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Abstract
Linear Temporal Logic over Finite Traces (LTLf) is a widely used formalism with applications in Artificial
Intelligence (AI), process mining, model checking, and more. The primary reasoning task for LTLf is satisfiability
checking. However, the recent focus on explainable AI has increased interest in analyzing inconsistent formulas,
making the enumeration of minimal explanations for infeasibility a relevant task for LTLf. This paper introduces a
novel technique for enumerating minimal unsatisfiable cores of an LTLf specification. The main idea is to encode
an LTLf formula into an Answer Set Programming (ASP) specification, such that the minimal unsatisfiable subsets
of the ASP program directly correspond to the minimal unsatisfiable cores of the original LTLf specification.
Leveraging recent advancements in ASP solving yields a minimal unsatisfiable cores enumerator achieving good
performance in experiments conducted on established benchmarks from the literature.
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1. Introduction

Linear temporal logic over Finite Traces (LTLf) [1] is a simple, yet powerful language for expressing and
reasoning about temporal specifications, that is known to be particularly well-suited for applications in
Artificial Intelligence (AI) [2, 3, 4, 5].

Perhaps its most widely recognized use to-date is as the logic underlying temporal process modeling
languages such as Declare [6]. Very briefly, a Declare specification is a set of constraints on the potential
evolution of a process, which is expressed through a syntactic variant of a subclass of LTLf formulas.
The full specification can thus be seen as a conjunction of LTLf formulas. As specifications become
bigger—especially when they are automatically mined from event logs [7]—, it is not uncommon to
encounter inconsistencies (i.e., business process models that are intrinsically contradictory) or other
errors.

To understand and correct these errors, it is thus important to highlight the sets of formulas in
the specification that are responsible for them [8, 9]. Specifically, we are interested in computing the
minimal unsatisfiable cores (MUCs): subset-minimal sets of formulas (from the original specification)
that are collectively inconsistent [10, 8, 9]. These can be seen as the prime causes of the error. Notably,
a single specification can yield multiple MUCs of varying sizes, depending on the specific constraints
involved. Exploring more than one MUC can be crucial for analyzing and understanding the causes of
incoherence (as recognized in explainable AI [11, 12]). Thus, a system capable of efficiently enumerating
MUCs would be of significant value.

A similar problem has been studied in the field of answer set programming (ASP) [13, 14], where the
goal is to find minimal unsatisfiable subsets (MUSes) of atoms that make an ASP program incoherent [15,
16, 17]. In recent years, efficient implementations of MUS enumerators have been presented [17].
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Our goal in this paper is to take advantage of both ASP declarativity and ASP systems efficiency to
enumerate MUCs of LTLf formulas. Hence, we present a new transformation that constructs, given a
set of LTLf formulas, an ASP program whose MUSes are in a bijection with the MUCs of the original
specification. Importantly, although we base our reduction on a well-known encoding of LTLf bounded
satisfiability [18, 19], the idea is general enough; it can be applied to other decision procedures, as long
as they can be expressed in ASP. To improve its efficiency, our enumerator checks for unsatisfiability
iteratively by considering traces of increasing length based on a progression strategy [20]. To the best
of our knowledge, we provide the first MUC enumerator for LTLf.

We empirically compared our implementation with the domain-agnostic MUC enumeration tool
must [21]1. Our results suggests ASP is a promising solution for the LTLf MUCs enumeration task.

Related works. The task of computing MUCs has been considered, under different names, for
several representation languages including propositional logic [22], constraint satisfaction problems
[23], databases [24], description logics [25], and ASP [17] among many others. For a general overview
of the task and known approaches to solve it, see [26].

Although the task was briefly studied for LTL (over infinite traces) in [27], it was only recently
considered for the specific case of LTLf [8, 9]. Interestingly, for LTLf the focus has been only on
computing one (potentially non-minimal) unsatisfiable core. To our knowledge, we are the first to
propose a full-fletched LTLf MUC enumerator.

