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Abstract
The task of determining the correct number of clusters in hyperspectral images is not a straightforward procedure
as the images feature complex spectral data, redundancy, and lack of validation images. Hence, automatic
clustering methods are often preferred in practical applications, as they can effectively handle the complexity of
spectral data and the absence of validation images. This study introduces two novel algorithms viz., the Qubit
Walrus Optimizer (QbWaO) and Qutrit Walrus Optimizer (QtWaO) to leverage quantum principles to address the
limitations of classical optimization techniques, which are inspired by the breeding behavior of walruses. QbWaO
and QtWaO are designed to automatically detect clusters in hyperspectral images (HSI) by effectively balancing
exploration and exploitation. This makes them particularly suited for high-dimensional clustering tasks in a
real time environment. The concept of quantum Hadamard gates is used to initialize the population and induce
diversity. The optimal clusters are then determined using the Adjusted Rand Index as the fitness function. 𝐹
score and the 𝐹 ′ score are used to determine the quality of the grouping. The comparative results suggest that
the proposed methods outperform classical approaches in most scenarios, demonstrating their effectiveness in
automatically clustering hyperspectral images.
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1. Introduction

The emergence of spectral cameras and sensors has significantly improved the ability to collect detailed
information about ground data in various fields, such as agriculture, law enforcement, geography, and
military applications [1]. Hyperspectral sensors capture data across hundreds of contiguous spectral
bands. This broader spectral and wide area coverage helps represent a combination of multiple materials,
each contributing to the pixel’s overall spectral signature with varying abundance levels. Hyperspectral
imaging (HSI) is a powerful technology, but the vast amount of data in contiguous spectral bands
presents a major computational challenge. Band Selection (BS) techniques are commonly employed as a
preprocessing step to identify unique spectral bands. A key challenge is designing effective criteria for
informative bands while retaining important spectral information. Recently, information theory-based
methods [1] have demonstrated great potential in HSI band selection.
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One critical task in HSI processing is automatic cluster detection [2]. This aims to identify under-
lying patterns, classes, or regions without ground-truth images. Traditional clustering algorithms,
such as k-means [3] or fuzzy c-means [4], often struggle with HSI’s high-dimensional, nonlinear na-
ture. Optimization-based clustering techniques have gained popularity to overcome these challenges.
Nature-inspired metaheuristic optimization techniques, such as Genetic Algorithms [5], Particle Swarm
Optimization [6], and Tabu Search [7], have emerged as powerful tools in HSI clustering. These meth-
ods effectively explore the vast solution space, adapt to HSI data’s complex spectral signatures and
high-dimensional structure, and avoid local minima, thus offering superior performance over traditional
clustering algorithms. The Walrus Optimizer (WaO) [8] is a relatively new optimization algorithm
offering efficient global search capability while balancing navigating and leveraging the search space.
WaO [8] can suffer from slow and premature convergence when solving complex problems.
The No Free Lunch Theorem affirms that no one-size-fits-all algorithm can effectively address all NP-
hard problems [9]. Researchers are creating improved metaheuristic algorithms to effectively address
the diverse array of real-world challenges. In recent years, quantum-based metaheuristic methods have
transpired as potential solutions to these problems [2]. These algorithms enhance search efficiency by
employing quantum computing principles such as superposition and entanglement. In recent years,
qubit or bi-level quantum metaheuristics have drawn substantial research attention, but developing
higher-order quantum metaheuristics remains a complex challenge [10]. However, applying quantum-
based approaches to complex clustering problems requires innovative designs and frameworks.
In this work, qubit and qutrit versions of the Walrus Optimizer algorithm viz., Qubit Walrus Optimizer
(QbWaO) and the Qutrit Walrus Optimizer (QtWaO) are introduced. The breeding behavior of walruses
has inspired these, and quantum principles have enhanced their limitations. QbWaO and QtWaO are
designed to automatically detect clusters in hyperspectral images by leveraging quantum-inspired
mechanisms to balance exploration and exploitation effectively. This makes it ideal for complex high-
dimensional HSI clustering. Furthermore, QbWaO and QtWaO incorporate breeding-inspired dynamics
and foraging behavior to maintain population diversity.
The primary contributions are as follows.

• emphQubit and Qutrit-Based WaO: This is the first instance of developing and applying multilevel
quantum versions of the Walrus Optimizer Algorithm for clustering hyperspectral images.

