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Abstract
This contribution investigates structural equation modeling (SEM) as a pre-processing approach to
mitigate measurement bias in algorithmic decision-making systems. We construct latent predictors
and latent targets based on different measurement modeling strategies and evaluate their interplay in
simulations and an application study. We systematically compare SEMs which preserve group-differences
(group-overarching) to models which equalize group-differences (group-specific) in predictors and
outcomes. In our simulations, we find that group-overarching models are a more effective strategy than
group-specific models and lead to smaller subgroup prediction error and better calibrated risk scores.
In the application study we apply SEM to a health risk prediction task and find support for the benefit
of group-overarching models. We conclude that tackling fairness concerns by utilizing measurement
models of both the predictors and the outcome can contribute to the fairness of ADM systems. Utilizing
SEM during pre-processing allows to incorporate substantive knowledge about the prediction task into
the model implementation.
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1. Introduction

The reliance on machine learning (ML) and prediction algorithms for decision-making, known
as algorithmic decision-making (ADM), is becoming increasingly prevalent. Examples of such
systems abound, from loan approval processes in finance [1] to profiling of the unemployed in
the labor market context [2], and even risk assessment in the criminal justice system [3]. The AI
Watch report [4] presents a total of 686 use cases in the public sector in Europe, many of which
placed in domains with profound impacts on life chances. While these systems hold promise
for more accurate and objective decision-making when appropriately designed, they can have
adverse effects due to biased training data and inadequate model specification. Numerous
examples exist of ADM systems exhibiting discriminatory behaviors [5, 6, 7].

Measurement bias has been identified as a key source of algorithmic unfairness [8, 9]. This type
of bias can arise due to the use of biased proxy variables in the prediction models’ specification
step. A prominent example studied by Obermeyer et al. [10] is the use of healthcare costs as
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a proxy for actual health needs in the context of a risk prediction model deployed by health
insurance companies in the U.S. As healthcare costs systematically differ by race, social biases can
sneak into the model due to the use of inadequate proxy variables. Careful model specification
and valid measurement thus is critical to mitigate potential fairness issues of risk prediction
models downstream.

To address this need, we study the use of measurement models – implemented via structural
equation modeling (SEM) – to investigate the impact of different pre-processing strategies of
predictors and targets on a models’ fairness outcomes. Drawing inspiration from the field of
psychometrics [11, 12], we apply measurement modeling in the context of machine learning,
focusing on its impact on algorithmic fairness. Despite calls for more rigorous operational-
izations of latent constructs in prediction models [13], measurement modeling techniques are
rarely studied in fair ML contexts. As a significant exception, Boeschoten et al. [14] draw on the
health prediction example of [10] and show how the use of measurement models can mitigate
biases in the targets of prediction models. We aim to extend these efforts and systematically
test the ability of different SEM specifications to mitigate unfairness.

Our study contributes to the fair ML literature by expanding on the limited body of work on
measurement modeling for algorithmic fairness. Specifically, we compare SEMs which preserve
group-differences (group-overarching models) to models which equalize group-differences
(group-specific models) both in predictors and targets. We additionally study the fairness
implications of different operationalizations of latent constructs by comparing SEMs which use
different indicators in specifying the measurement relationships.

We study the use of SEM as a pre-processing technique by deriving latent scores based on the
specified measurement models. Latent scores can be constructed for predictors and/or targets
and can then be used flexibly in any type of prediction modeling setup. However, different
measurement model specifications result in different sets of latent scores. Understanding how
such different pre-processing strategies interact with fairness is critical for effectively mitigating
unintended outcomes. A systematic mapping of different measurement model specifications to
fairness outcomes can help guide model design, as different approaches may achieve similar
accuracy but differ in their fairness properties. Our focus on mitigating biases via measurement
modeling is especially relevant whenever multiple potential proxy variables for the predictors
and/or target are available and substantive knowledge about the meaning of these predictor
and/or target variables and their measurement relationships can be derived.

In the following sections, we provide a brief overview of measurement modeling from a
social scientific perspective (section 2) and outline structural equation modeling specifications
to address biases in the development of machine learning systems (section 3). We report insights
gained by this approach through simulations (section 4) and a case study (section 5) involving
the prediction of individual health, following the use case of [10]. We conclude by discussing
potentials and pitfalls of the use of SEM techniques for bias mitigation (section 6).

