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Abstract
Music has been recognized as an effective tool that could be beneficial in several applications aimed at increasing
people’s well-being. A personalized music recommender system can suggest playlists based on user’s preferences
and considering induced emotions. Being a subjective task, it is important to define a starting solid and generaliz-
able Music Emotion Recognition (MER) model.
This model can be then refined to be adapted to the user’s specific responses, ensuring a proper interaction
between the recommendation system and its user. In this paper, a MER model relying on a multi-source input,
composed of songs belonging to four publicly available datasets, is presented. The proposed model is based on
EfficientNetB3, designed to provide high performance while being computationally efficient. Moreover, data
splitting, layer modifications, and parameter setting are proposed to reduce the model overfitting.
Our proposal achieves performance comparable with those in the state of the art, providing a robust model to be
adapted to a user’s emotional responses in the definition of a music recommender system.
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1. Introduction

Music can positively affect health and well-being [1]. For example, music therapy is effective in
improving the cognitive functions and the quality of life of people affected by dementia [2]. In fact,
music is a powerful stimulus eliciting emotions and regulating mood, influencing human perception
and behavior [3, 4, 5].

Emotions represent a key factor for the efficacy of applications meant to improve people’s well-being
and in the years researchers have strove to find a way of detecting them in music. This line of research
translated into the field of Music Emotion Recognition (MER), mainly pertaining to the study and design
of computational models to recognize emotions in songs [6].

Emotions in music can be distinguished in perceived, induced, or intended [7, 8]. The perceived
emotion refers to the emotion that a listener identifies in a song, and is dependent from the song
features, e.g., its structure, tempo, and lyrics. Instead, induced (also called felt) emotions are strictly
related to the listener’s own preferences and memories, and thus they are influenced by factors beyond
the music itself. While emotions can be induced according to the listener’s own context, a song can be
composed by an artist to express a specific emotion, i.e., an intended emotion.
In this work we focus on listener-centric emotions, and thus only on the perceived and induced ones.

According to the reported definitions, it can be said that music playlists based on user’s preferences,
memories, and affective states can provide a better set of songs to be recommended to a specific listener.
Ideally, a music recommendation system could automatically learn a user’s emotional state and refine
its recommendations over time and usage.
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However, a first step is required to provide such a custom playlist and consists in classifying a
specific pool of songs by perceived emotions to have a starting point for the subsequent development
of user-centered recommendations.

In this work a Deep Learning (DL) based MER model exploiting a time-frequency representation of
songs is presented. These songs are selected from heterogeneous publicly available datasets, i.e., 4Q
[9, 10], PMEmo [11], Emotion in Music [12], and Bi-Modal Emotion Dataset [13]. Notice that we work
with the emotion labels corresponding to the four quadrants of the Russel’s Circumplex model of affect
[14] and thus in the valence/arousal (V/A) plane.

The paper is organized as follows. Section 2 briefly presents some common MER strategies. Section
3 provides an overview of the used datasets. Section 4 describes the developed processing pipeline,
highlighting the importance of a correct preparation of heterogeneous data (Section 4.1) to feed in the
proposed DL-based MER model (Section 4.2). Section 5 is devoted to the presentation of the results and
their discussion. Finally, conclusions are drawn, and possible developments of the work are provided
(Section 6).

2. Related Work

In this section, representative literature works providing their MER strategies and using the datasets
described in Section 3 are briefly reported. Up to our knowledge, no papers are using all the selected
datasets at once and presenting a clear data preparation step intended to allow a correct use and
comparison of data obtained from different sources as it is done in this study, that is intended to be an
incremental contribution to the body of knowledge of the analyzed topic, providing a good starting
point for a user-centered emotion-based playlist.

Starting from the less recent dataset, i.e., Emotion in Music, a MER strategy is devised to predict the
four emotions in the V/A plane using different classifiers receiving in input (i) 𝐿3-Net or (ii) VGGNet-
based deep audio embeddings [15]. The approach consists of two steps. Firstly, deep audio embeddings
are extracted from each song with one of the two approaches. Secondly, the corresponding emotion
category is classified. The authors evaluate the performances using accuracy, highlighting that the use
of 𝐿3-Net provides better performances compared to the VGGNet-based model. The best performance
on Emotion in Music is achieved with 𝐿3-Net combined with a Multi-Layer Perceptron (MLP) classifier
(72% accuracy). Notice that similar results (71% accuracy) are obtained by combining 𝐿3-Net with a
Support Vector Machine (SVM) or a random forest classifier.

