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Abstract
Different diseases show different symptoms on plant leaves due to different reasons. Identifying plant leaf diseases
without specialist expertise is typically challenging like finding region-areas of interest (ROIs) that is disease
affected area on the leaf. The well known unsupervised machineilearningialgorithmsiK-meansiandiFuzzyiC-
Meansi(FCM) approaches based on clustering for plant leaf disease identification and severity evaluation is
considered as a powerful technique to determine the form of illness has afflicted a particular tomato leaf and the
severity. The segmentation technique is used to locate the ROI on a tomatoileaf. The objective of this clustering
is to determine the accuracy of the segmented image of disease-affected leaves. The experiment utilizes images
obtained from the Plant Village Dataset. The two stages of yellow leaf curl virus (YLCV) disease affected area
have been observed. The severity score has been calculated for each type. The optimum cluster number of
different severity level has been investigated based on various cluster validation index. Then different optimal
cluster numbers of different severity levels have been shown by using Calinski and Harabasz index (CH) and
Davies-Bouldin index (DB). The comparative study demonstrates the method’s superiority relative to current
methodologies.
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1. Introduction

A report published by the Food and Agriculture Organization[1] in 2017, found that by 2050 world’s
population will reach 9.7 billion and 11.2 billion by 2100[2] respectively, accordingly as a consequence,
the demand for food production willialsoiincrease to satisfy the required demand. The problem in
reduced crop production due to different environmental issues as well as agricultural concept is also
generated with the increase of demand of food production. Crops produced from agriculture plays a
pivotal role to build a nation’s economy in different ways like food for human-beings and animals as
well as raw materials for industry. A total of four revolutions[3] have occurred in the development of
agriculture since the primitive civilization till today. The last revolution in agriculture has taken place
over the last two decades along with tremendous development of information technology, network
communication and artificial intelligence, thus smart agriculture comes into field, where advanced
modern technologies, the tools and devices are used in farming. Crops and weeds can be harvested
in different ways with the help of robots, drones are used to accurately monitor crop fertilizer and
crop growth levels. In addition, smart agriculture by using information communication technology
and artificial intelligence cyber-physical farm management is also conducted. Hence smart agriculture
is dependent on IoT technologies which are used to protect plant and make proper irrigation and to
improve quality of product, control to ban disease and detection of process etc. Thus IoT is measured as
the mainstay of smart agriculture. All the farming devices and equipment can be connected together
with the technology of IoT[4] to take right decision at the right time in disease detection, irrigation,
fertilizer supply with the help of analytical result of data which are gathered by different sensors[5]
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connected with different cloud services controlled by satellite. Thus, smart agriculture becomes so
important by providing the features like (1) increase the turn up of collected real-time crop data, (2) help
to overseeing and managing farmers from a distance, (3) managing water and other natural resources,
(4) precise assessment of soil and crops and (5) enhancing agricultural output. One of the important
fields of smart agriculture is Precision agriculture which is a new frontier in agriculture that measures
the amount of herbicides and pesticides a plant needs and applies them to that plant according to
actual needs to achieve economic and environmental benefits. Variable rate application technology is a
rapidly expanding precision technology that integrates with systems like global positioning technology,
geographic information systems, and other technologies for seeding, weed and pest control, lime
distribution, and fertilizer application. In a word, the main application of precision agriculture is to
reduce the misuse of fertilizer and pesticides. This concept is actually used in this present work to
measure the severity of tomato disease. The present article is structured asifollows: Section 2 deals
with the problems of smart agriculture. In sectioni3 the relevant researches and suggested methods are
highlighted. The proposed methodology is presentediin section 4. Sectioni5 deals with the analyses.
The conclusion and future work is mentioned in section 6.

2. Problems in smart agriculture

In the 21st century, advanced technologies are being used in agriculture all over the world. In addition,
to environmental and technical issues, some other issues like diverse soil and cropping patterns, digital
divide i.e., unavailability of strong and stable internet connectivity, lack of confidence of farmers in
new advanced technologies, lack of co-ordination between stakeholders which in turn highlights the
issue of not reaching the farmers from different agricultural universities in the same geographical area
at the same time and unreliable data sets respectively.

