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Abstract. We argue for the flexible use of lightweight ontologies
to aid information integration. Our proposed approach is grounded
on the availability and exploitation of existing data sources in a net-
worked environment such as the world wide web (instance data as it
is commonly known in the description logic and ontology commu-
nity). We have devised a mechanism using Semantic Web technolo-
gies that wraps each existing data source with semantic information,
and we refer to this technique as SWEDER (Semantic Wrapping of
Existing Data Sources with Embedded Rules). This technique pro-
vides representational homogeneity and a firm basis for information
integration amongst these semantically enabled data sources. This
technique also directly supports information integration though the
use of context ontologies to align two or more semantically wrapped
data sources and capture the rules that define these integrations. We
have tested this proposed approach using a simple implementation in
the domain of organisational and communication data and we specu-
late on the future directions for this lightweight approach to semantic
enablement and contextual alignment of existing network-available
data sources.

1 Introduction

A plethora of data is available in structured forms today, either in ex-
isting Semantic Web encodings such as OWL/RDF or, more likely,
in more traditional formats such as XML, CSV, HTML or rela-
tional databases. This data is available to the consumer today, usually
via URIs resolving to network or local addresses, but may also be
sourced from directly referenced files and other non-URI referenced
resources. The data itself can take any form, but we propose that it
can be relatively easily semantically wrapped through a lightweight
application of OWL/RDF to represent the data in the form of entities
(classes), attributes (data properties) and relationships (object proper-
ties). The purpose of this lightweight semantic wrapping is to provide
representational homogeneity for these existing data sources, thereby
providing a firm semantic basis for any downstream consumption in
potentially unknown contexts.

The details regarding how this semantic wrapping is achieved are
peripheral to the scope of this paper which is to focus on how to
leverage and capitalize on the end result: semantically wrapped data
sources. Our focus in this paper is mainly on the subsequent creation
of context ontologies to specifically capture the alignments between
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these semantically wrapped data sources, and we assume this repre-
sentational homogeneity as a pre-requisite for our data sources. In
practical terms this semantic wrapping is usually achieved through
manual design and construction of a simple ontology, or reuse of an
existing published ontology. Then the corresponding instance data is
generated through the application of simple transformations of ex-
isting data-sources to the corresponding RDF/OWL representations.
A suitable existing pattern for this work is that of RDFa4, microfor-
mats5 (and GRDDL6) which are popular techniques for semantically
enriching existing web data sources today, albeit within existing web
markup languages rather than as stand-alone ontology instance data
as we are proposing.

We elaborate on making use of this semantically wrapped data
in the next section where we introduce the notion of a lightweight
form for representing the alignments or relationships between these
existing data sources: context ontologies (section 2). These are used
in a principled manner which we describe in section 2.1, and we
apply in an example case in section 3. We go on to discuss proposed
extensions to our work in section 3.1, related work in section 4, and
conclude this paper in section 5.

2 Context ontologies
We adopt a dynamic notion of context which is not common to the
formal notions presented in the AI literature (see, for example, the
seminal work in [4] on formalizing contexts as first class objects).
Our aim is to use context dynamically in order to capture and de-
fine each purpose for which data is used, specifically enabling it to
be used by a consumer application. We do not take into account the
initial context of existing data, as all data exists for a specific reason
and with a specific format, but we treat this originating context as a
precursor to our interest: how to enable seamless processing of many
data sources by a variety of consumer applications in different con-
texts. In the simplest scenario, a consumer application will merely
consume a single data source for further processing, and in this ex-
tremely simple case one could argue that the consumer application
has added no additional context to the original data. This is an un-
likely scenario for a consumer application of any real value, and it is
more likely that a consumer application will consume multiple data
sources and fuse them or otherwise make use of both data sources
and the relationships between these sources. In this scenario we ar-
gue that the consumer application does add a context to these data
sources, not least because a specific combination of multiple data
sources has been selected to fulfil a particular need. This context is