Related Work There is an extensive body of research on pre-processing techniques for
algorithmic fairness, but few methods incorporate substantive knowledge about the variables
used to build the prediction model. Data-driven procedures include suppression, massaging,
reweighing, or resampling [15]. Other studies, like [16] propose to transform data on the basis



of a distortion model, based on the conception that discrimination stems from past differential
treatment. Another popular approach to fairness pre-processing is Learning Fair Representations
[17]. In this method, the idea is to map the covariate space to prototypes that are independent
of the sensitive attribute and to then use the prototypes to predict outcomes.

Another line of work particularly addresses label bias, i.e. proxy variables with systematic
measurement error that are used as prediction outcomes. Potential mitigation strategies in this
context range from careful model specification [18] and sensitivity analysis [19] to adapted
estimation procedures [20]. [21] propose a framework to study and mitigate label bias based on
counterfactual reasoning.

However, there is limited work on incorporating latent constructs and measurement rela-
tionships in the context of fair predictive modeling [13, 22]. Our study is motivated by the
use of structural equation modeling for a prediction models’ target variable as proposed by
[14]. As identified by [14], there can be non-negligible measurement error in the outcome with
respect to sensitive group membership. They show that achieving fair inference on one single
proxy measure of the outcome is insufficient when measurement error is present, as it may
result in unfairness with respect to other proxy measures of the outcome. Instead, their study
proposes utilizing measurement models containing multiple (error-prone) proxies for the out-
come, allowing for fair inference in each proxy simultaneously by accommodating measurement
error differences across groups defined by sensitive attributes. Their study, however, focuses
on measurement modeling of the outcome variable only and does not systematically compare
different SEM specifications and their fairness implications.

2. Background

2.1. By-Proxy Indicators in ADM Models

When ADM systems are built based on risk predictions and models of human behavior, the
predictors and targets used often represent measurements of social indicators, such as job
tenure, the number of chronic diseases or place of residence and living conditions. Yet, these
variables are seldom used for what they appear to measure, but are seen as indicators for
underlying constructs that cannot be measured directly. For instance, job tenure may be used as
an indicator for trustworthiness, the number of chronic diseases as an indicator for current health
and insurance policies are optimized by using postal code as an indicator for the socio-economic
living environment.

However, it is often overlooked that such by-proxy variables can be better indicators of
the underlying latent concept for one demographic group than for another. For example, car
insurances tend to be less expensive for tenured individuals, assuming that reliability differences
between tenured and non-tenured individuals might be true on average [23]. But if Black people
are less likely to be tenured [24], then they are less likely to get the reliability due to tenure
bonus in the calculation, even though there is no reason to assume that Black people are in
general less reliable than white people. As a result, job tenure can be an unfair proxy because it
is more closely related to the underlying idea of reliability for white individuals than for Black
individuals.

We suggest the use of structural equation modeling (SEM) to study and possibly mitigate



the impact of unfair predictors and targets in ADM contexts. SEM methodology was initially
proposed in psychology and is heavily used in the social sciences. The problem of single unfair
indicators has quite some history and is discussed in the field of psychometrics.

2.2. Unfairness in Measurement

In psychometrics, unfair indicators are typically identified because they are used in combination
with other similar indicators in multi-item scales [25]. These scales are then analyzed with
psychometric models such as structural equation models (SEMs) [26]. Structural equation
models use a set of values of observable indicators to infer values of unobservable constructs, so
called latent variables [11, 12]. The idea is to extract the common variance between indicators
and attribute it to the underlying latent variable. In most SEMs the contribution strength (called
loading) may vary between the indicators. The higher a loading is estimated, the better an
indicator is in measuring the underlying construct and the more of its variance is shared with
the other indicators.

The loadings can vary between indicators but also between groups of individuals. Group-
specific loadings can lead to one indicator having a high loading in the first group, but a low
loading in the second group. This expresses that the indicator is a good indicator for one group,
but a worse indicator for another group. This analysis is called multi-group-SEM [27] and fulfills
the need to identify diverging indicator quality. In multi-group SEMs, the final latent scores for
individuals can be computed based on group-specific measurement models. In estimating latent
scores, the indicator values are combined by a weighted sum of the indicator values. Thereby,
weak indicators with low loadings are down-weighted in the calculation. In consequence, group
differences between latent scores based on group-specific measurement models are reduced or
even eliminated, compared to group differences between latent scores estimated from a single
SEM model.

