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Abstract
Taking inspiration from the literature fuzzy decision trees, and leveraging many-valued logics, we propose a
novel, and more general variety of decision trees.
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1. Introduction

Decision trees (DTs) [1] have been permeating machine learning literature for nearly four decades, thanks
to their interpretability, cost-efficiency, and performance when applied to classification and regression
from tabular data; their recent extension to the modal case [2, 3] opened up the possibility of applying
decision trees to non-tabular data as well. Since the problem of learning an optimal decision tree from
a given dataset is NP-hard [4], the common solution is to use sub-optimal, statistical approximation
algorithms for this purpose, including ID3 [1], C4.5 [5], and CART [6].

Generally, a sub-optimal decision tree learning algorithm involves two steps: splitting, that is, the
process of dividing a node into two or more sub-nodes based on certain statistical measures such as Gini
impurity, entropy, or variance reduction, aiming to make the child nodes as homogeneous as possible
concerning the target variable, and pruning, that is, the process of removing sub-nodes of a decision
tree to reduce its complexity and prevent overfitting; this can be obtained using criteria to stop the tree
growth early (pre-pruning), or by removing branches from a fully grown tree (post-pruning).

It is well-known that a decision tree has a logical counterpart consisting of a set of (propositional)
logical rules.

One common approach for improving the performances and enhancing the interpretability of DTs,
and in particular of their corresponding set of rules, is that of resorting to non-crisp logic. Classical,
crisp propositional logic is characterized by being based on the Boolean two-valued algebra; non-crisp
logic relaxes this assumption by allowing the existence of more than two truth values. The set of
truth values forms an algebra, and when the domain of such an algebra is the set of all real numbers
from 0 to 1 with the usual ordering (that is, it is standard), the corresponding logic is called fuzzy. In
the accepted terminology, ‘fuzzy’ and ‘non-crisp’ are synonyms in the context of logic; noteworthy
examples of varieties of fuzzy algebras include Gödel algebras (G) [7], on which Gödel logic is founded,
MV-algebras [8] (MV) on which Łukasiewicz logic is based [9], and product algebras (Π) [10], which
are the backbone of product logic. Non-crisp logics, however, may be based on algebras whose domain
is not necessarily linear and can be both finite or infinite, such as the case of Heyting algebras (H) on
which intuitionistic logic is based [11].
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Figure 1: From left to right: the lattice structures of B, the one for some standard FL𝑒𝑤 A, and the one for A3.

A fuzzy decision tree (FDTs) is essentially a decision tree that corresponds to a set of fuzzy propositional
logic rules. Existing FDT learning methods range from algorithms to synthesize a tree from a user-
fuzzyfied dataset, such as FuzzyID3 [12, 13], FuzzyC4.5 [14], to techniques for the fuzzyification of
already learned decision tree rules, such as FuzzyCART [15]; however, the literature concerning fuzzy
decision tree learning is too wide to be reviewed here, and we refer the interested reader to the recent
survey [16].

Two traits that are common to essentially all existing proposals for FDT models and their learning
algorithms are: (𝑖) they are based on some standard fuzzy logic, and (𝑖𝑖) they are generally not included
in open-source, available frameworks for learning and reasoning; the latter, in particular, makes it
difficult to evaluate their effectiveness in real situations.

Towards a unifying approach to generalize learning algorithms to the non-crisp case, we consider
here a more general variety of algebras, known as FL𝑒𝑤 algebras [17] (FL𝑒𝑤). FL𝑒𝑤-algebras are more
general than G-, MV-, Π-, and H-algebras, and they allow the underlying domain of truth values to be
not necessarily linearly ordered. As suggested by Fitting [18], a non-linear domain may be a suitable
formalization of many experts situations, that is, situations in which different experts provide an opinion
on the events. Logics based on FL𝑒𝑤-algebras are called many-valued logics.

In this paper, we theorize the many-expert decision tree model (MEDT), that corresponds to a set of
many-valued propositional logic rules. We consider a specific class of FL𝑒𝑤-algebras, general enough
to capture all typical fuzzy algebras commonly used in the FDT literature and beyond. MEDTs are
parametric, so that the number of experts (which in some way can be thought of as the non-linearity
degree of the algebra of truth values) can be varied and the operators for their opinions to be combined
(that is, the algebra operators) can be customized within the degrees of freedom of FL𝑒𝑤-algebras.

