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Abstract
Extracting logical rules from ensembles of symbolic learning models, and especially from ensembles of decision
trees, is a very well-known discipline, and several methods and algorithms have been proposed for its solution.
However, the existing approaches are characterized by being purely statistical. In this paper, we discuss the
problem of systematically extracting minimal logical rules from ensembles of trees from both a theoretical and an
algorithmic point of view.
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1. Introduction

In sharp opposition to the proliferation of machine learning models used to approach all range of
typical artificial intelligence problems, from classification, to regression, to reinforcement learning, the
universal concept linked to the interpretation and the explanation of such models is that of rule. As
a matter of fact, it can be said that all different statistical learning models are different methods for
implicit or explicit rule extraction from data.

Unsurprisingly, the idea of expressing the behaviour of a data-driven artificial intelligent agent in
terms of rules is extremely pervasive. On the one side, learning models are usually separated into
symbolic ones, such as decision trees or linear regressions, sub-symbolic ones, such as neural networks,
and mixed ones, such as ensembles of trees. On the other side, methods for explaining learning models
are classified into global ones, that are focused on the model as a whole, and local ones, focused on
the behaviour of a model on a specific instance. Numerous literature surveys on explainable artificial
intelligence and interpretable machine learning have been conducted (e.g., see [1, 2, 3]).

With symbolic learning methods we represent data and relationships using symbolic structures.
Decision trees [4] are a classic example of symbolic learning models, where the tree branches typically
represent formulas of propositional logic. Despite their effectiveness, decision trees suffer from a limited
ability to generalize to new data. To address such an issue, ensembles of independent decision trees,
known as decision forests, are commonly used to improve the generalization ability of single trees.
Decision forests are symbolic in nature, but they include a functional component to amalgamate the
output of single trees, and can be therefore classified as mixed symbolic/sub-symbolic techniques; the
most famous algorithm for decision forest learning, namely random forest [5], produces decision forests
for classification/regression in which the aggregation function is simple majority.

The development of global explanation methods for decision forests is paramount, and several
solutions have been proposed in the past, including Partial Dependence Plots [6], Accumulated Local
Effects Plots [7], global surrogate models [8], and SHapley Additive exPlanations (SHAP) [9]. In terms
of rule extraction from decision forests, the relevant methods include the celebrated Simplified Tree
Ensemble Learner (STEL) [10] (recently extended to the modal case in [11]), and several heuristic
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techniques [12, 13]. Two common traits characterize this plethora of proposals: first, global rules from
decision forests are extracted in statistical form, and, second, these methods are seldom integrated into
widely used machine learning portfolios and frameworks.

We initiate a systematic study of purely logical global rules extraction from decision forests. The
language of standard decision forest is propositional; propositions range from simple assertions of the
type 𝐴 ◁▷ 𝑎, where 𝐴 is an attribute, 𝑎 is a constant, and ◁▷ is a comparison operator (e.g., fever is over
38 degrees), to complex (yet atomic) sentences, of the type 𝑓(𝐴1, . . . , 𝐴𝑘) ◁▷ 𝑎, where 𝐴1, . . . , 𝐴𝑘 are
attributes and 𝑓 is an (arbitrary) function applied to them (e.g., the averaged vibration of sensors 𝐴 and
𝐵 is below 100 Hertz — examples of such propositions emerge, among others, in oblique decision trees
and forests [14]). In any case, atomic propositions form a simple theory 𝒯 (e.g., fever is over 38 degrees
implies fever is over 37 degrees); this is ignored during the learning phase, which generates a certain
amount of redundancy in learnt models. In the simple and representative case of decision forests for
classification, that is, learning a class 𝐿 from a dataset ℐ , given a decision forest 𝐹 learnt from ℐ we
define a strong class rule for it as an object of the type 𝜙 ⇔ 𝐿, where 𝐿 is a class and 𝜙 is a propositional
formula, such that 𝐹 classifies an instance 𝐼 ∈ ℐ as 𝐿 if and only if 𝐼 satisfies 𝜙. Obviously, it is to be
expected that useful class rules have relatively short antecedent, and since the latter is a propositional
formula, it can be minimized. Minimization of propositional formulas is a very well-known problem. In
the most common case the size of a formula 𝜙, denoted by |𝜙|, is defined as the number of its symbols,
and the minimization problem asks, given a propositional formula 𝜙: which is a formula 𝜙′, equivalent
to 𝜙 (denoted 𝜙′ ≡ 𝜙), and minimal in size? In its decision version, the problem becomes, given 𝜙 and a
number 𝑞: does there exists a formula 𝜙′, such that |𝜙′| ≤ 𝑞 and 𝜙′ ≡ 𝜙? This problem is Σ2

𝑝-complete,
and there exist a number of approaches for it [15].