The idea of using a highly optimised reasoner from one language to enumerate MUCs from another
one was already considered, first exploiting SAT solvers [28] and later on using ASP solvers [29]. Our
approach falls into the latter class. Our reduction to ASP is inspired on the automata-based satisfiability
procedure, previously used for SAT-based satisfiability checking [30], alongside an incremental approach
that verifies the (non-)existence of models up to a certain length [18].

2. Preliminaries

We assume the reader to be familiar with syntax and semantics of Linear Temporal Logic over Finite
Traces (LTLf) [1]. In the rest of the paper, we assume all LTLf formulae to be in conjunctive form, e.g.
𝜙 =

⋀︀
𝜑𝑖 for some set of LTLf formulae {𝜑1, . . . , 𝜑𝑘}. With a slight abuse of notation we refer to a

formula in conjunctive form as the set of its conjunts; thus, for example, given 𝜙 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3, the
subformula 𝜓 = 𝜑1∧𝜑3 is denoted by the set {𝜑1, 𝜑3} ⊆ {𝜑1, 𝜑2, 𝜑3}. Recall that given an unsatisfiable
LTLf formula 𝜙 =

⋀︀
𝜑𝑖 in conjunctive form, a minimal unsatisfiable core (MUC) of 𝜙 is an unsatisfiable

formula 𝜓 ⊆ 𝜙 which is minimal (w.r.t. set inclusion); i.e., removing any conjunct from 𝜓 yields a
satisfiable formula [8]. Complexity-wise, it is known that a single formula may have exponentially
many MUCs, but computing one MUC requires only polynomial space; just as deciding satisfiability
[31, 26].

The next subsection recaps required notions of Answer Set Programming (ASP) [13]. We assume
familiarity with ASP. The interested reader can refer to [32, 33] for an introduction to these notions.

2.1. Answer Set Programming

Syntax and semantics. A term is either a variable or a constant, where variables are alphanumeric
strings starting with uppercase letter, while constants are either integer numbers or alphanumeric
strings starting with lowercase letter. An atom is an expression of the form 𝑝(𝑡1, . . . , 𝑡𝑛) where 𝑝 is a
predicate of ariety 𝑛 and 𝑡1, . . . , 𝑡𝑛 are terms; it is ground if all its terms are constants. We say that an
atom 𝑝(𝑡1, . . . , 𝑡𝑘) has signature 𝑝/𝑘. An atom 𝛼 matches a signature 𝑝/𝑘 if 𝛼 = 𝑝(𝑡1, . . . , 𝑡𝑘). A literal
is either an atom 𝑎 or its negation 𝑛𝑜𝑡 𝑎, where 𝑛𝑜𝑡 denotes the negation as failure. A literal is said to
be negative if it is of the form 𝑛𝑜𝑡 𝑎, otherwise it is positive. For a literal 𝑙, 𝑙 denotes the complement of
𝑙. More precisely, 𝑙 = 𝑎 if 𝑙 = 𝑛𝑜𝑡 𝑎, otherwise 𝑙 = 𝑛𝑜𝑡 𝑎. A normal rule is an expression of the form

1https://github.com/jar-ben/mustool
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ℎ← 𝑏1, . . . , 𝑏𝑛 where ℎ is an atom referred to as head, denoted by 𝐻𝑟 , that can also be omitted, 𝑛 ≥ 0,
and 𝑏1, . . . , 𝑏𝑛 is a conjunction of literals referred to as body, denoted by 𝐵𝑟 . In particular a normal rule
is said to be a constraint if its head is omitted, while it is said to be a fact if 𝑛 = 0. A normal rule 𝑟 is safe
if each variable 𝑟 appears at least in one positive literal in the body of 𝑟. A program is a finite set of safe
normal rules. In what follows we will use also choice rules, which abbreviate complex expressions [32].
A choice element is of the form ℎ : 𝑙1, . . . , 𝑙𝑘, where ℎ is an atom, and 𝑙1, . . . , 𝑙𝑘 is a conjunction of
literals. A choice rule is an expression of the form {𝑒1; . . . ; 𝑒𝑚} ← 𝑏1, . . . , 𝑏𝑛, which is a shorthand
for the set of normal rules ℎ𝑖 ← 𝑙𝑖1, . . . , 𝑙