3. Literature Survey

If the disease attacks the leaves of any tree, the colour and structure of the leaves of that tree will
change. Same things happens with tomato plants. For this reason, various researchers have studied
computer vision and machine learning algorithms for detecting leaf infections at different times of
different plants, classifying diseases and measuring disease severity. This section provides a various
computerivision and machineilearning based techniques used by researchers in plant disease detection
and disease severity measurement. Hong et al.[6] have used tomato for their research and five deep
network architecture of Resnet50, Xception, MobileNet, ShuffleNet, DensenetXception were used for
feature extraction. In their research, recognition accuracy was 83.68% for ShuffleNet and 97.10% for
DensenetXception. Theistudy by Agarwal et al.[7] discussed Convolution Neural Network (CNN) for
tomato leaf disease detectioniand classification. Ashok & Vinod[8] have used Mango Fruits for disease
Detection by deep CNN architecture. Wongsila et al.[9] have used CNN for detection of mangoes
infected with anthracnose. They were able to achieve more than 70% accuracy to isolate the diseased
mango after testing on 364 images. Sabrol & Kumar[10] studied on Adaptive Neuro-Fuzzy Classification
for plant leaf disease detection using GLCM matrix.

Abisha & Jayasree[11] discussed automatic detection andiclassification ofidifferent typesiof brinjal
leaf diseasesiusing Artificial Neural Network (ANN) which shows the improvement of classification
accuracy. Islam et al.[12] showed the method for paddy leaf disease detection, where they have used 4
typesiof diseases and oneihealthy leaficlass of the paddy. Deep learning CNN models was used for their
research and they were able to achieve more than 92.68% accuracy for paddy leaf disease detection.
Nalini et al.[13] have usedik-meansiclusteringimethod for pre-processing and DeepiNeuraliNetwork
(DNN) classificationimodel for the identificationiof paddy leafidisease using plantiimage data. They
have used crow search algorithmi(CSA) to minimize classification error. According to their study, their
proposediDNN-CSA model provides better classificationiaccuracy to a support vector machine with
multiple cross-foldivalidations. In Jayanthi and Shashikumar[14] discussed probabilistic neuralinetwork



(PNN) for cucumber leafidisease detection. They have first used adaptively regularized kernel-based
FCM (ARKFCM) for segmentation, then Hue, Saturation and Value (HSV) Technique and Grey level
co-occurrence matrix (GLCM) technique were used for color feature and texture feature extraction
respectively. Then extracted features were given to PNN for disease detection. Performance of their
proposed method was analysed in terms of accuracy, sensitivity and specificity. RajaKumar et al.[15]
have used ANN for cucumber leaf disease detection. They were able to achieve 98.66. Another study by
Sanga et al.[16] discussed fiveideep learning architecturesinamely Vgg16, Resnet18, Resnet50, Resnet152
andiInceptionV3ifor banana disease detection and they were able to achieve all high accuracies.

Machine learning and deep learning have been recently emphasized in smart agriculture as tools for
disease identification. Methods such as adaptive fuzzy systems and convolutional neural networks are
used in previous works. However, unsupervised clustering for severity evaluation has received little
attention in the literature. This study fills that need by using clustering algorithms and demanding
evaluation metrics to validate the results. Innovative use of clustering indices and an emphasis on
agriculturally-oriented, scalable systems are two important contributions.