Instead, Malheiro et al. [13], authors of the Bi-Modal Emotion Dataset, exploit audio features such as
rhythm, melody, and timbre, as inputs to an SVM. Using a stratified 10-fold cross validation approach,
they achieve 72.60% accuracy on the four classes corresponding to the four quadrants of the V/A plane.

In recent years, the advent of Convolutional Neural Networks (CNNs) encouraged researchers to
exploit the capabilities of these DL models to capture audio features effectively by treating audio signals
as images. For example, Sarkar et al. [16] use a VGGNet-based architecture, with log-magnitude Mel-
scale spectrograms of 5 s segments as input. This method achieved a performance of 77.82%, marking a
6.10% improvement over the earlier results reported for the Bi-Modal Emotion Dataset by Malheiro et al.
[13].

Considering an approach similar to the one proposed by us, Sung et al. [17] combine the 4Q, Bi-Modal
Emotion Dataset, and PMEmo datasets in a unique dataset. They employ two CNNs with six (CNN-6)
and ten (CNN-10) layers, respectively, taking log Mel-Spectrograms of 60 s audio segments as input.
The songs are processed to ensure they fit within the 60 s constraint by truncating signals lasting more
than 60 s, and zero-padding the shorter ones. The models were evaluated using a stratified k-fold
cross validation approach with k = 5. The CNN-6 model achieved on the four V/A plane quadrants
classification a best micro F1-Score of 60.42%, while the CNN-10 model reached 62.92% on the first fold.



3. Datasets

Considering that the proposed learning model is based on a DL strategy requiring a large number of
data, four datasets, i.e., 4Q [9, 10], PMEmo [11], Emotion in Music [12], and Bi-Modal Emotion Dataset
[13], have been chosen from the literature.

The selection criteria consisted of the online availability of (i) the original audio files (ii) with their
metadata, such as song title and artist, and (iii) the presence of emotional labels according to human
annotators for each audio.

Table 1 summarizes the names of the datasets, the dataset year of publication, and the link to the
available online resources.

Table 1
Summary of the used datasets

Original Name Year Link
4Q 2018 https://mir.dei.uc.pt/downloads.html
PMEmo 2018 https://github.com/HuiZhangDB/PMEmo
Emotion in Music 2013 https://cvml.unige.ch/databases/emoMusic/
Bi-Modal Emotion Dataset 2016 https://mir.dei.uc.pt/downloads.html

Table 2
Conversions of emotional labels

Dataset Original
Labels

A-V- A-V+ A+V- A+V+

PMEmo [0,1] 𝐴 ≤ 0.5, 𝑉 ≤ 0.5 𝐴 ≤ 0.5, 𝑉 > 0.5 𝐴 > 0.5, 𝑉 ≤ 0.5 𝐴 > 0.5, 𝑉 > 0.5
Emotion in
Music

[1,9] 𝐴 ≤ 5, 𝑉 ≤ 5 𝐴 ≤ 5, 𝑉 > 5 𝐴 > 5, 𝑉 ≤ 5 𝐴 > 5, 𝑉 > 5

Bi-Modal
Emotion
Dataset

[-4,4] 𝐴 ≤ 0, 𝑉 ≤ 0 𝐴 ≤ 0, 𝑉 > 0 𝐴 > 0, 𝑉 ≤ 0 𝐴 > 0, 𝑉 > 0

Remind that in this paper the four quadrants of Russel’s Circumplex model of affect [14] are considered.
Thus, besides briefly describing the datasets, the conversions of the provided labels according to the
affect model of interest are reported in Table 2. The letters A and V stand for arousal and valence,
respectively. The minus (-) and plus (+) symbols are used to mark the values as low or high.

4Q is composed by songs collected from AllMusic API. The authors removed duplicate songs as well
as files with missing metadata information. The resulting dataset presents 900 songs (lasting around 30
s), balanced in the four V/A plane quadrants.

The PMEmo has been devised to support MER-based studies requiring large music content libraries.
The authors define an initial pool of songs by accessing the 2016-2017 songs of Bilboard Hot 1000, iTunes
Top 100, and UK Top 40 Singles, resulting in 487, 616, and 226 songs, respectively. Duplicates were
removed, obtaining the final 794 songs (lasting 10-90 s), annotated by at least 10 people with values
between 0 and 1 for both valence and arousal.