𝑖
𝑘𝑖
, 𝑏1, . . . , 𝑏𝑛, 𝑛𝑜𝑡 𝑛ℎ𝑖; 𝑛ℎ𝑖 ← 𝑙𝑖1, . . . , 𝑙

𝑖
𝑘𝑖
, 𝑏1, . . . , 𝑏𝑛, 𝑛𝑜𝑡 ℎ𝑖,

for each 𝑖 ∈ 1, . . . ,𝑚 where 𝑒𝑖 are of the form ℎ𝑖 : 𝑙
𝑖
1, . . . , 𝑙

𝑖
𝑘𝑖

and 𝑛ℎ𝑖 is a fresh atom not appearing
anywhere else.

Given a program 𝑃 , the Herbrand Universe of 𝑃 , 𝒰𝑃 , denotes the set of constants that appear in
𝑃 , while the Herbrand Base, ℬ𝑃 , denotes the set of ground atoms obtained from predicates in 𝑃 and
constants in 𝒰𝑃 . Given a program 𝑃 , and 𝑟 ∈ 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑟) denotes the set of ground instantiations of
𝑟 obtained by replacing variables in 𝑟 with constants in 𝒰𝑃 . Given a program 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) denotes
the union of ground instantiations of rules in 𝑃 . An interpretation 𝐼 ⊆ ℬ𝑃 is a set of atoms. Given an
interpretation 𝐼 , a positive (resp. negative) literal 𝑙 is true w.r.t. 𝐼 if 𝑙 ∈ 𝐼 (resp. 𝑙 /∈ 𝐼); otherwise it is
false. A conjunction of literal is true w.r.t. 𝐼 if all its literals are true w.r.t. 𝐼 . An interpretation 𝐼 is a
model of 𝑃 if for every rule 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ), 𝐻𝑟 is true whenever 𝐵𝑟 is true. Given a program 𝑃 and
an interpretation 𝐼 , the (Gelfond-Lifschitz) reduct [14], denoted by 𝑃 𝐼 , is defined as the set of rules
obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) by deleting those rules whose body is false w.r.t. 𝐼 and removing all negative
literals that are true w.r.t. 𝐼 from the body of remaining rules. Given a program 𝑃 , and a model 𝐼 , then
𝐼 is also an answer set of 𝑃 if no such 𝐼 ′ ⊆ 𝐼 exists such that 𝐼 ′ is a model of 𝑃 𝐼 . For a program 𝑃 ,
let AS(𝑃 ) denotes the set of answer sets of 𝑃 , then 𝑃 is said to be coherent if 𝐴𝑆 ̸= ∅, otherwise it is
incoherent.

MUSes and MSMs [17]. Consider a program 𝑃 and a set of objective atoms 𝑂 ⊆ ℬ𝑃 . For 𝑆 ⊆ 𝑂,
we denote by enforce(𝑃,𝑂, 𝑆) the program obtained from 𝑃 by adding a choice rule over atoms in
𝑂 (i.e. {𝑜1; . . . ; 𝑜𝑛} ←) and a set of constraints of the form ← 𝑛𝑜𝑡 𝑜, for every 𝑜 ∈ 𝑆. Intuitively,
enforce(𝑃,𝑂, 𝑆) denotes an augmentation of the program 𝑃 in which the objective atoms can be
arbitrarily choosen (i.e. either as true or false) but the atoms in 𝑆 are enforced to be true.

An unsatisfiable subset for 𝑃 w.r.t. the set of objective atoms 𝑂 is a set of atoms 𝑈 ⊆ 𝑂 such that
enforce(𝑃,𝑂,𝑈) is incoherent. US(𝑃,𝑂) denotes the set of unsatisfiable subsets of 𝑃 w.r.t. 𝑂. An
unsastisfiable subset 𝑈 ∈ US(𝑃,𝑂) is a minimal unsatisfiable subset (MUS) of 𝑃 w.r.t. 𝑂 iff for every
𝑈 ′ ⊂ 𝑈 , 𝑈 ′ /∈ US(𝑃,𝑂). Analogously, an answet set 𝑀 ∈ AS(𝑃 ) is a minimal stable model (MSM) of
𝑃 w.r.t. the set of objective atoms 𝑂 if there is no answer set 𝑀 ′ ∈ AS(𝑃 ) with (𝑀 ′ ∩𝑂) ⊂ (𝑀 ∩𝑂).