4. Present Work

The proposed methodology involves clustering-based image segmentation for disease severity evaluation.
K-means and Fuzzy C-Means algorithms are used to identify affected regions. The methodology includes:

1. Data preprocessing to enhance image quality:
Images are preprocessed to enhance quality and ensure uniformity across the dataset. This includes

resizing, normalization, and noise reduction.
2. Clustering to segment the diseased region.
3. Validation using Calinski-Harabasz and Davies-Bouldin indices to determine optimal clusters.
Comparative analysis with existing benchmarks demonstrates the approach’s effectiveness in identi-

fying disease severity levels which is explained at the end of the section 5.
This work is proceeded up under unsupervised machine learning domain. The proposed method

in this work evaluates the severity of tomato leaf disease without supervision, utilizing K-means and
FCM clustering approach. Clustering is an unsupervised pattern classification method for machine
learning. This clustering method is used as a very important tool in data science, where the input
space can be divided into one or more clusters to identify the natural structure of data within a
dataset[17]. Such an important clustering method is used in image processing, network sensing, pattern
recognition, psychology, computer security, recommendation system, biology, text clustering etc. Hence,
the detection of tomato leaf disease is also implemented by using clustering which is discussed in the
following sections.

4.1. K-Means approach

Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} be a data set in a 𝑑-dimensional Euclidean space R𝑑. Let 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑡}
be the 𝑡 cluster centers. Let 𝑌 = [𝑌𝑖𝑘]𝑛×𝑡, where 𝑌𝑖𝑘 is a binary variable (i.e., 𝑌𝑖𝑘 ∈ {0, 1}) indicating
if the data point 𝑝𝑖 belongs to the 𝑘-th cluster (𝑘 = 1, . . . , 𝑡). The objective function of 𝑘-means is as
follows:

𝐽(𝑌,𝐵) =
𝑛∑︁

𝑖=1

𝑡∑︁
𝑘=1

𝑌𝑖𝑘‖𝑝𝑖 − 𝑏𝑘‖2 (1)

The 𝑘-means algorithm is repeated through essential conditions for minimizing the 𝑘-means objective
function 𝐽(𝑌,𝐵) with updating equations for cluster centers and memberships, respectively, as:

𝑎𝑘 =

∑︀𝑛
𝑖=1 𝑧𝑖𝑘𝑥𝑖𝑗∑︀𝑛
𝑖=1 𝑧𝑖𝑘

(2)



𝑍𝑖𝑘 =

{︃
1, if ‖𝑥𝑖 − 𝑎𝑘‖2 = min1≤𝑘≤𝑐 ‖𝑥𝑖 − 𝑎𝑘‖2

0, otherwise
(3)

where ‖𝑝𝑖 − 𝑏𝑘‖ is the Euclidean distance between the cluster center 𝑏𝑘 and the data point 𝑝𝑖.
A challenging issue in 𝑘-means is that it requires specifying the number of clusters in advance, but

this number is often unknown in practical situations. The superiority of the clusters produced by
the 𝑘-means algorithm depends on the initial cluster centers. This is also a limitation of using this
algorithm. To resolve the issue of finding the number of clusters, cluster validity indices have gained
much attention. Hence, Fuzzy C-Means (FCM) is used here for overlapping datasets.

4.2. FCM approach

FCM makes partition of a finite collection of 𝑛 elements 𝑃 = {𝑃1, . . . , 𝑃𝑛} into a collection of 𝐶 fuzzy
clusters based on certain principles. Given a finite set of data points from affected tomato leaves, the
FCM algorithm produces a list of 𝐶 cluster centers 𝐶 = {𝑐1, . . . , 𝑐𝐶} and a partition matrix:

𝑊 = {𝑤𝑖𝑗 | 𝑤𝑖𝑗 ∈ [0, 1], 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶}

where each element 𝑤𝑖𝑗 indicates the degree to which element 𝑥𝑖 belongs to cluster 𝑐𝑗 .
The goal of FCM is to minimize the following objective function:

𝐽(𝑊,𝐶) =

𝑛∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑤𝑚
𝑖𝑗 ‖𝑥𝑖 − 𝑐𝑗‖2 (4)

where 𝑚 is the hyper-parameter that controls how fuzzy the clustering will be. A higher value of 𝑚
results in fuzzier clusters.