Whenever the latent scores are to be used as a decision criterion, group-specific model
scores are recommended [28]. Only with group-specific model scores, all groups have the same
distribution of latent scores and no group has a higher average. While this issue is well studied
in the context of diagnostic decision-making [29], the question arises how group-specific latent
scores compare to group-overarching (single group) latent scores in the context of fair prediction
modeling.

3. Analytical Strategy

3.1. Multi-Group Measurement Models

In our exploration of SEM for algorithmic fairness, we intend to group sets of variables that
measure the same unobservable, latent construct. We do this based on theoretical considerations
with respect to the substantive meaning of these variables. The group of variables that is assumed
to measure the same latent construct can be modeled to estimate latent variable scores, which
in turn then substitute the original set of variables in the prediction model. In the factor
analytic model for continuous predictor variables [27], the measurement relationships may be
represented as



x = 𝜏 𝑔 + 𝜆𝑔𝜉𝑔 + 𝛿𝑔

where x is the vector of predictor variables measuring the latent construct 𝜉, 𝜏 𝑔 a vector of
intercepts, 𝜆𝑔 a matrix of factor loadings, 𝛿𝑔 a vector of error variables, and groups 𝑔 which
may be defined by (sensitive) demographic attributes. A corresponding measurement model
can be defined for continuous target variables

y = 𝜏 𝑔 + 𝜆𝑔𝜂𝑔 + 𝜖𝑔

where y is the vector of target variables measuring the latent construct 𝜂 and 𝜖𝑔 a vector of
error variables.

In both cases, the measurement model may be specified to map indicator values on the same
scale by setting 𝜏 𝑔 = 𝜏 𝑔

′
, 𝜆𝑔 = 𝜆𝑔′ and 𝛿𝑔 = 𝛿𝑔

′
(𝜖𝑔 = 𝜖𝑔

′
) (group-overarching model). In

contrast, group-specific parameters 𝜏 𝑔 , 𝜆𝑔 and 𝛿𝑔 (𝜖𝑔) may be estimated to map indicator values
on different scales for different groups (group-specific models). In the first case, group differ-
ences are preserved, whereas with group-specific models any initial group-level differences are
equalized in the resulting latent variable scores. The decision on whether group-specific scales
should be preferred is highly context-specific and, given its considerable fairness implications
(section 4), should not only be based on SEM fit measures [30].

Measurement models can be similarly defined for categorical predictor and target variables by
assuming the existence of a continuous response variable underlying each observed categorical
variable and the specification of threshold relations linking both types of variables [12]. With
continuous predictors or targets, the measurement models’ parameters are typically estimated
via Maximum Likelihood estimation [31], whereas with categorical variables Weighted Least
Squares (WLS) estimation may be used [12]. While sample size requirements depend on the
exact model specification [32], it is important to note that it needs to be carefully assessed
whether estimating (multi-group) SEMs in contexts with small subgroups is a viable strategy
[33].

3.2. Use Case

We study different measurement modeling strategies in the context of risk algorithms to guide
health decisions [10]. In this setting, multiple health indicators such as the number of chronic
diseases, blood sugar levels and high blood pressure are used to predict future health outcomes.
In practice, the resulting risk score may be used as a decision criterion for assigning individuals
to health support plans. It has been shown that the commercial approach to defining such risk
scores led to a discrimination against Black patients [10].

We build on the work of Boeschoten et al. [14] and treat discrimination in health risk
prediction as a measurement problem. The target variable, health status, may be measured
using different types of indicators: based on both health and cost indicators or based on
health indicators only. While health indicators such as blood sugar levels indicate a qualitative
dimension of health, cost indicators such as costs for primary care may represent a quantitative
dimension. However, using health cost as a prediction target can lead to unfair outcomes for
Black patients as shown by [10]. While [14] construct a combined health-cost target with SEM,



Figure 1: Our study design with different types of latent predictors, targets and evaluation measures
used in two simulations and an application study.

we compare how the use of different indicators and measurement modeling strategies affect
fairness outcomes.