In this paper we ask the question, given a decision forest 𝐹 and a class 𝐿: which is a strong class
rule for 𝐿 whose antecedent 𝜙 is minimal in size? In its decision version, given a number 𝑞, it becomes:
is there a strong class rule for 𝐿 whose antecedent 𝜙 is such that |𝜙| ≤ 𝑞? Obtaining small class
rules differs from pure logical minimization in two key aspects. First, minimization of propositional
formula is usually not intended modulo a theory 𝒯 , but, in general, classic minimization methods and
techniques can be adapted to this case. Second, in our case minimization does not need to preserve
logical equivalence, but only equivalence modulo the set of instances ℐ on which the original forest
was learnt. We shall see that this problem can be very hard in terms of computational complexity, and
it makes sense to consider other (ideally, simpler) versions of it. We define the concept of right weak
class rule, (resp., left weak class rule) that is, a rule of the type 𝜙 ⇒ 𝐿 (resp., 𝜙 ⇐ 𝐿) such that if 𝐼 ∈ ℐ
satisfies 𝜙 (resp., 𝐹 classifies 𝐼 as 𝐿) then 𝐹 classifies 𝐼 as 𝐿, (resp., that if 𝐼 ∈ ℐ satisfies 𝜙), and we ask
the question, given a decision forest 𝐹 and a class 𝐿: which is a right (resp., left) weak class rule for 𝐿
whose antecedent 𝜙 is minimal (resp., non-trivially maximal) in size? Or, in its decision version, given
also a number 𝑞: is there a right (resp., left) weak class rule for 𝐿 whose antecedent (resp., non-trivial
antecedent) 𝜙 is such that |𝜙| ≤ 𝑞 (resp., |𝜙| ≥ 𝑞)?

2. Decision Trees, Decision Forests, and Class Formulas

Definition 1. A dataset is a set of 𝑚 instances ℐ = {𝐼1, . . . , 𝐼𝑚}, each one of which is described by the
values of 𝑛 attributes 𝒜 = {𝐴1, . . . , 𝐴𝑛}.

Without lack of generality we assume that the value of each attribute in an instance is a real number.
Several problems are usually associated with datasets; in the case of supervised learning, each instance
is also associated to a label (or class) 𝐿 ∈ ℒ, and a dataset is termed labelled. Given a labelled dataset ℐ ,
supervised classification consists of synthesizing an algorithm (a classifier) that is able to classify the
instances of an unlabelled dataset 𝒥 whose instances are defined on the same set of attributes.

In the symbolic context, instances are seen as logical models. To help this interpretation one takes
into consideration that datasets are naturally associated to a logical vocabulary 𝒫 of propositional



letters, from which formulas are built. In the most general case, we have

𝒫 = {(𝑓(𝐴1, . . . , 𝐴𝑘) ◁▷ 𝑎) | 𝑓 ∈ ℱ , 𝑎 ∈ R, ◁▷ ∈ {<,≤,=,≥, >}},

where ℱ is a set of suitable feature extraction functions. To a dataset ℐ , we associate its vocabulary 𝒫
and a (possibly empty) theory 𝒯 , that is, a set of propositional formulas of the type 𝑝𝑖 → 𝑝𝑗 , where
𝑝𝑖, 𝑝𝑗 ∈ 𝒫 , that expresses semantic constraints between propositional letters (e.g., 𝐴 > 5 implies
𝐴 > 4). In the following, we write 𝐼 |= 𝜙 to denote that a propositional formula 𝜙 is satisfied by 𝐼 .

Definition 2. Let ℒ be a set of classes and 𝒫 a finite set of propositional letters. Then, a decision tree (on
ℒ) is a tuple

𝜏 = ⟨𝑉,𝐸, 𝑙, 𝑒⟩,
where ⟨𝑉,𝐸⟩ is a full binary directed tree, 𝑙 is a leaf-labelling function that assigns a class from ℒ to
each leaf node in 𝑉 , and 𝑒 is an edge-labelling function that assigns a decision from {𝑝,¬𝑝 | 𝑝 ∈ 𝒫}
to each edge in 𝐸, in such a way that two siblings always have opposite decisions. A decision forest
𝐹 = {𝜏1, . . . , 𝜏𝑧} (on ℒ) is a set of 𝑧 decision trees (on ℒ).