2. Many-Expert Decision Trees

A complete FL𝑒𝑤-algebra is a tuple of the type

A = ⟨A,∩,∪, ·,+, 0, 1⟩,

where ⟨A,∩,∪, 0, 1⟩ is a bounded complete lattice with upper bound 1 and lower bound 0, and ⟨A,⪯⟩
corresponds to its lattice-ordered set. The two operations · and + are such that ⟨A, ·, 1⟩ and ⟨A,+, 0⟩
form commutative monoids, with both operations being monotone with respect to ⪯. Specifically, if
𝛾 ⪯ 𝛼 and 𝛿 ⪯ 𝛽, then 𝛾 · 𝛿 ⪯ 𝛼 ·𝛽 and 𝛾+ 𝛿 ⪯ 𝛼+𝛽. The implication operation →˓ in a FL𝑒𝑤-algebra
is defined as 𝛼 →˓ 𝛽 = max{𝛾 | 𝛼 · 𝛾 ⪯ 𝛽}. In this context, we refer to ∩ as meet, ∪ as join, →˓ as



Temperature (°C) Humidity (%) Wind (km/h) Play Tennis

21.1 65 8.0 Yes
22.2 68 12.9 Yes
20.0 80 19.3 No
23.9 90 11.3 No
26.7 85 16.1 No
25.6 75 22.5 No
29.4 60 32.2 Yes
32.2 70 16.1 Yes

Table 1
Example of a labeled dataset; a typical classification problem on such an example could be the problem of
deciding whether to play tennis based on the available data.

implication, · as t-norm, and + as t-co-norm. A FL𝑒𝑤-algebra is termed linearly ordered (or chain) if its
lattice order is total, standard if its lattice reduct is the real unit interval [0, 1], and finite if its lattice
comprises only a finite number of elements.

Given a FL𝑒𝑤-algebra A = ⟨A,∩,∪, ·,+, 0, 1⟩ and a set of propositional letters 𝒫 , the formulas of
the propositional A-logic (A-formulas) are obtained by the grammar:

𝜙 ::= 𝛼 | 𝑝 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙→ 𝜙,

where 𝛼 ∈ A and 𝑝 ∈ 𝒫 . A A-model 𝐼1 is a map from each propositional letter in 𝑝 ∈ 𝒫 to some truth
value 𝐼(𝑝) ∈ A, and, given a A-formula 𝜙, its value 𝐼(𝜙) is computed recursively as follows:

𝐼(𝛼) = 𝛼
𝐼(𝜙 ∧ 𝜓) = 𝐼(𝜙) · 𝐼(𝜓)
𝐼(𝜙 ∨ 𝜓) = 𝐼(𝜙) + 𝐼(𝜓)
𝐼(𝜙→ 𝜓) = 𝐼(𝜙) →˓ 𝐼(𝜓).

As it can be observed, we use 𝛼, 𝛽, . . . for both algebra values and symbols to represent them.
The Boolean two-element algebra B is a simple example of FL𝑒𝑤-algebra; the propositional B-logic

is the classical propositional logic, and its semantics reduces to the obvious one. Another setting of
interest for us, given a natural number 𝑑, is the FL𝑒𝑤-algebra A𝑑 = ⟨A𝑑 ⊆ R𝑑,∩,∪, ·,+, 0, 1⟩, where
[𝑟1, . . . , 𝑟𝑑] ⪯ [𝑠1, . . . , 𝑠𝑑] if and only if, for every 𝑖, 𝑟𝑖 ≤ 𝑠𝑖, 0 = [0, . . . , 0], and 1 = [1, . . . , 1]. The
operators · and + are left unspecified; they, as well as the value of 𝑑 and the cardinality of A𝑑 will
be treated as parameters. We call the propositional A𝑑-logic many-expert propositional logic. Fixed
a model 𝐼 , an algebra A, and a formula 𝜙, we write 𝐼A(𝜙) to denote the value of 𝜙 assuming A as an
algebra; so, for example, for a model 𝐼 and formula 𝜙 we have that 𝐼B(𝜙) = 1 is an alternative notation
for 𝐼 |= 𝜙, where |= is the classic symbol for propositional satisfaction. Examples of lattice structures
are given in Fig. 1.