The Emotion in Music dataset contains 744 audio signals. These signals last 45 s, having that those
45 random seconds were extracted from the original songs. These songs were selected from an initial
set of 1000 songs taken from the Free Music Archive (https://freemusicarchive.org/). For each audio
clip, metadata and both continuous and static annotations are available. In this study, only the latter
annotations on the whole song are considered with values between 1 and 9 for both valence and arousal.

The Bi-Modal Emotion Dataset collects 200 songs (lasting 30 s). The annotation of the dataset was
performed by 39 people assigning values between -4 and 4 to valence and arousal. To improve the
consistency of the ground truth, the songs with a standard deviation above 1.2 were excluded. As a
result, the final audio dataset contains 162 audio clips.

https://mir.dei.uc.pt/downloads.html
https://github.com/HuiZhangDB/PMEmo
https://cvml.unige.ch/databases/emoMusic/
https://mir.dei.uc.pt/downloads.html
https://freemusicarchive.org/


4. Proposed Processing Pipeline

In this section the proposed processing pipeline depicted in Figure 1 is described. Data preparation is
required to provide a correct comparison of audio signals coming from different datasets. Moreover,
data are converted into 300x300x3 pixels time-frequency images (i.e., Mel-Spectrograms) to provide a
correct input for our EfficientNetB3 [18] based DL MER model. The model is then introduced, reporting
details on the architecture and the training process.

Figure 1: Proposed processing pipeline.

4.1. Data Preparation

The 2600 songs resulting from the previously described dataset selection, present different characteristics
in terms of duration and signal acquisition.

Audio clips lasting 24 s are extracted from each song, wanting to maintain as much data as possible,
while ensuring a sufficient time span to elicit emotions. In fact, a listener’s emotion seems to stabilize in
around 15 s from the song start [11]. Given this observation, the central part of the signal is extracted
for those songs lasting more than 24 s to include part of the stabilization phase. Songs lasting less than
24 s are removed.

Secondly, a song selection is made to ensure a balanced distribution of the audios of each dataset
in the four quadrants of the V/A plane. In the case of unbalanced distributions, the data placed in the
extreme corners are selected from each of the quadrants of the V/A plane, i.e., as far as possible from the
origin and axes. A graphical representation of this selection process is shown in Figure 2 for PMEmo,
where the non-selected data include also those that were eliminated based on the criteria of the audio
length.

Therefore, the final merged dataset of 1637 audio signals is composed of all the 4Q and Bi-Modal
Emotion Dataset, and 232 PMEmo and 346 Emotion in Music data.

All the audio signals are then downsampled to 22050 Hz, which is the lowest sampling rate among
the four datasets. An anti-aliasing filter is introduced to avoid distortions. Volume normalization is
not performed, considering that the volume influences the subjective perception of the song. Mel-
Spectrograms are generated from the entire 24 s segments and converted to decibel units as a form
of normalization. In fact, this conversion is performed by considering the maximum value among
the spectrograms of each dataset and using this value as the reference maximum. This method is
chosen to preserve the unique characteristics of individual songs across different datasets. Finally, the
Mel-Spectrograms are saved with an image size of 300x300x3 pixels to be correctly used as inputs to
our EfficientNetB3-based DL MER model. The use of time-frequency images is intended to understand
if the proposed model can learn morphological characteristics of the songs bounded to the annotated
emotion. Figure 3 provides examples of the generated Mel-Spectrograms for each V/A quadrant using
the songs of 4Q, i.e., Little Saint Nick by The Beach Boys (A+V+), Only Two Can Play by High Contrast
(A+V-), The Christmas Song by Nat King Cole (A-V-), and The Garden by Vern Gosdin (A-V+).

The obtained images are divided into train (90%) and test (10%) sets. Notice that the division is
performed by balancing the data in terms of class and dataset. The resulting distribution in terms of
classes and datasets is depicted in Figure 4.



Figure 2: Distribution of songs in the V/A plane for PMEmo.

Moreover, one of the possible variations in the signal morphology can be due to the difference in
genre. In fact, songs in the same genre tend to be composed with some recurrent structures. Therefore,
a balancing in terms of genre in the train and test set division is also introduced for Emotion in Music,
which is the only dataset presenting a one-on-one association of songs and genres.