A decision tree/forest is learnt from a dataset ℐ based on its vocabulary𝒫 (the language of the tree/forest).
An instance is classified by a tree by progressively checking the truth value of each proposition on
a path (and we denote with 𝜏(𝐼) the class assigned to an instance 𝐼 by 𝜏 ), and by a forest (𝐹 (𝐼))
by systematically querying each tree individually and then aggregating their decisions; among other
possibilities, a typical aggregation function is simple majority, which is assumed here.

Definition 3. Given a decision tree 𝜏 on ℒ and a class 𝐿 ∈ ℒ, then: (𝑖) given and a path 𝜋 in 𝜏 from
the root to a leaf labeled with 𝐿 (an L-path), the conjunction of all decisions on 𝜋 is called L-path tree
formula, and it is denoted by 𝜙𝐿

𝜋 , and (𝑖𝑖) the disjunction of all 𝐿-path formulas in 𝜏 is called L-class tree
formula (𝜙𝐿

𝜏 ). Given a decision forest 𝐹 on ℒ with 𝑧 trees, and a class 𝐿 ∈ ℒ, then: (𝑖) given a collection
𝜏𝑖1 , . . . , 𝜏𝑖𝑡 ∈ 𝐹 and one 𝐿-path 𝜋𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑡) per tree 𝜏𝑖𝑗 , the conjunction of all 𝐿-path tree formulas
𝜙𝐿
𝜋𝑖1

, . . . , 𝜙𝐿
𝜋𝑖1

is called partial L-path forest formula (𝜙𝐿
𝜋𝑖1

,...,𝜋𝑖𝑡
); (𝑖𝑖) if 𝑡 > 𝑧/2, then 𝜙𝐿

𝜋𝑖1
,...,𝜋𝑖𝑡

is called
L-path forest formula; and (𝑖𝑖𝑖) the disjunction of all possible 𝐿-path forest formulas is called L-class
forest formula (𝜙𝐿

𝐹 ).

3. Rules from Decision Forests

Definition 4. Given a decision forest 𝐹 , learnt from a dataset ℐ , on ℒ, and a class 𝐿 ∈ ℒ, a strong
𝐿-class rule is an object of the type 𝜙 ⇔ 𝐿, where 𝜙 (the antecedent) is a propositional formula in the
language of 𝐹 , such that, for every 𝐼 ∈ ℐ , 𝐼 |= 𝜙 if and only if 𝐹 (𝐼) = 𝐿, a right weak 𝐿-class rule is an
object of the type 𝜙 ⇒ 𝐿 such that 𝐼 |= 𝜙 implies 𝐹 (𝐼) = 𝐿, and a left weak 𝐿-class rule is an object of
the type 𝐿 ⇒ 𝜙 such that 𝐹 (𝐼) = 𝐿 implies 𝐼 |= 𝜙.

Given a decision forest 𝐹 on ℒ, a class 𝐿 ∈ ℒ, and the 𝐿-class forest formula 𝜙𝐿
𝐹 , 𝜙𝐿

𝐹 ⇔ 𝐿 is a (trivial)
strong 𝐿-class rule. In practical terms, it will likely be very redundant, due to the fact that decision trees
and forest are general learnt via sub-optimal learning algorithms (recall that the problem of extracting
a minimal decision tree is NP-hard, and sub-optimal, polynomial algorithms are commonly used for
learning), and the fact that the theory 𝒯 underlying the language is ignored during learning. Thus,
given a decision forest 𝐹 on ℒ, learnt from a dataset ℐ , and a class 𝐿 ∈ ℒ, we are interested in finding
a minimal strong 𝐿-class rule, that is, a strong 𝐿-class rule 𝜙 ⇔ 𝐿 such that, for every strong class rule
𝜙′ ⇔ 𝐿 so that 𝜙 ≡ℐ

𝒯 𝜙′ (i.e., so that 𝜙 and 𝜙′ are equivalent modulo 𝒯 at least with respect to the
instances in ℐ), it is the case that |𝜙| ≤ |𝜙′|.

One way to assess the complexity of the problem of finding minimal strong rules is to study its
decision version, that is: given a decision forest 𝐹 , learnt from a given dataset ℐ , on ℒ, a class 𝐿 ∈ ℒ,
and a number 𝑞, is there a strong 𝐿-class rule 𝜙 ⇔ 𝐿 such that |𝜙| ≤ 𝑞? Given that the size of the input
of this problem is the number of symbols of 𝐹 (denoted by |𝐹 |) plus the number of instances in ℐ (|ℐ|)
and the size of the representation of 𝑞 (|𝑞|), we have the following result.