3. Method

Our idea, inspired by and most closely related to domain agnostic approaches to MUC enumeration de-
veloped in the SAT community [21], is to leverage ASP minimal unsatisfiable subprograms enumeration
techniques to enumerate LTLf formulae MUCs.

In particular, our starting point is the bounded satisfiability approach described in [19]. Given an
LTLf formula 𝜙 and a positive integer 𝑘, we can write a logic program 𝑃 such that answer sets of 𝑃 are
in one-to-one correspondance with satisfying traces of 𝜙 with length up to 𝑘.

Example 1. Consider the formula 𝜙 = (F 𝑎)∧(F 𝑏)∧G (𝑎→ X 𝑏)∧G (𝑏→ X 𝑎). Applying the encoding
proposed in [19], we can encode bounded satisfiability of 𝜙 with the following logic program 𝑃 :

% Directed acyclic graph reification of the input formula.
root(0). conjunction(0, 1). conjunction(0, 2). conjunction(0, 3).
conjunction(0, 4). eventually(1, 3). atom(3, a). eventually(2, 4).
atom(4, b). always(3, 5). always(4, 6). implies(5, 3, 8).



implies(6, 4, 10). next(8, 4). next(10, 3).

% Guess a state for each time-point t
time(0..k-1).
{ trace(T,A): atom(_,A) } :- time(T).

% Discard traces that are not models
:- root(X), not holds(X,0).

% Rules to evaluate extension of holds/2
holds(T,X) :- trace(T,A), atom(X,A).
holds(T,X) :- holds(T+1,F), next(X,F), time(T+1).
holds(T,X) :- holds(T,F), eventually(X,F).
holds(T,X) :- eventually(X,_), ... .
holds(T,X) :- trace(T,_), not trace(T+1,_), always(X,F), holds(T,F).
holds(T,X) :- always(X,F), holds(T,F), holds(T+1,F).
holds(T,X) :- conjunction(X,_), time(T), holds(T,F): conjunction(X,F).

where 𝑘 is a runtime constant that is passed as input to the ASP system.

By applying standard rewriting techniques that are used to debug ASP programs [17], the logic
program 𝑃 can be transformed in a logic program 𝑃 ′ whose minimal unsatisfiable subprograms with
respect to a set of freshly-introduced objective atoms matching signature 𝑝ℎ𝑖/1, correspond to subsets
of 𝜙 that are either minimal unsatisfiable cores or satisfiable subformulas, whose shortest model exceeds
the length 𝑘. We refer to the latter case as a 𝑘-MUC for 𝜙.

Example 2. Applying the rewriting sketched in [17] to the encoding of the previous example, we replacing
the set of facts 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛(0, _) with the following rules:

{ phi(1) }. { phi(2) }. { phi(3) }. { phi(4) }.
conjunction(0, 1) :- phi(1).
conjunction(0, 2) :- phi(2).
conjunction(0, 3) :- phi(3).
conjunction(0, 4) :- phi(4).

obtaining as a result the program 𝑃 ′. The MUSes of 𝑃 ′ (with 𝑘 > 1) are {𝑝ℎ𝑖(1), 𝑝ℎ𝑖(3), 𝑝ℎ𝑖(4)},
{𝑝ℎ𝑖(2), 𝑝ℎ𝑖(3), 𝑝ℎ𝑖(4)}. Indeed, this corresponds to the formulae 𝑀1 = (F 𝑎)∧G (𝑎→ X 𝑏)∧G (𝑏→
X 𝑎), 𝑀2 = (F 𝑏) ∧ G (𝑎→ X 𝑏) ∧ G (𝑏→ X 𝑎), which are the MUCs of 𝜙.

