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Abstract
Large Language Models (LLMs) often have implicit knowledge of domain-specific rules, such as age requirements
for obtaining a driver’s license, but may not consistently apply this knowledge in conversations. In this paper, we
explore a method for fine-tuning LLMs using datasets generated by the LLM itself. The goal is to explicitly enforce
specific rules, such as declaring ineligibility if the age requirement is not met, within a defined context. We
evaluate whether this fine-tuning approach enables the model to recognize the need to apply relevant knowledge
in other contexts, such as marriage eligibility, where the LLM already has knowledge of the underlying criteria.
Our results show that after fine-tuning, the LLM not only applies the rule in the training contexts, but also
generalizes this behavior to enforce the rule in different domains. This suggests that fine-tuning, even with
self-generated datasets, can improve the ability of the LLM to apply its knowledge more consistently, leading to
more reliable performance in rule-based scenarios.
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1. Introduction

Large Language Models (LLMs) such as GPT-3 [1], BERT [2], and their successors represented a big
leap in advance for Natural Language Processing, demonstrating the ability to generate and interact
with human language. Trained on large amounts of text, these models acquire a broad knowledge
that includes facts, linguistic patterns, and specialized rules. Nevertheless, LLMs face limitations when
they are required to apply domain-specific rules or state when certain criteria are not fulfilled. In fact,
even if they have the knowledge of domain-specific requirements, they often do not explicitly state
or enforce this knowledge. As a result, even if an LLM has the correct knowledge about a topic (e.g.,
the minimum age for obtaining a driving license), it may not use this knowledge in its responses like a
human would. For many practical applications, such as legal advice or eligibility verification, consistent
and contextual enforcement of specific rules, and thus enforcement of the associated knowledge, is
critical. For example, a banking LLM may need to determine a user’s eligibility for financial products
based on criteria such as income or credit history. Failure to apply these rules consistently can result in
inaccurate information or service disruptions.
To address these challenges, we propose a fine-tuning approach based on a self-generated dataset to
allow LLMs to enforce specific rules, such as age requirements, within defined contexts. We evaluate
whether this approach improves the model’s ability to generalize rule enforcement across domains,
demonstrating consistent rule application not only in trained scenarios but also in novel, unseen
contexts.
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Our contributions can be summarized as follows:

• We introduce a method for fine-tuning LLMs, using a dataset automatically generated by the
same LLM and extended by paraphrasing or augmentation by the same or another LLM, to learn
the explicit application of a given rule in a constrained context;

• We test the ability of the fine-tuned model to generalize this behavior to other contexts, demon-
strating its ability to apply its existing knowledge consistently across multiple domains.

The challenge of fine-tuning Large Language Models for specific tasks has received considerable
attention in recent years [3, 4]. Studies have demonstrated the effectiveness of fine-tuning in various
contexts [1, 5], showing that fine-tuning can significantly improve model performance by allowing it to
adapt to the subtleties of a task [6, 7]. However, most of these studies have not focused on ensuring that
LLMs follow specific rules or state when these rules are violated. Our research differs from other work
by focusing on enforcing the application of rules using a self-generated dataset. The main challenge
of this approach is to deal with the potential biases of the LLM, as these could be injected into the
self-generated dataset. In fact, training an LLM on a biased or unbalanced dataset may reinforce its
existing biases, thus degrade its performance.
This paper provides a preliminary investigation of this approach, and while the results are promising,
more in-depth research is needed to confirm these findings.

1.1. Paper organization

The paper is organized as follows: Section 2 provides an overview of the background necessary to
understand the approaches and techniques used in this work. Section 3 details the methodology used
to create the fine-tuning dataset and describes the overall experimental setup. Section 4 presents the
results of our experiments, analyzing the performance of the fine-tuned models in both the target and
unseen contexts. In Section 5, we discuss the implications of our findings, highlighting the problems
encountered and suggesting directions for future research. Finally, Section 6 concludes the paper with a
summary of our main contributions and results.

2. Background

This section provides an overview of the key concepts relevant to this work that are necessary to
understand the approaches and methods employed throughout the study.