The membership degree 𝑤𝑖𝑗 is calculated as:

𝑤𝑖𝑗 =
1∑︀𝐶

𝑘=1

(︁
‖𝑥𝑖−𝑐𝑗‖
‖𝑥𝑖−𝑐𝑘‖

)︁ 2
𝑚−1

(5)

After determining the number of clusters, cluster validation methodologies are applied. Two types of
cluster justification indices, external and internal[18], are available. In this work, widely used internal
indices such as Sum of Squares Between Clusters (SSB), Sum of Squares Within Clusters (SSW), CH[19],
and DB[20] indices are employed to determine the number of optimal clusters and to analyze the
relationship between optimal clusters and disease severity.

4.3. Sum of Squares within Clusters

In the case of numerical data, the amount of SSW variance[21] can be determined with the help of the
cluster centroid. SSW is used to measure cluster compactness. From the data obtained from various
studies, it is observed that as the number of clusters increases, the value of SSW decreases. The equation
to measure cluster compactness is given below:

SSW =
𝑁∑︁
𝑖=1

‖𝑋𝑖 − 𝐶𝑙𝑖‖
2 (6)

4.4. Sum of Squares between Clusters

SSB is used to measure the degree of separation between clusters. The centroid distance from the mean
vector of all objects is first measured, and this is used to compute the degree of separation between
clusters. It is observed from the data of various studies[21] that as the number of clusters increases, the



value of SSB also increases. The equation to measure the degree of separation between clusters is given
below:

SSB =
𝐾∑︁
𝑖=1

𝑛𝑖‖𝑐𝑖 − 𝑥̄‖2 (7)

4.5. Calinsk-Harabasz (CH) index

The value of CH is measured as the ratio of separation and compactness of the clusters. Cluster quality
is better when the value of the CH index is maximum. SSB’s value should be higher, and the value of
SSW should be lower as the number of clusters increases. The equation to measure the value of this
index is given below:

CH =
SSB/(𝐾 − 1)

SSW/(𝑁 −𝐾)
(8)

4.6. Davie-Bouldin (DB) index

The DB criterion is based on a ratio of within-cluster and between-cluster distances. The equation to
measure the value for this index is as follows:

DB =
SSW
SSB (9)

Hence, by using these aforementioned approaches, the severity of disease on tomato leaves is
identified, and the corresponding results and analysis are mentioned in the following section.

5. Result and Analysis

In order to measure tomato plant leaf disease severity, it is needed a large,iverifiedidataset ofiimages of
healthy andidiseased tomato leaves. In this work, images of diseases of Tomato leaves have been taken
from PlantVillage dataset[22]. There are 16,012 tomato leaves images in this dataset. The size of all the
images is 256×256 and format is png. The PlantVillage data set contains a total of 1591 tomato healthy
leaf images; out of 1591 only 50 images are randomly picked. The first six healthy leaf images from
those are shown in Figure 1.

Similarly, 50 leaf images were randomly picked from 329 tomato yellow leaf curl virus (YLCV) leaf
images in PantVillage dataset and stored in YLCV folder. Then from YLCV folder six images were
picked in such a way that each leaf image has less yellow part than green part. These 10 leaf images are
placed in the Grade-I folder which are shown in Figure 2.

The 𝑘-Means clustering algorithm is applied on Sample-1 in Figure 1. A total of 9 cluster images
with values of 𝑘 spanning from 2 to 10 are shown in Figure 4. The FCM clustering algorithm is applied
on Sample-1 in Figure 1. A total of 9 cluster images with values of 𝑘 spanning from 2 to 10 are shown
in Figure 5. The 𝑘-Means clustering algorithm is applied on Sample-1 in Figure 2. A total of 9 cluster
images are shown in Figure 6, with values of 𝑘 spanning from 2 to 10. The FCM clustering algorithm
is applied on Sample-1 in Figure 2. A total of 9 cluster images with values of 𝑘 spanning from 2 to 10
are shown in Figure 7. Figure 3 shows the severity score 𝛿 of each sample image of Grade-I. Equation
(10) is used to measure 𝛿 for each sample image belonging to Grade-I, where 𝑑 indicates the pixel
number only within the regions of a disease-affected leaf, and 𝑛 indicates the total pixel number in that
disease-affected leaf.