Decision trees are extracted from datasets.

Definition 1. A dataset is a set of 𝑚 instances ℐ = {𝐼1, . . . , 𝐼𝑚}, each one of which is described by the
values of 𝑛 attributes 𝒜 = {𝐴1, . . . , 𝐴𝑛}.

Without loss of generality, we assume that the value of each attribute in an instance is a real number.
Several problems are usually associated with datasets; in the case of supervised learning, each instance
is also associated with a label (or class) 𝐿 ∈ ℒ and a dataset is termed labeled. Given a labeled dataset
ℐ , supervised classification consists of synthesizing an algorithm (a classifier) that is able to classify
the instances of an unlabelled dataset 𝒥 whose instances are defined on the same set of attributes. An
example of a dataset can be found in Tab. 1.

1In the following, the symbol 𝐼 is also used to denote an instance; this is intentional, as in the symbolic context instances are
seen as logical models.
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Figure 2: Simple decision tree for classifying whether a person should play tennis based on temperature,
humidity, and wind conditions.

In the symbolic context, instances are seen as logical models. To help this interpretation, one takes
into consideration that datasets are naturally associated with a logical vocabulary 𝒫 of propositional
letters, from which formulas are built. A simple choice for such a vocabulary is

𝒫 = {𝐴◁▷𝑎 | 𝑎 ∈ R, ◁▷ ∈ {<,≤,≥, >}}.

Definition 2. Let ℒ be a set of classes, 𝒫 a finite set of propositional letters, and A an FL𝑒𝑤-algebra. A
A-decision tree on ℒ and 𝒫 is an object of the type

𝜏 = ⟨𝑉,𝐸, 𝑙, 𝑒⟩,

where ⟨𝑉,𝐸⟩ is a full binary directed tree, 𝑙 is a leaf-labelling function that assigns a class from ℒ to
each leaf node in 𝑉 , and 𝑒 is an edge-labelling function that assigns a decision from 𝒫 to each edge in
𝐸. To each branch 𝜋 = 𝑒1𝑒2 . . . 𝑒𝑘 (𝑒𝑖 ∈ 𝐸, for every 1 ≤ 𝑖 ≤ 𝑘) in a decision tree 𝜏 is associated a
branch-formula 𝜙𝜋 = 𝑒(𝑒1)∧ . . .∧ 𝑒(𝑒𝑘). Given an instance 𝐼 , 𝐼 is classified as 𝐿 ∈ ℒ by 𝜏 if and only if
there exists 𝜋 ∈ 𝜏 such that its leaf is labelled by 𝐿 and that 𝐼A(𝜙𝜋) ⪰ 𝐼A(𝜙𝜋′) for every 𝜋′ ∈ 𝜏 , 𝜋′ ̸= 𝜋.

As it can be seen, a decision tree is a syntactical object. In the following, we simply use the term decision
tree (DT) to denote a B-decision tree, that is, a classical propositional decision tree. Also, a fuzzy decision
tree (FDT) is an A-decision tree for some standard FL𝑒𝑤-algebra A. Finally, a many-expert decision tree
(MEDT) is a A𝑑-decision tree. An example of decision tree can be found in Fig. 2.

In the case of DTs, the decisions that label two outgoing edges from the same node are always
semantically opposite; in terms of the propositional vocabulary as we have defined it, this means that
two edges outgoing from the same node are labeled, respectively, with𝐴◁▷𝑎 and 𝐴◁▷′𝑎, where ◁▷′ is <
(resp., ≤,≥, >) if ◁▷ is ≥ (resp., >,<,≤).

Decision trees classify a certain instance 𝐼 by executing a model checking algorithm. In the case of
classical DTs, checking a branch-formula can be performed by progressively checking, step-by-step,
each of its individual propositions/decisions, which makes classification with DTs particularly efficient;
this is no longer true upon generalising DTs to FDTs and then MEDTs, but efficiency of classification
can be, at least partially, preserved.