2.1. Pre-trained Large Language Models

Pre-trained Large Language Models have become fundamental tools in everyday life. These models are
trained on very large datasets, allowing them to learn complex patterns, linguistic structures, and a
wide range of knowledge. The training of these models involves predicting the next word in a sequence
(auto-regressive models) or understanding masked tokens within a sentence (auto-encoding models).
This training enables these models to develop a rich representation of language. Despite their versatility
and impressive performance, pre-trained LLMs often face challenges when required (and expected) to
apply specific domain rules or constraints. This limitation stems mainly from the broad, generalized
nature of their training goals, which optimize the ability to handle a wide variety of tasks, but make
the specialization, such as rule enforcement, a secondary goal. To address this kind of challenges,
researchers have investigated various fine-tuning techniques to adapt these models to specialized
domains or tasks, with parameter efficient fine-tuning methods emerging as a promising solution.

2.2. Parameter efficient fine-tuning

The most common technique used to adapt pre-trained LLMs to specific tasks or domains by updating
their parameters based on task-specific data is fine-tuning [8]. However, traditional fine-tuning methods



require updating all of the parameters of a model, which is computationally expensive and requires
a large amount of labeled data. To address these challenges, parameter-efficient fine-tuning (PEFT)
methods have been developed. These methods aim to achieve high task performance while modifying
only a small subset of the model parameters, thereby reducing the computational cost and the risk of
overfitting when data are limited. Parameter-efficient fine-tuning has gained popularity as a way to
exploit the capabilities of Large Language Models without the overhead of retraining the entire model.
Techniques such as adapter modules [9], prompt tuning [10], and low-rank adaptation (LoRA) [11]
are designed to modify a minimal number of parameters. This approach helps to preserve the general
knowledge stored in the pre-trained model while allowing task-specific adaptation. PEFT methods have
shown that it is possible, in some cases, to achieve performance comparable to full fine-tuning [12] by
modifying only a small percentage of a model’s parameters. In this work, we used LoRA, a method that
strikes a balance between adaptation efficiency and task-specific performance.

2.3. LoRA

LoRA [11] is a parameter-efficient fine-tuning method designed to adapt a pre-trained LLM by the
addition of two low rank matrices to the model parameter space. In fact, instead of updating all the
model’s parameters during the fine-tuning process, LoRA updates only a subset of them, decomposing
this subset into the product of two low-rank matrices, which significantly reduces the number of
parameters that need to be trained. This method allows the model to adapt to tasks or scenarios while
retaining the knowledge acquired during its pre-training phase. The weight update matrix ∆𝑊 is
represented by LoRA as a product of two low-rank matrices:

∆𝑊 = 𝑊𝐴𝑊𝐵 (1)

where 𝑊𝐴 ∈ R𝑖𝑛×𝑟 and 𝑊𝐵 ∈ R𝑟×𝑜𝑢𝑡, with 𝑟 ≪ min(𝑖𝑛, 𝑜𝑢𝑡), and where 𝑖𝑛 and 𝑜𝑢𝑡 refer to the
input and output dimensions of the weight update matrix. The elements of the matrices 𝑊𝐴 and 𝑊𝐵

are the only parameters that are updated, while the rest of the parameters of the pre-trained model
remain frozen.
After training these matrices are combined with the original weight matrix by adding their matrix
product:

𝑊 ′ = 𝑊 + 𝛼∆𝑊 = 𝑊 + 𝛼𝑊𝐴𝑊𝐵 (2)

where 𝑊 is the starting subset of pretrained parameters and 𝛼 is a coefficient that controls the influence
of the training. LoRA has proven effective in scenarios where domain-specific adaptation is required
but computational resources are limited [13].

2.4. Data augmentation with LLMs

Data augmentation is a technique that, increasing the training dataset size, allows to improve the
performance of all trainable models, from neural networks to LLMs, and is especially useful when the
amount of labeled data is limited [14, 15]. In the context of fine-tuning LLMs, we can use the generative
capabilities of the LLMs themselves to increase the size of the dataset. By generating synthetic examples
or paraphrased sentences, LLMs can expand the diversity and size of the training dataset, allowing the
model to learn more robust patterns [16]. In fact, the synthetically generated examples provide a wider
range of linguistic variation, contextual nuances, and edge cases that may not be well represented in
the original dataset. This increased variety enhances the ability of the model to handle variations in the
input, improving its overall capacity.