4 http://www.w3.org/2006/07/SWD/RDFa/
5 http://microformats.org/
6 http://www.w3.org/2004/01/rdxh/spec



captured through the creation of a context ontology which specif-
ically integrates the concepts from any semantically wrapped data
sources that it references. This context ontology is then able to be
easily used by the consumer application, thereby reading the vari-
ous semantically wrapped data sources, processing the instance data
and executing embedded rules to derive further information or align-
ments. The result of this could be published as instance data con-
forming to the context ontology and then made available for further
consumption by unknown downstream consumer applications. For
example, a context ontology may be created which aligns concepts
from two semantically wrapped data sources containing geographic
feature data and person location data. A consumer application can
then use this new context ontology, execute the embedded rules to
fuse these two data sources in specific ways, and infer the interesting
intersection of these as defined within the context ontology. In this
example case, the list of people attending specific geographic fea-
tures of interest. This inferred additional data can then be used by
the consumer application and can additionally be published as new
instance data conforming to the context ontology.

Of course the fusion of two data sources by an application to
achieve the results above could easily be achieved with existing tech-
nology, and does not require semantic representation. As a matter of
fact, one could view the current trend of mashups7 as a successful
(usually non-semantic) form of such integrations. The specific bene-
fits of semantically enabling the data sources and capturing the align-
ment representation and rules in a context ontology as defined in our
approach lie in the representational homogeneity achieved through
this approach, the self-defining and portable nature of the context on-
tologies and their embedded rules, and the ease with which consumer
applications can use these context ontologies along with the appro-
priate semantically wrapped data sources. Further important capabil-
ities are also enabled through the use of this approach, most notably
the support for referencing common definitions via URIs to enable
more rapid understanding and information integration.

A key aspect of our proposal is facilitating the creation, repre-
sentation and consumption of information integration rules within
these context ontologies, and this is something that existing OWL
based solutions do not readily support. There are emerging standards
in this area, notably SWRL8 and potentially RIF9, but for various
reasons we have chosen a lightweight, pragmatic approach and use
SPARQL10 construct clauses to define these rules and store them as
instances within our context ontology. This allows any SPARQL en-
abled endpoint to execute the rules and instantiate the inferred results
directly from the construct clause held in the embedded rule without
the need for any specific additional rule execution engine.

We store each actual SPARQL construct clause rule as instance
data directly in the context ontology to which it applies, thus en-
abling these rules to be passed to the consumer application as part
of the context ontology itself. In further iterations of this work we
plan to introduce richer representation formats (such as SWRL, RIF)
as these representations could be used to generate SPARQL construct
clauses which would be executed as per our current solution. The use
of these richer representation languages would expose the seman-
tics of these information integration rules to consuming applications
rather than the current solution which simply records the text of the
SPARQL construct clause without providing any semantic represen-
tation of the rule which the SPARQL implements.

7 http://en.wikipedia.org/wiki/Mashup (web application hybrid)
8 http://www.w3.org/Submission/SWRL/
9 http://www.w3.org/2005/rules/
10 http://www.w3.org/TR/rdf-sparql-query/

2.1 A conceptual model

Conceptually and practically we use a two-tier model to represent
each of our ontologies, both for the simple semantic wrappings of ex-
isting data sources, and for the subsequent context ontologies which
are created to capture the alignments of ontologies. This two-tier ap-
proach allows for a clear separation between the representation of
the model and the capture of any associated rules. An example of
this two-tier doughnut shaped model is shown in figure 1. The model
ontology is at the centre, and it is comprised of traditional ontology
modeling concepts: entities, attributes and relationships, as described
earlier. This ontology is imported into the outer ontology, which sim-
ply adds support for rules to be defined against the model. In our
current implementation this takes the form of an import to a generic
information integration rules ontology which enables the SPARQL
construct based rules to be represented as instances of simple enti-
ties. The separation of these two aspects of our ontologies enables
the rules to be captured separately to the model, thus offering us a
flexible way in which to improve the rule representation solution in
the future without affecting the model ontology, and it also enables
us to easily use existing ontologies and wrap them with our rules. We
label this technique SWEDER (Semantic Wrapping of Existing Data
Sources with Embedded Rules).

Figure 1. A doughnut shaped two-tier ontology model and associated
instances.

The final aspect of our solution is the capture of context informa-
tion for multiple ontologies, which we achieve via the creation of
additional lightweight ontologies. These are the context ontologies
we referred to previously and are built according to the same two-
tier approach.