Theorem 1. Given a decision forest 𝐹 , learnt from a dataset ℐ , on ℒ, a class 𝐿 ∈ ℒ, a theory 𝒯 , and a
number 𝑞, the problem of establishing if there exists a strong 𝐿-class rule 𝜙 ⇔ 𝐿 such that |𝜙| ≤ 𝑞 is in
NEXPTIME.

Proof[sketch]. An (DNF) antecedent 𝜙 of size less than or equal to 𝑞 can be guessed. Then, for each
instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐹 (𝐼) = 𝐿 (resp., not 𝐿) and 𝐼 |= 𝜙 (resp., 𝐼 ̸|= 𝜙),
then 𝐼 is marked. If all instances in ℐ end up being marked, then 𝜙 ⇒ 𝐹 is a strong 𝐿-class rule. The
complexity of this process is polynomial in |𝐹 | and |ℐ|, but exponential in |𝑞|, and the value of the
minimal 𝑞 for which a strong 𝐿-class rule exist may be exponential in |𝐹 |. □
Since extracting a minimal strong class rule may turn out to be impractical, we turn our attention
to weak rules. Given a decision forest 𝐹 , learnt on a dataset ℐ , on ℒ, a class 𝐿 ∈ ℒ, and a 𝐿-path
forest formula 𝜙𝐿

𝜋𝑖1
,...,𝜋𝑖𝑡

, 𝜙𝐿
𝜋𝑖1

,...,𝜋𝑖𝑡
⇒ 𝐿 is a (trivial) right weak 𝐿-class rule whose antecedent may

exhibit the same kind of redundancy and can be minimized as in the previous case. Similarly, ⊤ ⇐ 𝐿
is a (trivial) left weak 𝐿-class rule whose antecedent can be maximized; in this case, however, one is
interested in non-trivial maximal antecedents.

Theorem 2. Given a decision forest 𝐹 on ℒ, a class 𝐿 ∈ ℒ, a theory 𝒯 , and a number 𝑞, the problem of
establishing if there exists a right weak 𝐿-class rule 𝜙 ⇒ 𝐿 such that |𝜙| ≤ 𝑞 is in NP, and the problem of
establishing if there exists a non-trivial left weak 𝐿-class rule 𝐿 ⇒ 𝜙 such that |𝜙| ≥ 𝑞 is in NEXPTIME.

Proof[sketch]. As for right weak 𝐿-class rules, a (term) antecedent 𝜙 of size less than or equal to 𝑞 can
be guessed. Then, for each instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐼 ̸|= 𝜙, or 𝐼 |= 𝜙 and
𝐹 (𝐼) = 𝐿, then 𝐼 is marked. If all instances in ℐ end up being marked, then 𝜙 ⇒ 𝐹 is a weak 𝐿-class
rule. The complexity of this process is polynomial in |𝐹 |, |ℐ|, but exponential in |𝑞|; however, the value
of the minimal 𝑞 for which a right weak 𝐿-class rule exist is polynomial in |𝐹 |. As for left weak 𝐿-class
rules, a (DNF) antecedent 𝜙 of size grater than or equal to 𝑞 can be guessed. Then, we first check that 𝜙
is non-trivial, that is, there are no repeated literals in any term, no term is unsatisfiable, and no terms
implies any other term. Then, for each instance 𝐼 ∈ ℐ , 𝐼 is checked against both 𝐹 and 𝜙: if 𝐹 (𝐼) ̸= 𝐿,
or 𝐹 (𝐼) = 𝐿 and 𝐼 |= 𝜙, then 𝐼 is marked. If all instances in ℐ end up being marked, then 𝜙 ⇒ 𝐹 is a
weak 𝐿-class rule. The complexity of this process is polynomial in |𝐹 | and |ℐ|, but exponential in |𝑞|,
and the value of the minimal 𝑞 for which a left weak 𝐿-class rule exist may be exponential in |𝐹 |. □

4. Conclusions

We started a systematic study of logical methods for rule extraction from decision forests, a well-known
classification model. Extracting rules from decision forests is a well-known problem, but existing
solutions are statistical and data-driven. In our work, we apply known logical algorithms to rule
extraction, contributing to bridging the gap between logic and machine learning.
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