• Enhanced Exploration Phase with Global Best Selection: Instead of selecting a random walrus, the
global best solution or the best walrus is utilized during the exploration phase. This effectively
guides the entire population towards the leader.

• Band Selection Based on Spectral Variability (BSSV) [11]: The proposed method selects the most
dissimilar bands by utilizing spectral variability similarity, ensuring the removal of redundant
information.

• Population Diversity Enhancement with qubit and qutrit Hadamard Gate: The population is
initialized using either qubit or qutrit Hadamard gate, which equally distributes individuals across
the search space, increasing diversity in the population.

The paper is organized as follows: Section 2 presents a brief review of the literature. Relevant concepts
are discussed in Section 3. Section 4 contains the details of the main proposed work. Section 5 thoroughly
describes the dataset used, the experimental design, and the result anyalysis. Finally, Section 6 offers a
concise conclusion of the proposed methodology.

2. Brief Survey of Related Works

Hyperspectral imaging has revolutionized the way detail information about ground targets is captured
and analyzed in various fields such as agriculture, geographical monitoring, and defense-based applica-
tions. However, this vast amount of data leads to significant computational challenges, necessitating
effective band selection techniques to identify informative bands while preserving essential spectral
information [11]. Recent studies have shown that information theory-based methods offer promising



results in HSI band selection, allowing for the extraction of critical features from complex datasets [1].
In [12], superpixel segmentation is performed to find the heterogeneous area in region-specific hyper-
graphs, and then a consensus matrix is built to select bands efficiently for hyperspectral imagery.
Clustering assessment metrics are employed to determine the optimal number of clusters. Adjusted
Rand Index (AIndex) [13], and PBM index [14] are some well-known metrics.
Estimating optimal clusters in HSI is important as ground truth data is often absent [15]. A lot of HSI
clustering methods have been reviewed in [15]. Although an effective process, unsupervised Artificial
DNA Spectral Matching proposed in [16] takes a huge amount of time for execution. Optimization-based
clustering techniques have gained traction in addressing these challenges. The Walrus Optimization
Algorithm (WaO)[8] is a recent addition to this suite of optimization algorithms, distinguished by
its efficient global search capabilities and its balanced approach to exploration and exploitation of
the search space, but it suffers from slow and premature convergence. As no individual optimization
algorithm can universally solve all NP-hard problems[9], developing enhanced metaheuristic algorithms
that can adapt to a wide range of real-world challenges is needed.
In light of these considerations, quantum-based metaheuristic methods have emerged as potential
solutions, harnessing the quantum computing principles, such as superposition, coherence and deco-
herence—to improve search efficiency [2]. While qubit-based quantum metaheuristics have garnered
significant attention, advancing higher-order quantum metaheuristics, such as those utilizing qutrits,
remains a complex challenge [10]. In [17], a qubit-based Grey Wolf Optimizer (QBGWO) is introduced,
incorporating quantum rotation and NOT gates to enhance solution quality. A memetic quantum-
inspired evolutionary algorithm was proposed in [18] which combines quantum genetic algorithms
with tabu search. It balances global exploration via quantum rotation gates and local exploitation
through directional mutations, achieving faster convergence and improved performance on benchmark
functions. In [19], a qubit based Differential Evolution algorithm is developed for efficiently identifying
optimal clusters without prior knowledge and outperforming competitive algorithms in accuracy and
convergence speed.
While qubit-based algorithms generally outperform classical metaheuristics, they remain constrained
by the No Free Lunch Theorem [9]. Consequently, there is significant research interest in developing
higher-order quantum metaheuristics, specifically qudit-based methods. A three-valued quantum or
(qutrit) based Genetic Algorithm was developed in [20]. In [2], the Differential Evolution algorithm
has been introduced for the automated clustering of hyperspectral images. Additionally, six quantum
methodologies based on the Artificial Hummingbird Algorithm, Particle Swarm Optimization, and
Genetic Algorithms have been presented in [10], utilizing both bi-level and tri-level quantum logic for
unsupervised clustering of HSI data.

3. Significant Related Concepts

This section discusses several key concepts, viz., band selection method used, foundational principles
of quantum computing, and the WaO[8] algorithm.