The context ontology defines any additional entities, attributes or
relations which are relevant to the current context (in the inner model
ontology), and also defines any instances of rules which are able to
populate these additional items (in the outer rules ontology). The
context ontology also imports any required source ontologies (which
may of course be context ontologies themselves) and the new con-
text ontology therefore captures the representation of this specific
new context and embodies it in a semantic format consistent with
the source ontologies. We visualize this approach in figure 2, and it
should be noted that the imported ontologies can either be normal on-
tologies that exist already, or can be the semantically wrapped data
source ontologies that we describe in this paper.

The final step is for a suitable consumer application to consume
the context ontology and any associated instance data for the source
ontologies. Since all of the integration rules are contained within the
context ontology this consumer application simply invokes a stan-
dard process to extract all these rules (which are stored as SPARQL
construct clause text), then executes them against the instance data



Figure 2. A typical context ontology.

using an appropriate SPARQL endpoint. The results of these rule ex-
ecutions are that new instance data are created within the context
ontology, and this can then be saved, published or further processed
by the consumer application. The consumer application actually ex-
ecutes all the rules multiple times, until the set of all rule executions
results in no further data being inferred. We depict diagrammatically
the interaction with a consumer application in figure 3.

3 An example consumer application

In order to test our proposed technique we have applied SWEDER
in the context of organisational and communication data. We used
a variety of source data from existing applications, converting this
to OWL/RDF based on simple ontologies defined in Protege11. The
consumer application is built using the Jena framework from Hewlett
Packard Labs12 and the ARQ SPARQL processor for Jena. The
source ontologies constructed in our example were:

• Email - this is a simple semantic representation of email
data extracted from an email application. Includes Email,
EmailAddress and Tag entities with multiple attributes and
relations between them. (See figure 6);

• Person - this is a semantic representation of instant messag-
ing system contacts and their groups. Includes Person, and
Relationship. We could also extract this data from many
sources such as FOAF13, social network sites, etc.;

• Organisation - this is a semantic representation of basic organi-
sation information such as name, email suffix, homepage, etc. The
instance data for this was created specifically for the purposes of
our experiment but could easily come from a CRM system or sim-
ilar;

• Project - this a semantic representation of basic project informa-
tion such as project name. This instance data for this was
specifically created for the purposes of our experiment but could
come from a DOAP14 dataset or an application used to record
project information.

It is noteworthy to point out that each of the above ontologies is
completely stand-alone and requires no knowledge or understanding
of data in the other. Conceptually these could have each been defined
and created by different authors at different times, although for the

11 Available from: http://protege.stanford.edu/
12 Available from: http://jena.sourceforge.net/
13 http://www.foaf-project.org/
14 http://trac.usefulinc.com/doap

Figure 3. A consumer application interacts with context ontologies.

purposes of our exercise we created each of these ourselves, but care-
fully ensured that each ontology was entirely separate from the others
in terms of the constituent data and conceptual representation. Each
of these ontologies makes use of appropriate RDF/OWL representa-
tions such as dependencies between properties, inverse relationships,
etc. A single context ontology was then created to align the appropri-
ate aspects of these source ontologies. Our approach supports multi-
ple context ontologies, each for a specific alignment, but in our exam-
ple case we used only one as we simply wished to demonstrate the
value of these context ontologies and the recording of rules within
them. The alignments we produced were captured using SPARQL
construct rules that implement the following information integration
tasks:

Figure 4. A SPARQL example rule relating a person’s email address to
organisation.

• EmailAddress to Person: within the Email ontology (an excerpt
of which is shown in figure 6), EmailAddress instances are
created for each unique email address that is involved in send-
ing or receiving an email. Each EmailAddress entity has
a rawEmailAddress attribute containing the email address
string which is that email address. Within the Person ontology
a Person can have one or more values for the emailAddress
attribute which contain their email address string(s). The rule we
execute simply matches any Person with an emailAddress
value which is identical to the rawEmailAddress of any
EmailAddress entity. The construct clause populates a new re-
lationship (object property) named hasEmailAddress on this
Person and hasPerson on this EmailAddress to record the
new inferred relationship between these two entities. We give an
example of this SPARQL construct based rule in figure 5. From
this we can subsequently infer a relationship between Person
entities and Email entities and can now easily identify all emails
that a Person has sent or received.