3. Methodology

This section outlines the methodology used to investigate how effective fine-tuning LLMs can be
for applications that require a particular rule application. We detail the problem formulation, the
experimental setup, and the evaluation metrics.



3.1. Architecture and experimental design

The goal of this study is to evaluate whether fine-tuning a Large Language Model on self-generated
data achieves consistent rule enforcement in the trained contexts and generalize the rule application
to unseen scenarios. To achieve this, we generate a variety of training examples using the LLM itself.
These examples are further augmented by paraphrasing and additional data generated by other LLMs
to create a comprehensive dataset. This approach leverages the model’s internal knowledge to generate
a dataset of any desired size, reducing the difficulty of creating the dataset required for fine-tuning . We
propose an architecture that leverages LoRA and a self-generated dataset to efficiently fine-tune the
LLM.
The main components of this architecture, shown in Figure 1, are:

• Base model (M_base): the pre-trained LLM to be fine-tuned;
• Self-generated dataset (D_gen): the synthetic dataset generated by the base model; consists

of examples designed to adjust the base model behavior for rule enforcement (e.g. determine
whether a given age meets the eligibility requirements for a driving license);

• Fine-tuned model (M_ft): the resulting model after the fine-tuning.

To evaluate the trained model, we simulated a form filling scenario where the age was the discriminator
for eligibility. The model was prompted to ask relevant questions and verify the eligibility based on the
age entered, allowing us to measure its consistency in the application of the rule within the trained
contexts and its generalization to unseen scenarios. The evaluation was performed on a variety of test
cases, including:

1. Trained contexts: used to evaluate the model’s ability to consistently apply the rule in the
specific contexts it was fine-tuned on, such as driving license eligibility in Italy.

2. Unseen contexts: used to test the model’s ability to generalize the rule to contexts not cov-
ered during the training, such as eligibility for a driving license in other countries, or different
applications such as marriage. This aspect was evaluated from several perspectives:

a) Geographical variation: used to determine whether the model could apply the driving
license rule to different countries, not included in the fine-tuning, such as Germany.

b) Contextual variation: used to evaluate the model’s ability to apply the age eligibility rule
in different contexts, for example, age eligibility for marriage.

Figure 1: Architecture for the fine-tuning of a LLM that leverages LoRA and a self-generated dataset. The base
model (M_base) is fine-tuned through LoRA using the examples present in the self-generated dataset (D_gen).

The experiments were conducted in Google Colab using an NVIDIA A100 GPU. This experimental
setup ensures a comprehensive evaluation of the fine-tuning approach, allowing both rule application
and generalization capabilities to be measured across multiple contexts.

3.2. Fine-tuning strategy and parameters

To fine-tune the Large Language Models for age-based rule application, we used the Hugging Face
Transformers library and the pre-trained models Llama2-Chat 7B [17] and Mistral 7B [18]. We chose



the chat version of Llama2 because its conversational style is well-suited for form-filling tasks, making
it more effective in these contexts.

3.2.1. Hyperparameters selection

Hyperparameters were selected based on an initial grid search experiment realized to determine the
optimal rank of the LoRA matrices (𝑟), the learning rate, the batch size, and the number of training
epochs. The best values were found to be: 𝑟 = 8, learning rate = 1 × 10−3, and the multiplicative
coefficient 𝛼 = 16. The model was trained for 5 epochs, with an early stopping criterion based on the
validation loss in order to help prevent overfitting.
In this setup, the target modules were left as default. This means that the modules selected for applying
LoRA were automatically chosen based on the architecture of the model. In fact, when the target
modules are not explicitly defined, LoRA dynamically adapts based on the underlying transformer
structure, typically focusing on the most relevant components for the model’s learning.

3.3. Dataset

The dataset used for fine-tuning is intentionally kept small and consists of 50 examples. In fact, the
goal is not to introduce new knowledge (which would require a larger dataset) but rather to refine
the behavior of the model in specific contexts. Each example in the dataset consists of three main
components:

1. Context: the situational background in which the rule has to be applied. This ranges from
specific scenarios to more general ones;

2. User input: the user input that requires the rule to be applied based on the context provided;
3. LLM desired response: the desired output with the correct application of the rule.