In general, it is not true that all MUSes of 𝑃 ′ correspond to MUCs of 𝜙, since the approach of [19]
is not complete but encodes a semi-decision procedure for LTLf satisfiability. In order to check that
a 𝑘-MUC is MUC (i.e., it is unsatisfiable) we propose the usage of an off-the-shelf LTLf satisfiability
solver. Thus, we propose the architecture sketched in Figure 1a. We refer to 𝑘 as the search horizon
in the enumeration procedure; starting with 𝑘 = 1, MUSes that correspond to LTLf formulae that are
found to be satisfiable are used to expand the value of 𝑘; subformulae that are found to be unsatisfiable
returned as MUCs of 𝜙. The enumeration procedure stops at a given 𝑘 if all MUSes of 𝑃 ′ corresponds
to unsatisfiable subformulae of 𝜙. Further details are provided in the extended version [34].

4. Preliminary Experiment

To validate our approach, we conduct a preliminary experiment comparing our prototype implementa-
tion with must [21], in the task of enumerating MUCs of LTLf specifications in conjunctive form.



𝜙
Rewriter

𝑃

𝑘

LTLf
Oracle

Output
Writer

MUS
Generator

𝑃 ′
𝜙

MUS
Analyzer

MUS

MUS certificate

Certified MUS

Expand 𝑘

𝐿𝑇𝐿𝑓

MUCs

(a) A prototypical architecture leveraging an off-
the-shelf ASP solver (MUS Generator component)
and an off-the-shelf LTLf satisfiability checker
(LTLf Oracle component) to enumerate MUCs
of an input formula 𝜙.

100 102 104

# MUCs Found

100

101

102

103

104

#
M

U
C

s
F

ou
n

d

must.remus

must.marco

must.tome

(b) Number of MUCs computed using our prototype
and must. Our prototype is able to enumerate
more MUCs in all the instances.

Data and Execution environment. We collect unsatisfiable instances from the datasets [35, 36]
(interpreted as LTLf formulae), which are standard datasets in LTLf satisfiability literature, for a total of
2079 unsatisfiable instances. As execution environment we use a system with 2.30GHz Intel(R) Xeon(R)
Gold 5118 CPU and 512GB of RAM with Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-137-generic x86_64).
Memory and time were limited to 8GB and 300s of real time, 700s of CPU time respectively.

The must system implements several domain agnostic MUC enumeration algorithms (ReMUS, TOME,
and MARCO), and among many possible domains it supports also the LTL domain. We patch must
according to the well-known LTLf-to-LTL translation [1] in order to support our use case. As far as we
know, must is the only publicly available system for enumerating MUCs supporting the LTL domain.
The scatter plot in Figure 1b reports the results of our experiment. A point (𝑥, 𝑦) corresponds to an
LTLf instance where our prototype enumerates 𝑥 MUCs and must enumerates 𝑦 MUCs within timeout.

Overall, in all the instances, our approach performs better than any of the enumeration algorithms
implemented in must. Further experiments are provided in the extended version.

5. Conclusions

Satisfiability of temporal specifications expressed in LTLf is crucial in several artificial intelligence
application domains [2, 3, 4, 5]. Therefore, in case of unsatisfiable specifications, detecting reasons for
unsatisfiability — e.g., computing its minimal unsatisfiable cores — is of particular interest. Specifically,
this is essential whenever a specification ought to be satisfiable.

Recent works [8, 9] propose several approaches for single MUC computation but do not investigate
enumeration techniques. However, enumerating MUCs for LTLf specifications is pivotal for enabling
several reasoning services, such as explainability tasks [11], as in the propositional case [37, 38].

To tackle this issue, we propose an ASP-based “generate and check” approach to LTLf MUC enumer-
ation, inspired by the domain agnostic MUC enumeration of [21]. We implement a prototype using
wasp [39] and its MUS enumeration techniques [17]. Our preliminary experiment, featuring standard
formulae in LTLf satisfiability benchmarking, shows promising results.

Concerning future works, we are interested in extending our experimental analysis and the theoretical
framework behind the proposed approach.
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