• EmailAddress to Organisation: within the Organisation on-
tology, Organisation instances are created, and each is pop-
ulated with an emailSuffix string. Each EmailAddress
entity has a rawEmailAddress attribute as described pre-
viously. The rule we execute matches any Organisation
with an emailSuffix which is the same as the end of any
EmailAddress entities rawEmailAddress attribute. The
SPARQL construct clause populates a new relationship (ob-
ject property) named originatesEmailAddress on this
Organisation to record this inferred information.

• Person to Organisation: this builds on the previous rule, and iden-
tifies any EmailAddress which has a Person (hasPerson)
and which has an Organisation (hasOrganisation). The
rule then populates a new relationship (object property) named
employsPerson on Organisation with a link to that
Person. This rule relies on the previous two rules correctly in-
stantiating EmailAddress to Person and EmailAddress
to Organisation relationships. An example of such a rule is
shown in figure 4. When we enable multiple rule executions this
rule may infer additional information when it is run after the pre-
requisite rules.

• Person to Project: the Email ontology has multiple Email in-
stances, many of which have already been tagged according to
the name of the project that they relate to. This enables an-
other rule to identify any Email with a hasTag text which is
the same as any Project name or alternativeName at-
tribute. This rule populates a new relationship (object property)
named relatedEmail on Project and relatedProject
on Email.

• Project to Email and Project to Organisation: these final two rules
build on the same principles as before and identify each Project
that has a relationship to a Person (or Organisation) and the
Email which that Person (or Organisation) is involved
with via the related EmailAddress entities. The results of
these two rules are instantiated in the new hasEmail relation-
ships (object properties) on Project and Organisation, and
in the hasProject and hasOrganisation relationships on
Email.

Figure 5. A SPARQL example rule relating an email address to person.

The rules listed above are clearly very simple examples of the
sorts of rules that may be desired by consumer applications and our
proposed use of SPARQL construct clauses to represent these rules
builds a flexible base against which richer and more complex rules
can be written, limited only by the expressivity of SPARQL construct
clauses.

In our simple demonstration we have built the consumer applica-
tion to allow user navigation around this fused set of separate data
sources, allowing the user to immediately see which emails relate to

which projects, what organisations and people they are working with
in the context of projects and so on. The instance data for this con-
text ontology is also published out for potential further consumption
simply through persisting it to an RDF/OWL file via the Jena API
and making the URI of that file available to other consumers.

Figure 6. The hierarchy of Email ontology entities and their attributes
and relationships.

3.1 Extensions
We recognise some shortcomings in our current solution and aim
to carry out further investigation into a number of specific areas to
address these, most notably:

• The use of reification to record whether each instance data triple
is stated or inferred. At the moment any inferred instance data
triples are simply instantiated as a result of the SPARQL construct
execution, and can then not easily be differentiated from the in-
stance data triples originating in the source ontologies (other than
by looking at the namespace into which they are persisted). Using
a reification technique we would be able to record relevant prove-
nance data such as the rule(s) which instantiated the instance data
triple, the time, the application, etc.

• As the W3C15 standardization work on rules languages and inter-
operability continues to mature we plan to extend the notion of
context ontologies to support the representation of rules written
in SWRL, RIF or another appropriate richer representation. These
richer representations of rules would allow semantic information
about the composition of the rules themselves to be conveyed,
and would be used to generate the required SPARQL construct
clauses.

• We also plan to use a flexible approach for disseminating the re-
sults of the information integration rules we presented in the pre-
vious section. In [3] we propose a novel mechanism for sharing
and distributing ontology alignment information, POAF (Portable
Ontology Aligned Fragments). POAF is agnostic as to what the
alignment format is or to the type of data source used. In that
sense, we could deploy a variant of the POAF solution to share
and distribute the rules described in the previous section and even
the context ontologies they operate on.

We also observe some aspects which loosely relate to this work,
and which we will review further in our ongoing work:

• Our approach enables a limited form of distributed reasoning as
it allows each instance of a consuming application to consume
different data and publish their results. In some cases the results
of these distributed consumer applications can then be collected
and further analysed as appropriate.