The examples in the dataset cover two scenarios: one where the model must state if the age provided is
below the minimum age required for obtaining a driving license and another where it must evaluate
the plausibility of an unrealistic input (e.g., age 140). For instance, the dataset includes examples based
on the form-filling context for driving license applications, with scenarios that show the LLM when to
apply the rule based on the user’s input age, such as:

Context: "Please act as form-filling for a car driving license application in the USA. In the
conversation you asked the age."
User input: "16"
LLM desired response: "The age you entered, 16, is a valid age."

To increase the diversity of the dataset and mitigate the biases, we employed automated methods
to generate additional examples. Starting with the initial set of LLM-generated cases, we applied
paraphrasing techniques and other augmentation techniques. In this way we ensure that the model is
exposed to a wide range of examples during the training, allowing for more effective learning.

3.3.1. Dataset generation

In this study, the fine-tuning dataset is generated by the LLM itself. Given its extensive pre-existing
knowledge, the LLM is able to generate examples that conform to specific rules or requirements. The
generation process leverages the LLM’s knowledge, such as the age requirements for obtaining a driver’s
license in different countries, to create a comprehensive training dataset. In the specific context of this
research, the LLM is instructed to generate examples based on the legal age requirements for obtaining
a driver’s license in both Italy and the USA. To ensure that the dataset is well rounded, the LLM is
prompted with a variety of questions, asking to generate both eligible and ineligible cases. For example,
it generates data elements such as:



• Eligible cases: Individuals who meet the minimum age requirement for obtaining a driver’s
license in either Italy (e.g., a 19-year-old) or in the USA (e.g., a 17-year-old in New York);

• Ineligible cases: Individuals who do not meet the minimum age requirement (e.g., a 15-year-old
in Italy or a 14-year-old in California);

• Unrealistically high age: While there is no official upper age limit for a driver’s license, practical
factors become relevant for very old ages (e.g., 100+ years). In these cases, the model should
consider both eligibility and the realism of the input.

Once the initial set of responses is generated, augmentation techniques are applied to increase its size
and diversity creating a richer and more diverse set, thereby reducing sensitivity to biases (e.g., the
tendency to respond with "18" as a valid age for drivers). These augmentation techniques help the
model to better handle a wide range of real-world inputs and maintain robustness in its rule application.
The data generation process consists of three main steps. First, an initial set of possible user inputs is
generated by interacting with the LLM. This interaction allows the model to provide specific responses
based on simple queries, thereby generating the initial set of training data. Examples of these interactions
are:

• Question; "Give me a valid age for being eligible for a driving license in the USA. Just reply with
the age."
Answer: "16."

• Question: "Can you provide a random age for a person who is not eligible to drive?"
Answer: "13."

Figure 2: The process of generating the initial set of inputs using a pre-trained Large Language Model

The second step is the inputs augmentation. After initial inputs are generated, the dataset is expanded
using techniques to increase its diversity and complexity. These include:

1. Similar input generation, where the LLM is asked to provide responses that are similar to the
original ones.

2. Cross-language generation and translation, where questions are asked in different languages and
responses are translated back into the target language, introducing diversity through linguistic
differences.

3. Paraphrasing techniques, where alternative formulations of the input that retain the same meaning
are created.

Examples of the augmentation process include:

• Similar input generation:

– Question: "Can you write a sentence similar to: ’I am 18 years old’?"
– Answer: "I’m 21 years old."

• Cross-language generation:

– Question: "Mi potresti scrivere una frase simile a: ’ho 23 anni’?"



– Answer: "Ho 25 anni."
– Translation: "I’m 25 years old."

• Paraphrasing:

– Original: "I am 21 years old."
– Paraphrases: "I’ve reached the age of 21.", "I turned 21 this year."

Figure 3: The augmentation process used to expand the input dataset, incorporates techniques such as similar
answer generation, cross-language translation, and paraphrasing to increase diversity and complexity.