3.1. Band Selection Based on Spectral Variability [11]

Spectral Information Divergence (SID) measures the difference between two spectral bands by evaluating
their probability distributions. To compute the SID first, the probability vectors are defined as follows.
For two spectral bands 𝑆𝑉 𝐵𝑗 and 𝑆𝑉 𝐵𝑘, we first define their probability vectors as
- For band 𝑆𝑉 𝐵𝑖:

𝑃𝑎𝑖 =
𝑆𝑉 𝐵𝑗𝑖∑︀𝐵𝑎

𝑘=1 𝑆𝑉 𝐵𝑗𝐿

, 𝑖 = 1, 2, . . . , 𝐵𝑎

- For band 𝑆𝑉 𝐵𝑗 :

𝑃𝑎𝑗 =
𝑆𝑉 𝐵𝑘𝑖∑︀𝐵𝑎
𝑘=1 𝑆𝑉 𝐵𝑗𝑘

, 𝑖 = 1, 2, . . . , 𝐵𝑎



where, 𝐵𝑎 is the spectral dimension of the HSI dataset. The SID between the two bands 𝑆𝑉 𝐵𝑖 and
𝑆𝑉 𝐵𝑗 are defined using the Kullback-Leibler divergence (relative entropy) as

𝑆𝐼𝐷(𝑆𝑉 𝐵𝑖, 𝑆𝑉 𝐵𝑗) = 𝑅𝐸(𝑆𝑉 𝐵𝑖||𝑆𝑉 𝐵𝑗) +𝑅𝐸(𝑆𝑉 𝐵𝑗 ||𝑆𝑉 𝐵𝑖), (1)

where, the Kullback-Leibler divergence 𝑅𝐸(𝑆𝑉 𝐵𝑖||𝑆𝑉 𝐵𝑗) is given by

𝑅𝐸(𝑆𝑉 𝐵𝑖||𝑆𝑉 𝐵𝑗) =

𝐵𝑎∑︁
𝑘=1

𝑃𝑎𝑖𝑘 log
𝑃𝑎𝑖𝑘
𝑃𝑎𝑗𝑘

. (2)

The channel transition probability is defined as

𝐵𝑆𝑆𝑉𝑗|𝑖 =
𝑆𝐼𝐷(𝑆𝑉 𝐵𝑖, 𝑆𝑉 𝐵𝑗)∑︀𝐵𝑎
𝑙=1 𝑆𝐼𝐷(𝑆𝑉 𝐵𝑙, 𝑆𝑉 𝐵𝑗)

, (3)

The bands with the lowest SID values are selected as the distinct bands because they exhibit the least
similarity in spectral information.

3.2. Quantum Computing Principles

Quantum-based machines represent a powerful computational paradigm that merges quantum mechan-
ics with fundamentals of computing [10]. The basic unit of quantum machines are the qubit. Qubits exist
in two distinct states: |0⟩ and |1⟩ [10]. These states can be expressed mathematically in the following
column vector notation [21].

|0⟩ =
(︂
1
0

)︂
, |1⟩ =

(︂
0
1

)︂
(1)

Qubits exist in a superposition of its basis states (|0⟩ and |1⟩). The number of states that can be repre-
sented by n qubits in superposition grows exponentially (2𝑛) and thus provides increased computational
efficacy with fewer resources. The superposition state of a qubit, denoted as |𝑆𝑡⟩ (where 𝑡 = 2 for
qubit), is given by

|𝑆𝑡⟩ = 𝑠0|0⟩+ 𝑠1|1⟩ (2)

The probabilities that the qubits are in states |0⟩ or |1⟩ are represented by the complex coefficients 𝑠0
and 𝑠1, respectively. These probabilities also satisfy the following condition.

0 ⩽ |𝑠𝑡|2 ⩽ 1, for 𝑡 = 0, 1 (3)

The normalization condition for a qubit is expressed as follows [21].

𝑠20 + 𝑠21 = 1 (4)

Quantum systems can exhibit a wider range of discrete energy levels and exist in more than two states,
known as qudits [2]. The smallest multilevel quantum system is called a qutrit [2]. A qutrit can similarly
be represented as

|0⟩ =

⎛⎝1
0
0

⎞⎠ , |1⟩ =

⎛⎝0
1
0

⎞⎠ , |2⟩ =

⎛⎝0
0
1

⎞⎠ (5)

Qudits offer better performance than qubits [10]. They require fewer units to achieve superior results
than a larger number of qubits, thus reducing computation time. Mathematically, to represent the
same information as 𝑛 qubits, only 𝑛

log2(3)
qutrits are needed, resulting in an efficiency increase of

approximately log2(3) ≈ 1.6 [2]. This reduction significantly lowers decoherence in qudit-based
systems, enhancing their computational power. A qutrit can be expressed in a superposition state as
follows.

|𝑆𝑡⟩ = 𝑠0|0⟩+ 𝑠1|1⟩+ 𝑠2|2⟩ (6)



The normalization condition for a qutrit is given by

𝑠20 + 𝑠21 + 𝑠22 = 1 (7)

Furthermore, the probabilities associated with the states of a qutrit must satisfy the following condition.