We do not only focus on measurement error in the target variable but also in the predictor
space. We investigate group-specific and group-overarching predictors when predicting group-
specific and group-overarching targets. Specifically, we investigate if latent variable scores
derived from single or multiple-group SEMs estimated during pre-processing have different
effects on algorithmic fairness.

We conduct simulations and an application study motivated by our use case. Figure 1 presents
our research design. The simulations focus on the interactions between group-overarching and
group-specific predictors and both types of targets. In the application study, we focus only on
the implications of different predictor types, given the same (group-overarching) target.



4. Simulation Study

In the simulation study we use SEM to model the target variable, health status, and one of
the predictor variables, health costs. We simulate group differences in costs and estimate
two sets of targets. The first set includes a group-overarching target, which represents latent
health using health indicators and one cost indicator and a single measurement model for both
race groups. Furthermore, we construct a group-specific target, which measures health based
on health and cost indicators with a multi-group SEM. Both targets draw on health costs to
investigate if the use of SEMs can circumvent fairness issues even when the measurement model
incorporates problematic measurement paths. The second set of target variables draws only
on health indicators to construct group-overarching and group-specific targets. Next to the
latent targets, we construct group-overarching and group-specific measurement models for the
predictor latent costs.

We conduct two simulations (see Figure 1). In simulation 1, we manipulate both the type
of the latent target and of the latent predictor used in the prediction model and evaluate the
calibration of the resulting risk scores. In simulation 2, we investigate overall mean squared
errors (MSE) and group-specific error when predicting a group-overarching target and offering
different versions of the latent predictors (group-overarching vs. group-specific).

4.1. Methods

4.1.1. Data Setup

We generate data for a model that includes latent health as the target variable and three health
indicators and one latent cost variable as the predictor variables. The data generation setup is
presented in Figure 2. We follow a consecutive strategy in simulating the dataset. First, we create
standard normal variables to simulate the three health indicators (hi1-hi3) and the latent cost
variable (costs). The latent health target variable (health) is then derived by a linear combination
of health indicators, latent costs, and a residual. The residuals follows a normal distribution with
𝜇 = 0 and 𝜎 = 0.2. Health indicators and latent costs are each weighted by 0.5, resulting in the
linear generation equation: ℎ𝑒𝑎𝑙𝑡ℎ = 0.5 · ℎ1 + 0.5 · ℎ2 + 0.5 · ℎ3 + 𝑐𝑜𝑠𝑡𝑠+ 𝑟𝑒𝑠. To produce
the latency of the latent costs and latent health variables, indicator variables are generated
by measurement equations 𝑐𝑜𝑠𝑡1 = 𝑎1 + 𝜆 · 𝑐𝑜𝑠𝑡𝑠+ 𝑒1, . . . , 𝑐𝑜𝑠𝑡4 = 𝑎4 + 𝜆 · 𝑐𝑜𝑠𝑡𝑠+ 𝑒4 and
ℎ𝑖4 = 𝑎4 + 𝜆 · ℎ𝑒𝑎𝑙𝑡ℎ+ 𝑒4, . . . , ℎ𝑖6 = 𝑎6 + 𝜆 · ℎ𝑒𝑎𝑙𝑡ℎ+ 𝑒6, with 𝑎 ∼ 𝑁(0, 0.5), 𝜆 = 1, and
𝑒 ∼ 𝑁(0, 0.2). Four indicators are simulated for the latent cost variable, and three indicators
are simulated for the latent health variable.

We then add a group variable (race), which is associated with latent costs and thus introduces
group differences in the simulated structural relationships. We specify a logistic relation-
ship and vary how strongly groups and costs are related by setting different values for our
group-difference parameter 𝛼 and the group proportions by different values for our proportion
parameter ℎ: 𝑝(𝑟𝑎𝑐𝑒 = 1) = 𝑒𝑥𝑝(ℎ+ 𝛼 · 𝑐𝑜𝑠𝑡𝑠)/(1 + 𝑒𝑥𝑝(ℎ+ 𝛼 · 𝑐𝑜𝑠𝑡𝑠)). The 𝛼-values range
between 0 and 3, with a step size of 0.05, resulting in 61 different values. For the proportion of
the disadvantaged group, ℎ is set to be 0 for equally sized groups and 1.5 for a proportion of
around 15% of the disadvantaged group.