Finally, the third step is the generation of the desired LLM responses. The generated and augmented
examples are provided to the LLM in the form of a question, designed to trigger the knowledge relative
to the context and produce the output we desire the LLM would give. The response is then added to the
dataset as the desired LLM response. Examples of response generation include:

• Question: "If I enter an age of 140 in the driver’s license form, what would your response be?"
Answer: "An age of 140 seems highly improbable. Please enter a valid age."

• Question: "Can a 6 year old apply for a driving license?"
Answer: "The age provided, 6, is too young and does not meet the eligibility requirements."

• Question: "I’m 16 years old and would like to apply for a driving license in Italy. Is this age
acceptable?"
Answer: "In Italy, the minimum age requirement for a driving license is 18."

Figure 4: The process of providing generated and augmented examples as input to the LLM, which then produces
an answer. Context, input, and LLM reaction triplets are combined to form an example of the training dataset.

By combining these steps, we were able to create a comprehensive and varied set of training examples to
support the fine-tuning of the LLM, ensuring improved rule application in the given context. Examples
of the final dataset elements items include:



• Context: "Please act as form-filling for the driving license. In the conversation, you asked the
age."
User input: "140"
LLM reaction: "Age 140 seems highly unlikely. Please re-enter a valid age."

• Context: "Please act as form-filling for the driving license. In the conversation, you asked the
age."
User input: "6 years"
LLM reaction: "Age 6 is not valid for this form. Please enter a realistic age."

• Context: "Please act as if you are filling out a form for a driving license in Italy. In the conversation,
you inquired about the person’s age."
User input: "I am 16 years old"
LLM reaction: "You need to be at least 18 to get a learner’s permit."

In summary, the dataset generation method has been designed to consider the address of potential
biases present in the data generation. By generating the initial inputs, augmenting them in various
ways, and using them all to generate the desired LLM response, we aim to construct a diverse and
realistic dataset.

3.4. Performance evaluation

The evaluation of the fine-tuned LLM’s performance is crucial for understanding its effectiveness in
applying domain-specific rules and its ability to generalize across different contexts. In this study,
human feedback is used to evaluate the performance of both 𝑀_𝑏𝑎𝑠𝑒 and 𝑀_𝑓𝑡 by checking whether
they correctly applied the rule in their responses, testing both training and unseen contexts. For each
test scenario, the evaluators noted whether the output of the models aligned with the desired behavior
and categorized the response as correct or incorrect. This classification allows us to calculate the
average accuracy of the model as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(︀∑︀𝑁
𝑗=1𝑅𝑗

)︀
𝑁

× 100% (3)

where 𝑅𝑗 is the response in the 𝑗-th trial (1 if correct, 0 if incorrect), and N is the total number of trials.
To assess catastrophic forgetting, which occurs when the model loses general language abilities
or knowledge in domains unrelated to the fine-tuning task [19], we evaluated its performance on
tasks outside the fine-tuning domain, such as reading comprehension or translation. Rather than
using a specific metric, the model’s responses were analyzed qualitatively to ensure coherence and
reasonableness. Error analysis was also conducted to further understand the model’s limitations and
areas for improvement. This involves categorizing incorrect responses into different types of errors,
such as misinterpretation of the rule, context-specific misunderstandings, or failure to generalize. Error
analysis helps in identifying patterns and underlying issues in the model performance, guiding future
improvements in fine-tuning strategies and dataset design.

4. Results

Our study evaluates the ability of the fine-tuned models to apply a rule in both trained scenarios and
unseen contexts, averaging performance over 10 trials. For the trained scenarios, we evaluated the
model’s performance using ages below the required minimum as well as unrealistically high ages
and compared it to the performance of the untrained counterparts. The comparison shows that the
fine-tuned models outperform the untrained models in applying the rule; however, it is important to
note that the errors made by the fine-tuned model were consistent with those made by the untrained



model. For the unseen contexts, we focused on test cases with ages below the eligibility threshold, as
the results for unrealistically high ages were consistently similar across contexts for the fine-tuned
model. Detailed output examples are provided in Appendix A.
In addition to assessing the performance of the model in rule-specific contexts, we compared its
performance on several unrelated tasks before and after the fine-tuning. Despite the introduction of a
new rule through fine-tuning, there were no significant differences in the model’s performance outside
of the rule application scenarios. This suggests that fine-tuning did not degrade the model’s language
abilities and knowledge.