0 ⩽ |𝑠𝑡|2 ⩽ 1, for 𝑡 = 0, 1, 2 (qutrit) (8)

3.3. Walrus Optimizer Algorithm [8]

The WaO [8] algorithm is based on the behavior of walruses. Their ways of migrating, breeding,
roosting, and foraging are considered by Han et al.. This approach models walruses social structures
and role divisions, assuming populations interpret behavior through danger and safety signals. The
steps of WaO [8] are briefly described in Algorithm 1.
The WaO [8] uses a population of "walruses" (agents) to explore and exploit the search space for optimal
solutions to optimization problems. The algorithm divides the population into adults (90%) and juveniles
(10%), with different roles for males, females, and juveniles.
Key features of WaO [8] include danger and safety signals, which encompasses the phases of exploration
and exploitation in the algorithm. In high-risk conditions, walruses migrate causing enhanced searching
in the entire solution space, while in safer conditions, they reproduce causing exploitation of the
search space. Migration is achieved by adjusting positions based on other walruses’ locations, while
reproduction involves updating positions through male influence (using a Halton sequence) and female
influence from both the male and the best solution. Juveniles update their positions to avoid predators.

4. Proposed Work

The proposed methodology can be divided into two sections viz., BSSV based Band Depletion and
Quantum Walrus Optimizer Algorithms. Band minimization is done as stated in Section 3.1.

4.1. QuantumWalrus Optimizers (QbWaO and QtWaO)

The quantum versions viz., Qubit Walrus Optimizer and Qutrit Walrus Optimizer algorithms follow the
same steps as mentioned in Algorithm 1. The modifications introduced are as follows:

• Qubit or Qutrit Encoding and Observation [20] : The qubit walrus population is represented as
follows. [︂

𝑠01 𝑠02 𝑠03 . . . 𝑠0𝑛
𝑠11 𝑠12 𝑠13 . . . 𝑠1𝑛

]︂
Similarily, the qutrit walrus population is represented in the following manner.⎡⎣𝑠01 𝑠02 𝑠03 . . . 𝑠0𝑛

𝑠11 𝑠12 𝑠13 . . . 𝑠1𝑛
𝑠21 𝑠22 𝑠23 . . . 𝑠2𝑛

⎤⎦
As Hadamard gate initializes all the states with equal amplitude values, qubit states are initialized
in the following manner.

𝑆𝐼𝑡
𝑛,𝑑 = 1/𝑠𝑞𝑟𝑡(2) + 1/𝑠𝑞𝑟𝑡(2) (23)

where, 𝑠01 = 1/𝑠𝑞𝑟𝑡(2) and 𝑠11 = 1/𝑠𝑞𝑟𝑡(2) for each individual qubit. Similarly, the following
method is used for a qutrit.

𝑆𝐼𝑡
𝑛,𝑑 = 1/𝑠𝑞𝑟𝑡(3) + 1/𝑠𝑞𝑟𝑡(3) + 1/𝑠𝑞𝑟𝑡(3) (24)



Algorithm 1 Walrus Optimizer Algorithm [8]
1: Input: Population 𝑃𝑜𝑃 consisting of 𝑛 Walrus of 𝑑 dimension, Maximum iterations 𝑀𝑎𝑇 , 𝑟𝑑1, 𝑟𝑑2, 𝑟𝑑3,𝑟𝑑4 and 𝑟𝑑5 are random

numbers between (0,1), 𝑀𝑆𝑡𝑒𝑝 is Migration step, 𝛾 is a distress coefficient designated by random number between (0,1).
2: 𝑃𝑜𝑃 is divided into 45% Male Walrus (MW) with top fitness values, 45% Female Walrus (FW) and 10% Young Walrus (YW) in

Exploitation Phase. Best Male Walrus (BW1) has the highest fitness, and (BW2) has the second highest fitness value.
3: Initialize the population 𝑃𝑜𝑃 using