15 http://www.w3.org/



• This approach can be used to efficiently publish summary infor-
mation about potentially private data when appropriate. In the ex-
ample case we see a scenario where employee email data is pro-
cessed locally to identify interesting contextual information, and
in some cases this contextual information may be able to be then
published to a wider audience whereas the actual email data is not.

• Finally, our work so far has identified that the SPARQL
construct technique for building rules can be used to im-
plement some of the standard RDF-S/OWL entailments. We
specifically demonstrate this for rdfs:subPropertyOf,
owl:SymmetricProperty and owl:inverseOf. This is
a pragmatic solution to these specific RDF-S/OWL entailments
where we use the RDF-S/OWL semantics to define occurrences
of these in our model ontologies in the normal way, but we gener-
ate SPARQL construct clauses from rule templates to specifically
instantiate each actual rule occurrence. This has two main bene-
fits from our pragmatic perspective: firstly, there is no need to use
a reasoner in addition to the SPARQL end point processing, and
secondly, that we can use the same technique to instantiate and
persist the resulting data. We do not propose that this SPARQL
construct clause based implementation of these standard entail-
ments should be used in preference to the capabilities offered by
existing reasoners, but we note it here as a further capability for
this rule representation and execution technique that we have de-
scribed here.

4 Related work
Different notions of contexts have been proposed and investigated in
the past. For example in [5] the authors argue for different types of
contexts that contribute information relevant to natural language un-
derstanding. Each context is used to serve a different purpose, sim-
ilar to our work where we adopt a dynamic notion context that is
closely related and dependent on the use of source data. Our work
uses source data and a set of semantic wrappers to elicit context
and represent it in lightweight ontologies. Similarly, context has been
used in [2] to aid in ontology elicitation whereby certain features of
context dictate the primitive ontological constructs that will form up
an ontology.

Information integration, the driver behind our work with semanti-
cally wrapped data and context ontologies, is also the focus of [6] but
the authors deploy different means to achieve that: they propose to
use a special kind of context knowledge, namely assumption knowl-
edge, which refers to a set of implicit rules about assumptions and bi-
ases that govern the source data. This is similar to our notion of rules
that integrate information from semantically wrapped data (section
3) but we apply them at a later stage. A number of existing infor-
mation integration solutions are being researched and implemented,
and are often referred to as ontology alignment solutions. The INRIA
alignment API and server16 is a good example of such an ontology
alignment API for expressing and sharing alignments. Our work on
SWEDER is currently focused at a far simpler and pragmatic level
than existing efforts such as these, but our use of SPARQL construct
does enable rich expressivity when it comes to information integra-
tion rule construction.

Another interesting angle we investigate with the use of context
ontologies is deploying rules to capture the dependencies between
properties. This is similar to the work of [1] where the authors elab-
orate on a naming convention scheme which is based on a loose on-
tology that represents the notions of kind and superkind. Their aim
16 Available from: http://alignapi.gforge.inria.fr/

is to ease data usability by providing a naming scheme that allows
for classification of source data. In our work we use properties and
super properties found in the context ontologies to aid information
integration and grouping.

5 Conclusion
We presented SWEDER: Semantic Wrapping of Existing Data
Sources with Embedded Rules. A pragmatic approach to semanti-
cally enable existing sources of data and then utilise multiple seman-
tically enabled sources of that data through the creation of context
ontologies to capture the specific rules and any new entities, rela-
tionships or attributes arising from the new context. This technique
allows us to store rules directly within the ontologies in such a way
that they can be easily extracted and executed by common capabil-
ity within any consuming application, specifically through the use of
SPARQL construct clauses.

Details of a simple example application in the domain of organisa-
tion and collaboration information were given, with a description of
some simple rules that have been written to integrate these separate
semantically wrapped data sources into the new context, taking ad-
vantages of inherent relationships between the data in those sources.
Finally, we described our planned future work in this area which in-
volves, amongst other things, the use of reification techniques to cap-
ture the provenance of any data inferred as a result of rule execution,
and the desire to user a richer representation format to capture the
semantics of our rules in the future.
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