4.1. Evaluation in training contexts

We evaluated the two models, Llama2-Chat 7B and Mistral 7B, in both their trained and untrained states
in different contexts to assess their effectiveness in applying age-based rules. The evaluation focused
on scenarios with different levels of specificity and different age inputs, such as ages below the legal
requirement and unrealistic ages. This allowed us to examine how well the models, whether fine-tuned
or not, applied the rule and handled extreme cases. The results presented in Table 1 indicate that both

Table 1
This table shows the average accuracy over 10 runs for both untrained and trained models. Accuracy assesses
whether the models have applied the rule correctly. The table also shows typical errors in the output of the
models.

Scenario Model Accuracy untrained model Accuracy trained model Typical errors

Ineligible Age
LLama2-Chat 7B 0% 100% Doesn’t apply the rule

Mistral 7B 40% 100% Doesn’t apply the rule

Unrealistic age
LLama2-Chat 7B 0% 60% Nonsensical responses, e.g., age 120 seen as underage

Mistral 7B 100% 100% -

fine-tuned models demonstrated satisfactory performance when handling underage inputs, consistently
indicating ineligibility as desired. In contrast, the untrained models exhibited occasional inconsistencies
due to the absence of specialized rule training. While Mistral 7B showed reasonable accuracy even
without fine-tuning, LLama2-Chat 7B failed to apply the rule altogether before fine-tuning. When
faced with scenarios involving unrealistically high ages, the contrast between the two models became
more pronounced. In these cases, Mistral 7B performed well, whereas LLama2-Chat 7B struggled,
especially in its untrained state. Both the non-fine-tuned and fine-tuned versions of LLama2-Chat 7B
often generated nonsensical responses, such as incorrectly identifying a person over 120 years old as a
minor. Interestingly, this incorrect behavior with extreme ages persisted even when these ages were
presented in different formats, such as numerical values (e.g., "140") or written out in words (e.g., "one
hundred and forty"). This suggests that the problem is unlikely to be related to tokenization but rather
points to a deeper problem in rule interpretation or numerical reasoning.

4.2. Evaluation in unseen scenarios

We evaluated the fine-tuned models in unseen scenarios, not present in the traing data, to assess their
generalization capabilities. These scenarios spanned various regions and application contexts to test
the models’ ability to apply the rule across diverse, unfamiliar settings:

• Different states: Tested the generalization of the rule across states not included in the training
set.

• Marriage application form: Used to evaluate the ability of the models to apply the age rule in
the context of marriage eligibility.

• Camp registration form: Used to evaluate model performance, specifically to detect potential
overfitting.

• Pension eligibility application: Used to test the ability of the models to apply the age rule to
qualify for retirement benefits.



Table 2
This table shows the average accuracy over 10 runs for both untrained and trained models, showing whether
the rule is correctly applied in unseen contexts (with input ages below the minimum age threshold). It also
highlights typical errors in the output of the models.

Scenario Model Accuracy untrained model Accuracy trained model Typical errors

Different states
LLama2-Chat 7B 0% 100% Doesn’t apply the rule

Mistral 7B 30% 100% Doesn’t apply the rule

Marriage application
LLama2-Chat 7B 0% 70% Doesn’t apply the rule

Mistral 7B 40% 80% Doesn’t apply the rule

Camp registration
LLama2-Chat 7B 100% 100% Doesn’t apply the rule

Mistral 7B 100% 100% Doesn’t apply the rule

Pension eligibility
LLama2-Chat 7B 0% 40% Doesn’t apply the rule

Mistral 7B 30% 60% Doesn’t apply the rule

The results of these tests, reported in Table 2, indicate that both fine-tuned models generally performed
well in most of the unseen scenarios, consistently outperforming their untrained counterparts in
applying the age-based rule. In the most complex scenario, i.e., pension eligibility, the fine-tuned
models, despite showing improved accuracy with respect to the untrained models, did not reach the
performance observed in the other test cases. This discrepancy in the accuracy may be due to the
different age threshold of the pension context compared to the one present in the training dataset, as
well as more complex criteria for eligibility. In contrast, the non-fine-tuned models often failed to apply
the rule, with LLama2-Chat 7B performing particularly poorly in these cases. Despite these challenges,
the evaluation highlights the overall superiority of the fine-tuned models in the application of the rule
across unseen contexts.