𝑃𝑜𝑃𝑛,𝑑 = random(0, 1) (9)

4: Calculate fitness values 𝐹 for each walrus
5: while 𝐼𝑡 ≤ 𝑀𝑎𝑇 do
6: Calculate danger signal

𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐷𝑎𝑠 ·𝑅 (10)

where, 𝐴, 𝐷𝑎𝑠, and 𝑅 are given by
𝐴 = 1−

𝐼𝑡

𝑀𝑎𝑇
, 𝐷𝑎𝑠 = 2×𝐴, 𝑅 = 2× 𝑟𝑑1 − 1 (11)

7: if |𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙| ≥ 1 then
8: Exploration phase
9: Update positions of each walrus

𝑃𝑜𝑃 𝐼𝑡+1
𝑛,𝑑 = 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑 +𝑚𝑠 (12)

where, the Migration step is calculated as 𝑀𝑆𝑡𝑒𝑝 = 𝑅𝐼𝑡
𝑛,𝑑 − 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑 · 𝑏 · 𝑟𝑑3 (13)

where, 𝑅 is a randomly selected position, and
𝑏 = 1−

1

1 + exp
(︁
− 𝐼𝑡−𝑀𝑎𝑇/2

𝑀𝑎𝑇×10

)︁ (14)

10: else
11: Exploitation phase
12: if Safety signal ≥ 0.5 then
13: Breeding behavior
14: for each MW do
15: Use the Halton sequence to update the position
16: end for
17: for each FW do
18: Update

𝐹𝑊 It+1
𝑛,𝑑 = 𝐹𝑊 It

𝑛,𝑑 + 𝑎 · (𝑀𝑊 It
𝑛1,𝑑1 − 𝐹𝑊 It

𝑛,𝑑)

+ (1−𝐴) · (𝐵𝑊1It
𝑑 − 𝐹𝑊 It

𝑛,𝑑) (15)

19: end for
20: for each YW do
21: Update position

𝑌𝑊 𝐼𝑡+1
𝑛,𝑑 = (𝑃 − 𝑌𝑊 𝐼𝑡

𝑛,𝑑) · 𝛾 (16)

where: 𝑃 = 𝐵𝑊1𝐼𝑡𝑑 + 𝑌𝑊 𝐼𝑡
𝑛,𝑑 · 𝐿𝑃 (17)

𝐿𝑃 is generated using Lévy distribution to imitate Lévy movement22: end for
23: else
24: Foraging behavior
25: if |𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙| ≥ 0.5 then
26: Gathering behavior
27: Update positions

𝑃𝑜𝑃 𝐼𝑡+1
𝑛,𝑑 =

𝐵𝑊1𝐼𝑡𝑛,𝑑 +𝐵𝑊2𝐼𝑡𝑛,𝑑

2
(18)

where, 𝐵𝑊1𝐼𝑡+1
𝑛,𝑑 = 𝐵𝑊1𝐼𝑡𝑛,𝑑 − 𝑎1 · 𝑏1 · |𝐵𝑊1𝐼𝑡𝑛,𝑑 − 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑| (19)

𝐵𝑊2𝐼𝑡+1
𝑛,𝑑 = 𝐵𝑊2𝐼𝑡𝑛,𝑑 − 𝑎2 · 𝑏2 · |𝐵𝑊2𝐼𝑡𝑛,𝑑 − 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑| (20)

Calculate 𝑎 and 𝑏 𝑎𝑖 = 𝑏 · 𝑟𝑑5 − 𝑏, 𝑏𝑖 = tan(𝜃), 𝑖 = 1, 2 (21)

28: else
29: Fleeing behavior
30: Update positions

𝑃𝑜𝑃 𝐼𝑡+1
𝑛,𝑑 = 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑 · 𝑟 − |𝐵𝑊1𝑑 − 𝑃𝑜𝑃 𝐼𝑡
𝑛,𝑑| · 𝑟𝑑4 (22)

31: end if
32: end if
33: end if
34: Update walrus positions
35: Calculate fitness and update the best solution
36: 𝐼𝑡 = 𝐼𝑡+ 1
37: end while
38: Output: The best solution