MEDTs are obtained from DTs as the result of two generalisation steps. First, we introduce a
mechanisms to soften individual decisions, obtaining, as a matter of fact, a FDT in the process; to this
end, let us fix a standard FL𝑒𝑤-algebra A. Consider a dataset ℐ . In the classic setting, to the purpose
of learning a classical DT 𝜏 , ℐ is randomly separated into two subsets ℐ𝑡𝑟𝑎𝑖𝑛, used in the learning
phase, and ℐ𝑡𝑒𝑠𝑡, used to test 𝜏 . By adding a further division, that is, by separating, instead, ℐ into
ℐ𝑡𝑟𝑎𝑖𝑛, ℐ𝑓𝑡, and ℐ𝑡𝑒𝑠𝑡, and using ℐ𝑓𝑡 as a fine tuning portion of the dataset, we take a first step into
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Figure 3: On the left-hand side, an example of dataset partition for MEDT learning with 𝑑 experts. On
the right-hand side: an example of different membership functions representing 3 different experts’
opinions on the value of a decision/proposition.

avoiding typical overfitting phenomena. Keeping a portion of the data for fine tuning is a well-known
strategy, sometimes applied for post-pruning purposes; as already proposed in the literature, we can use
it for assigning a non-binary truth value to each proposition on the original tree. This can be obtained,
after having learned a classical DT 𝜏 = ⟨𝑉,𝐸, 𝑙, 𝑒⟩ from ℐ𝑡𝑟𝑎𝑖𝑛 using any algorithm, as follows: (𝑖) for
every 𝑣 ∈ 𝑉 , we associate the set ℐ𝑣

𝑓𝑡 = {𝐼 ∈ ℐ𝑓𝑡 | 𝐼B(𝐴◁▷𝑎) = 1} ⊆ ℐ𝑓𝑡, that is, the portion of ℐ𝑓𝑡
that falls into 𝑣, to 𝑣 itself; (𝑖𝑖) for every 𝑣 ∈ 𝑉 , we associate the normal distribution Φ𝐴,◁▷,𝑎

𝜈,𝜎 computed
on the set 𝐼𝑣𝑓𝑡 to the decision 𝐴◁▷𝑎 that labels the edge between the parent of 𝑣 and 𝑣 itself; and (𝑖𝑖𝑖)

for every instance 𝐼 and decision 𝐴◁▷𝑎 we define 𝐼A(𝐴◁▷𝑎) = Φ𝐴
ℐ𝑓𝑡(𝑎

′), where 𝑎′ is the value of 𝐴 in 𝐼2.
Observe that now the value of 𝐼A(𝜙𝜋) can be computed for every branch 𝜋 ∈ 𝜏 .

Stepping from a FDT, as defined above, to a MEDT requires switching from (a standard) A to (a
concretization of) A𝑑. In other words, to every instance 𝐼 and decision 𝐴◁▷𝑎 we need to associate a
value 𝐼A𝑑

(𝐴◁▷𝑎), which is a vector of 𝑑 real values. To this end, we replace ℐ𝑓𝑡 with a family 𝐼1, . . . , 𝐼𝑑
of fine tuning portions of datasets. Each one of them plays the role of an expert. Therefore, proceeding
as above, for every instance 𝐼 and decision𝐴◁▷𝑎 we compute 𝐼A𝑑

(𝐴◁▷𝑎) = [Φ𝐴,◁▷,𝑎
ℐ1 (𝑎′), . . . ,Φ𝐴,◁▷,𝑎

ℐ1 (𝑎′)],
where 𝑎′ is the value of 𝐴 in 𝐼 .

An example of DT->MEDT generalisation of the DT in Fig. 2 is shown, partially, in Fig. 3. Consider,
in particular, the decision 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒≤23.9. In Fig. 3, right, we assume 𝑑 = 3, so that three different
distributions for the portion of the fine tuning dataset whose instances show a value of 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
less than or equal to 23.9 are computed.