4.2. Proposed MER Model

The proposed MER model is based on the CNN EfficientNetB3 [19]. This choice is due to different factors.
The network works with images, which we wanted to use to understand if an initial DL model

could correctly predict emotions by exploiting time-frequency information characterizing the audio
signals. Moreover, EfficientNetB3, as well as other EfficientNet variations, is designed to provide high
performance while being computationally efficient, i.e., requiring fewer parameters and computational
resources compared to other architectures such as ResNet. This is especially true considering that this
architecture exploits a compound scaling. In fact, the network depth (i.e., number of layers), width (i.e.,
number of channels in each layer), and input image resolution are scaled uniformly.

Another choice-driving characteristic is represented by the fact that the network is scaled from the
baseline EfficientNetB0, which is optimized using neural architecture search.

Moreover, the network processes 300x300x3 pixels input images through 24 layers, with a structure
comprising an initial stem, seven Mobile Inverted Bottleneck (MBConv) blocks, and a final fully
connected layer. The MBConv blocks are crucial components of the network, characterized by (i) a
depthwise convolution, reducing computational costs by processing channels independently, (ii) a
pointwise convolution, increasing model capacity while maintaining computational efficiency, (iii)
a squeeze-and-excitation module capturing channel-wise dependencies by computing statistics and



Figure 3: Example of four Mel-Spectrograms in dB units on songs covering the four quadrants from 4Q.

learning feature re-weighting, enhancing model adaptability and feature representation.
Considering the limited number of available data of this study, EfficientNetB3 is pre-trained using

ImageNet [20].
The following layers are added to the last layer of the original network, proposing a modification to

reduce data dimensionality with dense layers and prevent overfitting through dropout layers:

• Flatten Layer: flattens the output from the previous layer (in this case, the last layer of Efficient-
NetB3) into a 1D array, i.e., a flat vector.

• Dense layer: consists of 512 neurons, applies a linear transformation to the flat vector and the
ReLU activation function.

• Dropout layer (0.5): randomly sets 50% of the input units to 0 at each network update during
training. This helps prevent overfitting by reducing the co-dependency between neurons.

• Dense layer of (128 neurons) with ReLU, dropout layer (0.3), dense layer (64 neurons) with ReLU,
and dropout layer (0.1).

• Output layer as a dense layer consisting of four neurons corresponding to the number of classes
in the classification task (i.e., the V/A plane quadrants). It applies the softmax activation function,
which converts the raw output into probability scores for each class, ensuring that the sum of the
probabilities for all classes is equal to 1.



Figure 4: Data distribution per class and dataset.

The code is implemented in Python and executed on the Kaggle platform, with the following hardware
specifications: Intel(R) Xeon(R) CPU @ 2.00 GHz, 29 GB RAM, and NVIDIA TESLA T4(x2) 15GB GPU.

The training is performed using the following parameters:

• Loss function: sparse categorical cross-entropy loss, used in multi-class classification tasks.
• Optimizer: Adam [21] with learning rate equal to 10−5.
• Epochs: 50.
• Callbacks: the EarlyStopping callback is added to stop the training if the validation loss fails

to decrease, restoring the model to its best weights. This tool is added to prevent overfitting,
ensuring that the model generalizes well on unseen data.

A stratified k-fold cross-validation approach (with k = 5) is used to mitigate bias or dependencies
introduced by arbitrary partitioning of data into train and validation sets, ensuring that each fold is
representative of the overall class distribution.

5. Results and Discussion

The test set is used to evaluate each model produced by the stratified k-fold cross-validation procedure.
The results from each of the five training sessions are analyzed and combined to provide a robust
estimate of the model expected performance. This aggregated performance serves as a final evaluation
metric, reflecting the model overall effectiveness and reliability.

Table 3 summarizes the obtained results in terms of accuracy and F1-score for each fold, while Table
4 reports the average precision, recall, and F1-score for each of the four classes. Remind that A and



V appearing in Table 4 correspond to the arousal and valence dimensions, respectively. The + and -
symbols represent the high or low valence and arousal.

Table 3
Training results with stratified 5-fold cross validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 All Folds
Accuracy 0.64 0.65 0.62 0.64 0.65 0.64
F1-Score 0.64 0.65 0.62 0.63 0.65 0.64

Table 4
Average performance results

Class Precision Recall F1-score
A+V+ 0.68 0.68 0.68
A+V- 0.71 0.78 0.74
A-V- 0.62 0.58 0.60
A-V+ 0.54 0.53 0.53

Before presenting the results, notice that the model tends to overfit on the validation set. Figure 5
depicts an example of this trend. The overfitting is likely due to the complexity of the network and the
limited training data. However, early stopping is employed to prevent excessive overfitting, and the
weights corresponding to the best performance before the onset of overfitting are saved. These weights
represent the point at which the model had the best balance between learning from the training data
and maintaining its ability to generalize on unseen data.