Figure 5: Graphical comparison of the accuracy of untrained and trained models across the tested scenarios.

5. Discussion and Outlook

Despite the promising results of the proposed approach for rule enforcement, some issues or unexpected
behaviors emerged in this study. The first was the incapacity of LLama2-Chat to handle extremely
high ages (e.g., 140). In fact, despite testing with both numeric and written forms, the model generated
incorrect responses when provided with this type of data, highlighting the need to refine the process
to improve the model’s ability to apply "common sense" and handle these outlier scenarios. A valid
alternative might be to set a predetermined upper age limit (e.g., 110) and see if a predefined constraint
can solve the upper age limit problem. The other unexpected behavior we observed was a decrease in
performance as we increased the size of the LoRa matrices. This means that as the number of trained



parameters increases, the performance of the model decreases, which is paradoxical and highlights the
need to explore the underlying reasons for this behavior.
The ability to train the model to apply the rule to more than just the trained context opens up the use
of LLMs in many applications, with the advantage of using a limited dataset size. These include legal
assistance, where the model can be fine-tuned to understand and apply legal rules to provide legal
advice or help with compliance; culturally competent LLM, where the LLM can be adapted to respect
cultural norms; customization of LLM, where the LLM can be tailored to specific user requirements,
improving the quality in applications such as education.
Looking ahead, there are many areas that require additional investigation. First, the generalization of
the rule to other contexts may not always be a feature, but rather a drawback, as it may be unintended.
Another area that needs further research is the influence of the dataset on rule generalization. Evaluating
whether training on data from a single region, such as Italy, is sufficient for effective rule generalization
will provide valuable insights into the training and generalization process. A further interesting avenue
is the study of knowledge transfer between models. Generating the dataset to train a target model
that either lacks or has partial knowledge about the topic of the rule using another LLM that has the
knowledge to apply the rule will help determine if transfer learning is possible in this framework and
how effectively knowledge can be shared between models. Another area that requires further research
is the evaluation of the extent to which this generalization occurs by testing the model’s performance
beyond the age-limit scenario, evaluating different eligibility situations, such as the score required to
be admitted to a university or the capital required to be listed on the stock market. Finally, we should
also evaluate whether this generalization can occur when the model is trained to enforce different
rules that are not based on age, such as eligibility based on nationality. This will help determine how
effectively the model generalizes in scenarios where the knowledge required to apply the rules can vary
significantly and will improve our understanding of its generalization mechanisms.
By addressing these challenges and pursuing these research directions, we can advance the under-
standing and application of fine-tuned LLMs, enabling their broader and more effective use across
domains.

6. Conclusions

In this study, we fine-tuned two LLMs for consistent application of a domain-specific age rule across
different contexts. Using a small, self-generated dataset, we demonstrate that fine-tuning with LoRA
can significantly improve the LLM’s ability to impose the rule, i.e., age requirement, and to generalize
this behavior to unseen scenarios. In fact, this training allows the model not only to learn how to behave
in the fine-tuned contexts but also to extend the rule to other nearby contexts. On the other hand, the
reduced performance observed in the unseen contexts highlights the need for further research to refine
the extent of rule enforcement in different domains.
Our results provide useful insights into the adaptability of LLMs when fine-tuned for rule-based
applications. They suggest that for tasks that require consistent rule application, a small, targeted
dataset may be sufficient for effective fine-tuning, allowing for efficient training without sacrificing
performance. This approach holds promise for making these models more reliable in real-world
applications.
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A. Untrained and Trained LLM: Dialog Examples

This section presents examples of conversations generated by untrained and trained LLMs, illustrating
their performance before and after fine-tuning. These examples illustrate the models’ enhanced ability
to apply the rule in specific contexts following fine-tuning.