𝛿 =
𝑑

𝑛
× 100% (10)



After obtaining the clustered image using K-Means and FCM clustering algorithms, internal validity
index, DB is used to know how good the cluster structure is. Various graphs with optimum cluster
number (k) obtained using DB are shown from Figures 12-17.

𝑆𝑎𝑚𝑝𝑙𝑒− 1 𝑆𝑎𝑚𝑝𝑙𝑒− 2 𝑆𝑎𝑚𝑝𝑙𝑒− 3

𝑆𝑎𝑚𝑝𝑙𝑒− 4 𝑆𝑎𝑚𝑝𝑙𝑒− 5 𝑆𝑎𝑚𝑝𝑙𝑒− 6

Figure 1: Samples of healthy tomato leaf images.

𝑆𝑎𝑚𝑝𝑙𝑒− 1 𝑆𝑎𝑚𝑝𝑙𝑒− 2 𝑆𝑎𝑚𝑝𝑙𝑒− 3

𝑆𝑎𝑚𝑝𝑙𝑒− 4 𝑆𝑎𝑚𝑝𝑙𝑒− 5 𝑆𝑎𝑚𝑝𝑙𝑒− 6

Figure 2: Samples of YLCV disease affected tomato leaf images of Grade-I.

5.1. Relationship between optimal K and disease severity

Clustering is commonly related to optimization problems by considering the optimization criteria to
assess the class of clustering which belong to the internal validity index and related to static number of
k clusters. Determining the optimal clusters number in a dataset is a very important task in partition
clustering such as K-Means. SSW method is used to measure the compactness of a cluster. The smaller
value of SSW indicates better quality in that cluster. Various experiments have shown that the value of
SSW decreases as the clusters number increases. On the other side, SSB method is used to measure the
separation between clusters. CH index is used to measure the best possible separation and compactness
values between clusters. From Equation (8), it is easily understood that the worth of CH index increases



when the value of SSB increases and the value of SSW decreases. So it can be said that with high
separation the worth of CH index is maximum due to less error of compactness. The highest value
of this CH index indicates the best clustering. On the other hand the value of DB index is shown in
Equation (9). 50 Healthy leaves, 50 Grade-I diseased leaves, and 50 Grade-II diseased leaves (total 150
leaves) were used for generating CH index values as well as for DB index and then scatter diagrams are
plotted in Figure 15 and Figure 16 respectively.

𝑆𝑎𝑚𝑝𝑙𝑒− 1 𝑆𝑎𝑚𝑝𝑙𝑒− 2 𝑆𝑎𝑚𝑝𝑙𝑒− 3

𝑆𝑎𝑚𝑝𝑙𝑒− 4 𝑆𝑎𝑚𝑝𝑙𝑒− 5 𝑆𝑎𝑚𝑝𝑙𝑒− 6

Figure 3: Samples of YLCV disease affected images of tomato leaves of Grade-II.

𝛿 = 44.32% 𝛿 = 11.96% 𝛿 = 46.27%

𝛿 = 71.93% 𝛿 = 32.98% 𝛿 = 41.39%

𝛿 = 36.17% 𝛿 = 27.51% 𝛿 = 45.74%

Figure 4: Severity score 𝛿 of images of tomato leaves affected by disease of Grade-I.



𝛿 = 51.92% 𝛿 = 42.37% 𝛿 = 63.40%

𝛿 = 49.20% 𝛿 = 37.95% 𝛿 = 52.31%

𝛿 = 42.54% 𝛿 = 52.63% 𝛿 = 47.55%

Figure 5: Severity score 𝛿 of images of tomato leaves affected by disease of Grade-II.

𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 6: K-Means Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 1.

Figure 15 shows the scatter plot of the CH index. The CH index value was measured on images of
50 healthy leaves. A histogram of healthy leaves is plotted in Figure 17, where optimal k values along
X-axis and the frequency of optimal values of k along Y-axis are shown respectively. Similarly, two
more histogram plots are shown with Grade I and Grade II diseased leaves, in Figure 17.



𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 7: FCM Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 1.

𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 8: K-Means Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 2.

𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 9: FCM Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 2.



𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 10: K-Means Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 3.

𝜅 = 02 𝜅 = 03 𝜅 = 04 𝜅 = 05

𝜅 = 06 𝜅 = 07 𝜅 = 08 𝜅 = 09

Figure 11: FCM Cluster images of different value of 𝜅 of 𝑆𝑎𝑚𝑝𝑙𝑒− 1 of Figure 3.

𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 3 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 3 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 3

Figure 12: Samples of healthy tomato leaf images with DB index and optimum cluster number (𝜅*).

5.2. Comparative Analysis

Below is a table presenting the comparative analysis between the proposed methodology and existing
methods.

Key findings include:
• Optimal clustering results with an effective segmentation of diseased regions.



𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 8 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 8 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 10

Figure 13: Samples of healthy tomato leaf images with CH index and optimum cluster number (𝜅*).

𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 3 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 2 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 3

Figure 14: Samples of YLCV Grade-I tomato leaf images with DB index and optimum cluster number
(𝜅*).

𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 4 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 4 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 6

Figure 15: Samples of YLCV Grade-I tomato leaf images with CH index and optimum cluster number
(𝜅*).

𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 2 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 3 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 2

Figure 16: Samples of YLCV Grade-II tomato leaf images with DB index and optimum cluster number
(𝜅*).

• Comparative analysis highlights superior performance over existing methods.



𝑆𝑎𝑚𝑝𝑙𝑒− 1, 𝜅* = 2 𝑆𝑎𝑚𝑝𝑙𝑒− 2, 𝜅* = 3 𝑆𝑎𝑚𝑝𝑙𝑒− 3, 𝜅* = 7

Figure 17: Samples of YLCV Grade-II tomato leaf images with CH index and optimum cluster number
(𝜅*).

Table 1
Comparative Analysis

Criterion Proposed Methodology (K-Means
& FCM)

Existing Methods

Accuracy of Disease De-
tection

Focus on severity evaluation. Limited focus on severity evaluation.

Robustness to Data Vari-
ability

FCM handles overlapping data well,
providing soft clustering.

Threshold-based methods are sensitive
to image noise and variability.

Computational Com-
plexity

K-Means: Computationally efficient
but sensitive to centroid initialization.
FCM: Handles complex data but is
more resource-intensive.

Deep learning models require high
computational power and large
datasets for training.

Validation Metrics Uses Calinski-Harabasz (CH) and
Davies-Bouldin (DB) indices.
CH: Higher scores indicate better clus-
tering.
DB: Lower scores indicate compact,
well-separated clusters.

Rarely report cluster validation met-
rics, focusing instead on model accu-
racy metrics.

Applicability in
Resource-Limited
Settings

Requires no labeled data.
Suitable for low-resource environ-
ments.

Demands extensive labeled datasets
and high-performance computational
systems.

6. Conclusion and future work

This work illustrates the usefulness of unsupervised machine learning methods, particularly K-means
and Fuzzy C-Means (FCM), to determine disease severity in tomato leaves. The suggested method
utilizes clustering-based image segmentation and validates the outcomes through Calinski-Harabasz
and Davies-Bouldin indices, resulting in high accuracy in segmenting diseased areas. The compara-
tive analysis demonstrates its superior effectiveness compared to existing approaches, especially in
resource-constrained environments. These findings confirm the methodology’s potential for practi-
cal applications in smart agriculture. Subsequent study will concentrate on bringing together this
methodology with Internet of Things (IoT) devices for continuous monitoring and decision-making
in agriculture. Furthermore, overcoming limitations such as dependence on high-quality datasets and
exploring its applicability to additional crops and diseases would improve its robustness and scalability.
These innovations promise to enhance the accessibility and utility of precision agriculture, thereby
largely contributing to sustainable farming techniques.

Declaration on Generative AI
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