Figure 5: Plot of the model train and validation losses for fold 3.

Performance appears fairly similar and consistent among all the folds, suggesting the absence of bias
due to training data selection. The model achieves 64% average accuracy and 64% F1-score. The model



Table 5
Summary table of different MER tasks on different datasets

Strategy Dataset Performance
𝐿3-Net + MLP [15] Emotion in Music 72% accuracy
SVM [13] Bi-Modal Emotion Dataset 72.60% accuracy
Mel-Spectrograms + VG-
GNet [16]

Bi-Modal Emotion Dataset 77.82% accuracy

Mel-Spectrograms +
CNN-10 [17]

4Q, Bi-Modal Emotion
Dataset, PMEmo

62.92% micro F1-Score

Our proposal 4Q, PMEmo, Emotion in
Music, Bi-Modal Emotion
Dataset

64% accuracy and F1-
Score

is valued as sufficiently solid as a starting point to provide an emotion assessment of songs, considering
that it significantly outperforms random guessing (which would correspond to 25% accuracy for a
four-class learning task). Concerning the performance results on the four classes (Table 3), it can be
noticed that the images related to the high arousal quadrants are classified better (A+V+ 68% and A+V-
74% F1-score), while the low arousal ones have a significantly lower performance (60% and 53% F1-score
for the A-V- and A-V+ classes).

This can be due to the usual annotators’ perceived difficulty in selecting a specific arousal value
during song labeling.

Notice that no direct comparisons with the literature works are provided, considering the different
classification tasks. However, a summary table (Table 5) is reported to provide a brief overview of the
results obtained in different MER tasks exploiting different datasets. All the works provide a four-class
emotion classification based on the V/A plane.

6. Conclusion and Future Work

In this paper, we described a robust multi-source DL MER strategy intended to provide an initial pool
of songs falling into specific perceived emotion categories. The division of songs in the four V/A plane
quadrants is intended to be used in further studies to provide a user-centred induced-emotion-based
music recommender system.

Considering the difficulty of the classification task and the subjectivity of emotion evaluation, we
value the obtained initial results (i.e., 64% average accuracy and F1-Score above chance level for a
four-class task) satisfactory to start further analyses and developments of the proposed DL-based model.
The results are also in line with the only literature study working on multiple datasets at a time [17],
described in Section 2.

Error analysis will be performed to better understand why the classifier has lower performances for
the low arousal labeled songs. Particular attention will be given to the misclassified songs by observing
(i) the initial dataset from which a song is extracted, (ii) the song genre, (iii) its volume, and (iv) frequency
features.
An in-depth analysis will be also performed to better assess the reason why the model performs better
for certain quadrants of the V/A plane by using a cognitive appraisal and attention-based perspective.
The resulting observations will be exploited to consider a modification of the model and/or its evaluation
strategy.

Additional aspects will be considered in future works, particularly using a larger data pool (e.g.,
integrating more datasets such as the Moodo [22] and the AMG1608 [23] dataset), providing a more
in-depth assessment of overfitting and hyper-parameter tuning, introducing further pre-processing
steps, and different feature extraction strategies. On the latter note, besides audio signal-related features,
cognitive features such as expectation, familiarity, and music complexity will be introduced to enrich
the understanding of the emotional content of the songs.



A deeper analysis on the influence of lyrics in the model understanding of emotions will be also
performed.
Further machine and deep learning models will be considered, especially to understand the efficacy of
handcrafted features in case of a limited amount of data, and to provide direct comparisons between
our proposal and literature DL solutions using the same dataset.

Starting from the final perceived-emotion model trained on the literature datasets, a user-tuning will
be performed to provide an induced-emotion music recommendation. An experimental run involving
controlled participants will be considered to collect further data that can influence the effective outcome
of the user-based music recommender system besides the evaluation of valence and arousal, i.e., song
liking and whether it is known or not. Particular attention will be given to the participants’ agreement
on the emotional dimensions, which seem to be never provided as information in the available labeled
datasets.
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