaning
program. Precision gives the fraction of citations returned
by the automatic cleaning program that are indeed correct.

The results reported confirm our expectations in what
concerns the quality of data obtained. In fact, after each
phase of debugging and user interaction, the accuracy ob-
tained is better. It slightly improves after refinement of
code and dictionary entries (e.g. recall increases from 0.32
to 0.36) and a superior gain is obtained after the user data
corrections (recall increases to 0.74).

6 Conclusions

In this paper, we presented a mechanism of exceptions and
a data lineage facility that assist the user in tuning a data
cleaning program.

From our experience with the whole set of Citeseer dirty
data, we concluded that for large amounts of data whose
level of dirtiness is considerably high, the data cleaning
system must be tuned using different samples of data (in
this paper we report two sets of 1,000 dirty citations). This
corresponds to the methodology used in commercial data
cleaning projects. Data domains (e.g. bibliographic ref-
erences in Computer Science) handled for the first time
need always incremental code refinement and enrichment
of auxiliary dictionaries. The re-use of cumulated refine-
ments is only profitable after at least one project for a given
data domain (unless of course all source of standard knowl-
edge, e.g. dictionary of all universities that issue reports in
the Citeseer cleaning application, is supplied as an entry of
the cleaning process). The advantage that our data lineage
facility and mechanism of exceptions brings is to ease and
assist the user in the tuning activity.

Two issues suggest future work. First, machine learn-
ing techniques could be incorporated to correct exceptions.

When duplicate records are frequent, it would be useful to
train the system for automatically modify exceptional tu-
ples according to a user-established correction pattern. Sec-
ond, a limiting factor for the full incremental execution of
a data cleaning program as described in section 4 is the
clustering operator. It would be interesting to analyze the
classes of clustering methods that permits incremental exe-
cution.

References

[AGS93] Inderpal Singh Mumick Ashish Gupta and
V.S. Subrahmanian. Maintaining Views Incre-
mentally. In Proc. of ACM SIGMOD Conf. on
Data Management, 1993.

[CD97] S. Chaudhuri and U. Dayal. An Overview
of Data Warehousing and OLAP Technology.
SIGMOD Record, March 1997.

[CW91] Stefano Ceri and Jennifer Widom. Deriving
Production Rules for Incremental View Main-
tenance. In Proc. of the Int. Conf. on Very
Large Databases, 1991.

[CW00] Yingwei Cui and Jennifer Widom. Practi-
cal Lineage Tracing in Data Warehouses. In
ICDE, 2000.

[GFS+01a] Helena Galhardas, Daniela Florescu, Den-
nis Shasha, Eric Simon, and Cristian Saita.
Declarative Data Cleaning: Language, Model,
and Algorithms. Technical report, INRIA,
2001.

[GFS+01b] Helena Galhardas, Daniela Florescu, Dennis
Shasha, Eric Simon, and Cristian-Augustin
Saita. Declarative Data Cleaning: Language,
Model, and Algorithms. In VLDB, Rome,
Italy, September 2001.

[Inf] Informatica. Informatica home page.
http://www.informatica.com/.

[Ins] NEC Research Institute. Research Index
(CiteSeer). http://citeseer.nj.nec.com/.

[Int] Evolutionary Technologies International.
Home Page of ETI. http://www.evtech.com.

[RD00] Erhard Rahm and Hong Hai Do. Data Clean-
ing: Problems and Current Approaches. IEEE
Data Engineering Bulletin, 23(3), September
2000.

[Sag] Sagent. Sagent home page.
http://www.sagenttech.com/.

[Val] Vality. Home page of the Integrity tool.
http://www.vality.com/html/prod-int.html.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita 3-13