As a final observation it is worth noticing that classification with MEDTs is not as efficient as it is
with DTs: the exponentially many different many-valued formulas that occurr on the branches of a
MEDT should be checked in full to classify each instance individually. The tree structure of a MEDT,
however, allows for the implementation of sub-optimal classification strategies, such as, for example,
progressively checking all branches up to a fixed height, and then focusing on the sub-tree rooted at
the chosen node only.

3. Conclusions

A many-expert decision tree is a non-crisp decision tree based on many-valued logic. This model
generalizes both crisp and fuzzy decision trees, and can be obtained as the result of a fine tuning step
upon learning a standard decision tree. We intend to carefully design, implement, and test the MEDT
model, and include it in an already existing, comprehensive, end-to-end open-source framework for
symbolic learning and reasoning.

2Obviously, FDTs and MEDTs can be defined with any other membership function.



References

[1] J. Quinlan, Induction of decision trees, Machine learning 1 (1986) 81–106.
[2] A. Brunello, G. Sciavicco, I. Stan, Interval temporal logic decision tree learning, in: Proc. of the

16th European Conference on Logics in Artificial Intelligence (JELIA), volume 11468 of LNCS,
Springer, 2019, pp. 778–793.

[3] D. Della Monica, G. Pagliarini, G. Sciavicco, I. Stan, Decision trees with a modal flavor, in: Proc.
of the 21st International Conference of the Italian Association for Artificial Intelligence (AIxIA),
number 13796 in LNCS, Springer, 2023, pp. 47 – 56.

[4] R. Rivest, Learning Decision Lists, Machine Learning 2 (1987) 229–246.
[5] J. Quinlan, C4. 5: programs for machine learning, Elsevier, 2014.
[6] L. Breiman, Classification and regression trees, Routledge, 2017.
[7] M. Baaz, N. Preining, R. Zach, First-order Gödel logics, Annals of Pure and Applied Logic 147

(2007) 23–47.
[8] C. C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical

society 88 (1958) 467–490.
[9] A. Rose, Formalisations of further ℵ0-valued Łukasiewicz propositional calculi, Journal of Symbolic

Logic 43 (1978) 207–210. doi:10.2307/2272818.
[10] P. Hájek, The Metamathematics of Fuzzy Logic, Kluwer, 1998.
[11] L. Esakia, G. Bezhanishvili, W. H. Holliday, A. Evseev, Heyting Algebras: Duality Theory, Springer,

2019.
[12] M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu, J. Kinoshita, Fuzzy

decision trees by fuzzy ID3 algorithm and its application to diagnosis systems, in: Proc. of 3rd
IEEE International Fuzzy Systems Conference, IEEE, 1994, pp. 2113–2118.

[13] C. Z. Janikow, Fuzzy decision trees: issues and methods, IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 28 (1998) 1–14.

[14] M. E. Cintra, M. C. Monard, H. A. Camargo, FuzzyDT—a fuzzy decision tree algorithm based on
C4.5, in: Proc. of the Brazilian Congress on Fuzzy Systems, 2012, pp. 199–211.

[15] J.-S. R.Jang, Structure determination in fuzzy modeling: a fuzzy CART approach, in: Proceedings
of 1994 IEEE 3rd international fuzzy systems conference, IEEE, 1994, pp. 480–485.

[16] Z. A. Sosnowski, L. Gadomer, Fuzzy trees and forests - review, WIREs Data Mining Knowl. Discov.
9 (2019). URL: https://doi.org/10.1002/widm.1316. doi:10.1002/WIDM.1316.

[17] P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of Mathematical Fuzzy Logic, volume 37-38 of
Studies in Logic. Mathematical Logic and Foundation, College publications, 2011.

[18] M. Fitting, Many-valued modal logics, Fundamenta Informaticae 15 (1999). doi:10.3233/
FI-1991-153-404.

http://dx.doi.org/10.2307/2272818
https://doi.org/10.1002/widm.1316
http://dx.doi.org/10.1002/WIDM.1316
http://dx.doi.org/10.3233/FI-1991-153-404
http://dx.doi.org/10.3233/FI-1991-153-404

	1 Introduction
	2 Many-Expert Decision Trees
	3 Conclusions