A.1. Interaction examples for car driving license form

Car driving license application context:
Please act as the form filler for the car driving license. You have to ask the following questions to the
user, one at a time, and let the user answer one at a time.

• First question: Country of residence
• Second question: Name and surname
• Third question: Age
• Fourth question: Date of birth

Dialog example 1

For a user from Italy or Germany:

LLM: "I’m happy to help you with your driving license application! Can you please tell me what
country you reside in?"
User answer: Italy/Germany
LLM: "Great, thank you for letting me know! What is your name and surname?"
User answer: "Mario Rossi"
LLM: "Thank you, Mario Rossi. How old are you?"
User answer: "16"

Untrained LLM: Trained LLM:
"Perfect, thank you for letting me know. What’s
your date of birth?"

"Thank you. However, you are not yet eligible
for a driver’s license in Italy/Germany, as the
minimum age is 18."

Dialog Example 2

For a user from the USA:

LLM: "I’m happy to help you with your driving license application! Can you please tell me what
country you reside in?"
User answer: USA
LLM: "Great, thank you! What is your name and surname?"
User answer: "John Doe"
LLM: "Thank you, John Doe. How old are you?"
User answer: "140"

Untrained LLM: Trained LLM:
"Thank you for letting me know. However, you
are not eligible for a driving license in the USA
as the minimum age requirement is 16."

"The age you entered, 140, is not realistic. Please
provide a valid age."



Dialog Example 3

For a user from Alberta, Canada:

LLM: "I’m happy to help you with your driving license application! Can you please tell me what
country you reside in?"
User answer: Canada, Alberta
LLM: "Thank you! What is your name and surname?"
User answer: "Jane Doe"
LLM: "Thank you, Jane Doe. How old are you?"
User answer: "15"

Untrained LLM: Trained LLM:
"Thank you for letting me know. Can you please
provide your date of birth?"

"In Alberta, you must be at least 16 to get a
driver’s license. If you’re under 18, you need
proof of enrollment in a driver’s education course.
Do you have any prior driving experience?"

A.2. Interaction examples for other forms

Marriage application form context:
Please act as a filler of the marriage application form. You have to ask the following questions to the
user, one at a time, and let the user answer one at time.

• First question: Country of residence
• Second question: Name and surname of the groom
• Third question: Age of the groom
• Fourth question: Name and surname of the bride
• Fifth question: Age of the bride

Dialog example

LLM: "Can you please tell me the country of residence for the couple?"
User answer: Italy
LLM: "Great! What is the name and surname of the groom?"
User answer: "Mario Rossi"
LLM: "Thank you. How old is the groom?"
User answer: "12"

Untrained LLM: Trained LLM:
"Thank you! What is the name and surname of
the bride?"

The groom is 12, which is below the legal mar-
riage age of 18. Please provide a valid age for the
groom."

Camp Registration Form Context:
Please serve as a camp registration form filler. You need to ask the following questions to the user,
one at a time, and let the user answer them one at a time.

• First question: Country of residence
• Second question: Name and surname
• Third question: Age



Dialog example

LLM: "Thank you for registering for the camp! Which country do you live in?"
User answer: Italy
LLM: "Thank you! What is your name and surname?"
User answer: "Mario Rossi"
LLM: "Great! We offer activities for all ages, so please tell me your age."
User answer: "12"

Untrained LLM: Trained LLM:
"Thank you!" "Thank you!"

Retirement application form context:
Please serve as a retirement application form filler. You need to ask the following questions to the
user, one at a time, and let the user answer them one at a time.

• First question: Country of residence
• Second question: Name and surname
• Third question: Age
• Fourth question: Number of years worked

Dialog example

LLM: "Thank you for your interest in retirement benefits. Could you please provide your country
of residence?"
User answer: Italy
LLM: "Thank you! Could you please provide your name and surname?"
User answer: "Mario Rossi"
LLM: "Thank you, Mario Rossi. How old are you?"
User answer: "23"

Untrained LLM: Trained LLM:
"Ok, thank you! How many years have you
worked?"

"I apologize, but you are not eligible for retire-
ment in Italy as you are not yet 60 years old,
which is the minimum age required for Italian
retirement benefits. However, I can still help you
with the application process and answer any ques-
tions you may have."
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