Algorithm 2 Qubit State Observation

1: for 𝑖 = 1 to 𝑛 do
2: for 𝑖 = 1 to 𝑑 do
3: 𝑟𝑎𝑛𝑑← random number in range [0, 1]
4: if 𝑟𝑎𝑛𝑑 < 𝑠0𝑛,𝑑

then
5: 𝑃𝑜𝑃𝑛,𝑑 ← 0
6: else
7: 𝑃𝑜𝑃𝑛,𝑑 ← 1
8: end if
9: end for

10: end for

Algorithm 3 Qutrit State Observation

1: for 𝑖 = 1 to 𝑛 do
2: for 𝑖 = 1 to 𝑑 do
3: 𝑟𝑎𝑛𝑑← random number in range [0, 1]
4: if 𝑟𝑎𝑛𝑑 < 𝑠0𝑛,𝑑

then
5: 𝑃𝑜𝑃𝑛,𝑑 ← 0
6: else if 𝑠0𝑛,𝑑

≤ 𝑟𝑎𝑛𝑑 < 𝑠1𝑛,𝑑
then

7: 𝑃𝑜𝑃𝑛,𝑑 ← 1
8: else
9: 𝑃𝑜𝑃𝑛,𝑑 ← 2

10: end if
11: end for
12: end for

where, 𝑠01 = 1/𝑠𝑞𝑟𝑡(3), 𝑠11 = 1/𝑠𝑞𝑟𝑡(3) and 𝑠21 = 1/𝑠𝑞𝑟𝑡(3). This ensures that the initial
population is equally distributed in the solution space.
Equations (23) and (24) suffice the normalization principles stated in Section 3.2. The following
Algorithms 2 and 3 are used for finding the probable classical state observations [20]. The notations
of 𝑛, 𝑑 and 𝑃𝑜𝑃 are same as specified in Algorithm 1. The resulting classical representation in
binary and ternary form after observations for each walrus are[︀

0 1 0 1 1 1 1 0 0 · · · 𝑑
]︀

(25)[︀
0 2 0 1 1 2 1 0 0 · · · 𝑑

]︀
(26)

• Equqation (13) is replaced by the equation given below.

𝑀𝑆𝑡𝑒𝑝 = 𝐵𝑊 𝐼𝑡
𝑑 − 𝑃𝑜𝑃 𝐼𝑡

𝑛,𝑑 · 𝑏 · 𝑟𝑑3 (27)

Instead of considering any random Walrus, the best Walrus with the highest fitness value enhances
the exploration phase.

• At the end of every iteration, it is checked whether the quantum normalization principles are
adhered to. When it does not stand true Equations (23) and (24) are used to reinitialize those
walruses.

• In every iteration, a random count of zeros is incorporated into the population for which 𝑃𝑜𝑃
is true. The non-zero values designate the cluster centers using k-mean++ [3] algorithm, the
appropriate clusters are constructed. The AIndex [13] is used as the Cluster Validity Index to
identify the optimal cluster numbers.

The complexity of the band minimization is as follows:

𝑂(𝑚× 𝑛× 𝑑)



Table 1
Mean (𝑀𝑒), Standard Deviation (𝑆𝑇𝐷) and convergence time (CTime) for WaO [8], QbWaO, and QtWaO using
AIndex [13] for WHU Dataset [22] [23]

No Algorithm Me STD Time
1 WaO [8] 0.4456 0.0594 974.3500
2 QbWaO 0.4737 0.0028 480.2580
3 QtWaO 0.4753 0.0034 21.98680

Here 𝐷 bands are present each of dimensions 𝑀 × 𝑁 pixels. For the QbWaO, if 𝑃 is a randomly
chosen pixel intensity value, 𝑑 represnts the length of individual population, 𝑀𝑎𝑇 is the total number
of iterations then the worst-case time complexity is:

𝑂(2× 𝑃 × 𝑑×𝑀𝑎𝑇 )

For QtWaO, the time complexity is as follows:

𝑂(3× 𝑃 × 𝑑×𝑀𝑎𝑇 )

5. Findings and Analysis

This section presents the various parameters used, the dataset employed, the statistical tests conducted,
and the analysis of the experimental results.

5.1. HSI Dataset

The WHU-Hi-LongKou dataset (WHU) [22] [23] was collected in 2018, featuring scenes of Longkou
Town in Hubei province, China. It has 9 classes spread over an agricultural landscape with six types of
crops. It has a spatial dimension of 550 × 400 pixels and a spectral dimension of 270 spectral bands. The
UAV-borne hyperspectral imagery has a spatial resolution of approximately 0.463 meters.