Figure 2: Data simulation setup in the simulation study.

The size of each simulated dataset is set to 𝑛 = 1000. To use the dataset for the prediction
task, we sort the health predictors (hi1-hi3) and the cost indicators (cost1-cost3) to the predictor
side and the latent health indicators (hi4-hi6) to the the target side.

4.1.2. Estimation and Prediction

To generate different prediction setups, we then estimate latent variable scores for the target
construct in two ways. For the group-overarching target, we estimate latent scores for health
based on the three target-health indicators (hi4-hi6) and one cost indicator (cost4) with equal
loadings for both race groups (𝜆𝑔1 = 𝜆𝑔2). For the group-specific target, we estimate latent scores
based on the same indicators while allowing for group-specific parameters in the measurement
model by race (𝜆𝑔1 ̸= 𝜆𝑔2). We construct an additional set of latent scores by estimating
group-overarching and group-specific models which draw on the three target-health indicators
(hi4-hi6) only.

We also estimate two versions of the predictor latent health costs based on the cost indicators
(cost1-cost3). For the first version, we map all observations on the same scale using the group-
overarching model with equal loading parameters for both race groups, preserving group
differences in costs (𝜆𝑔1 = 𝜆𝑔2). In the second approach, we map observations on group-specific
scales for latent costs by allowing for group-specific parameters (𝜆𝑔1 ̸= 𝜆𝑔2). By scaling each
group separately, group differences in the resulting latent variable scores are lost.

Based on the simulated data, we eventually estimate different risk scores by predicting
both targets with LASSO regression [34]. The predictor set comprises the health indicators
h1-h3 and the estimated latent scores for costs. Latent health represents the target variable.
Cross-validation is used to determine the optimal regularization parameter 𝜆. The individual
predictions of the LASSO model form the risk scores.



4.1.3. Evaluation

In simulation 1, we assess the calibration of the predicted risk scores with respect to the first
health indicator across different combinations of latent targets and predictors. Specifically, we
assess miscalibration by race by plotting the derived score against the values of single health
indicators separately for racial groups [14, 10]. Congruent lines indicate fairness of the risk
scores with respect to the health indicator. A downwards shift in the plotted relationships for
positive health indicators indicates an underestimation of the risk for that group. We further
evaluate how often group-overarching and group-specific cost predictors are chosen during
variable selection in the LASSO regressions. We manipulate the group differences in costs
(𝛼-values) and hold the group size constant (ℎ = 0), which results in a total of 61 datasets for
the first simulation.

In simulation 2, we focus on the group-overarching target and evaluate how different predictor
versions affect model performance by race. We evaluate the group-specific mean squared errors
(MSE) in comparison to the overall MSE in different conditions. There is a total of 61 (𝛼-values)
x 2 (group proportions ℎ) x 2 (predictor versions; only group specific, only group-overarching)
= 244 datasets for the second simulation.

4.1.4. Software

All analyses are performed using R, version 4.3.2. [35]. For SEM analyses we use the package
lavaan [36] and the package glmnet [37] is used for LASSO regression.

4.2. Results

In simulation 1, we first compare the effects of using different types of latent predictors and
targets on calibration fairness. Figure 3 shows that unfairness in terms of group-specific
miscalibration increases with group differences in health costs as varied by the simulation
parameter 𝛼. However, the degree as to which this miscalibration can be mitigated critically
depends on the measurement modeling strategy that is used for both predictors and target.
Models with group-specific predictors result in unfair risk scores, whereas group-overarching
predictors, particularly in combination with the group-overarching target (first column in
Figure 3), largely reduce racial miscalibration. This pattern remains unchanged when the latent
variable model of the target variable does not include cost as a target indicator (Figure 7 in
Appendix A).

We additionally observe that group-overarching predictors are chosen more frequently in the
LASSO models when predicting group-overarching targets and that group-specific predictors
are chosen more often when predicting the group-specific target (see Table 1). Overall, the
group-specific predictor is chosen less often compared to the group-overarching predictor.