5.2. Experimental Configurations and Analysis

QbWaO and QtWaO are compared with their classical version WaO [8] using the WHU-Hi-LongKou
dataset [22] [23]. To conduct an impartial study, all algorithms are executed for 50 times over 100
iterations. An Intel Core i7-8700 processor and a Windows 11 machine were used. All simulations were
conducted on MATLAB 2023b. In WaO [8], each Walrus has dimensions of 20 and 20 walruses were
considered. The dimensions were kept the same for both QbWaO and QtWaO. The number of walruses
taken was 16 for QbWaO and 14 for QtWaO, respectively. For QbWaO, 8 male and female walruses
and 2 young walruses were taken. In QtWaO, 7 male and female walruses and 2 young walruses were
taken. The proposed methods are also compared with Kmeans [3] algorithm using taking the predefined
cluster number as 6.
Various statistical tests like mean and standard deviation are recorded in Table 1 for all three algorithms.
The time required for the convergence of each algorithm is noted in Table 1. From Table 1 and Figure 1
it can be observed that QtWaO takes far lesser time to converge than the other two algorithms.
Table 2 contains the optimal AIndex [13] values, automatically detected cluster numbers, 𝐹 score [24]

and 𝐹 ′ score [24] are presented. The 𝐹 score [24] and 𝐹 ′ score [24] help determine the clustering
quality. QtWaO produces 10 clusters nearest to the classes in the WHU Dataset [22] [23]. The clustered
images, along with the minimized image produced by using BSSV [11] and the ground truth image of
WHU Dataset [22] [23] are presented in Figure 2.
The null hypothesis is evaluated using the One-Way ANOVA test [25], which assesses whether the

results originate from the same probability distribution. The null hypothesis is rejected if the 𝑝 value
is below the 1% significance level, indicating support for the alternative hypothesis. The results are



Figure 1: Convergence curve for WaO [8], QbWaO, and QtWaO results for WHU Dataset [22] [23]

Table 2
Optimal clusters detected (NC) and best fitness values using Adjusted Rand Index (AIndex) [13] and 𝐹 and 𝐹 ′

scores [24] for WaO [8], QbWaO, and QtWaO, evaluated on the WHU Dataset [22] [23]

No Algorithm AIndex [13] NC F Score 𝐹
′
Score

1 WaO [8] 0.3883 4 0.3669 46.4787
2 QbWaO 0.4680 7 0.5492 68.5959
3 QtWaO 0.4882 10 0.9467 84.1882

Table 3
One-Way ANOVA Test [25] on WaO [8], QbWaO, and QtWaO results for WHU Dataset [22] [23]

Dataset p-value Significance
WHU Dataset [22] [23] 5.8623e-04 Highly Significant

summarized in Table 3. Additionally, Tukey’s post hoc test [25] is conducted. The box plots for both
tests are shown in Figure 3.

Based on the various tests conducted and the parameters evaluated, QtWaO generally outperforms
QbWaO in most cases. Also, the population size and convergence speed of QtWaO are far better than
those of both QbWaO and WaO.

6. Conclusion

Qubit and Qutrit Walrus Optimizer algorithms significantly advance unsupervised clustering for hyper-
spectral imagery. By integrating quantum principles and biological inspirations, QbWaO and QtWaO
effectively address the challenges associated with the slow and premature convergence of the Walrus
Optimizer algorithm. The enhanced exploration phase integrated with the Hadamard gate and band
selection strategies improves clustering performance and ensures the robustness of the algorithms
in high-dimensional spaces. The qutrit version performs better in almost all aspects, producing a
near-optimal number of clusters in less time. Future work could explore enhancements to these quan-
tum algorithms, including implementing more advanced quantum techniques and their application to
various domains requiring sophisticated data clustering solutions. Additionally, parameter reduction
can be implemented in the Walrus Optimizer.
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Figure 2: (a) Ground Truth image of WHU Dataset [22] [23], (b) Resultant image using BSSV [11], (c) Clustered
image using WaO [8], (d) Clustered image using QbWaO, (e) Clustered image using QtWaO with AIndex [13], (f)
results using𝐾-means [3] (cluster number = 6) on WHU Dataset [22] [23]



(a) (b)

Figure 3: (a) One-Way ANOVA test [25], (b) Tukey’s post hoc test [25] - results for WHU Dataset [22] [23]
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