In simulation 2, we focus on the group-overarching target variable, which yields the best
results in terms of calibration fairness in simulation 1. Figure 4 shows how (group-specific)
prediction error depends on the type of latent predictor used as well as on the simulated group
differences and group size. We observe that models which use the group-overarching predictor
yield a low MSE overall, while using the group-specific predictor leads to an increase in MSE
with increases in group differences (𝛼). Furthermore, the group-specific error depends on the



Figure 3: Calibration fairness of risk scores based on prediction models with different types of latent
targets and predictors.

Overarching Group-specific
Predictor in LASSO regression target target

Group-overarching predictor 61 (100%) 26 (42.6%)
Group-specific predictor 12 (19.7%) 61 (100%)

Table 1
Absolute frequencies and percentages of different predictors getting chosen during LASSO prediction.

proportion of the disadvantaged group in the sample. With imbalanced group sizes (right plot
in Figure 4) and group-specific predictors, increasing group differences lead to an increase
in prediction error particularly for members of the minority group, i.e. Black individuals
(comparison between light blue and dark blue line). When the group-overarching scores are
used as predictor, the MSE does not increase with group-differences for both groups (comparison
between orange and red line).



Figure 4: Overall and group-specific error of prediction models using different types of predictors
(group-overarching target).

5. Application Study

In the application study, we apply SEM-based measurement and prediction modeling to a dataset
which includes multiple health indicators, health cost indicators and demographic variables.
We study calibration fairness of the risk score using single group SEMs for modeling the target
variable and compare the effects of group-overarching versus group-specific cost predictors.

5.1. Methods

5.1.1. Data

We use the data provided by Obermeyer et al. [10] and similarly used by Boeschoten et al. [14].
It contains about 48,000 observations and 160 variables with health indicators and health costs
measured at two different time points, the current timepoint (𝑡) and at a timepoint one year
earlier (𝑡− 1), as well as demographic information. This information can be used to train a risk
prediction model, based on which individuals may be assigned to health support programs [10].

5.1.2. Measurement Models

We perform psychometric modeling of the prediction target, health status at timepoint 𝑡, and
for the predictor health costs at timepoint 𝑡 − 1. The target is based on latent scores of a
group-overarching measurement model. We use the following health indicators to define the
latent target: number of chronic diseases, cholesterol, blood sugar, kidney function, blood
pressure, and anemia.

We create two different versions of the predictor health costs. The latent scores of a group-
overarching model mapping health costs on a common scale for white and Black individuals



(recognizing the differences in health costs between the groups), and the latent scores of a
group-specific model mapping health costs on two separate scales (equalizing differences in
health costs between the groups). The indicators for the latent cost variables are costs in
dollars for: dialysis, emergency care, home care, in patient medical care, in patient surgery,
laboratory procedures, and out patient primary care, out patient specialists, out patient surgery,
pharmaceutics, physical therapy, radiology and other costs. We shift the distributions of the
latent scores by their minimum and log-transform the latent values to account for their skewness.

We construct risk scores by predicting the latent health scores derived from the latent variable
model for health at 𝑡 with latent predictors of costs at 𝑡−1. We use LASSO regression predictions
to construct the risk scores.

5.1.3. Evaluation

We evaluate prediction performance and the (mis)calibration of the predicted risk score with
respect to different health indicators. We further evaluate which predictors (group-specific
or group-overarching latent scores) are chosen in the LASSO regression to predict health.
Furthermore, we evaluate the risk scores and prediction errors when only one of the latent
predictors is offered for the prediction task.

5.2. Results

The measurement models for constructing the latent variable scores for the target variable
health at timepoint 𝑡 fit the data well with CFI = .91 and RMSEA = .042. The two SEMs estimated
for modeling health costs at 𝑡−1 have a similar model fit. The fit for both the group-overarching
model (CFI = .83; RMSEA = .050) and for the group-specific model (CFI = .82; RMESA = .052) is
acceptable.

To construct the risk score, we run a LASSO regression predicting latent health. The final
model is chosen by cross-validation and results in a MSE of 0.62 and 72.9% of explained de-
viance. The predictors chosen in the LASSO model are: Age, Hypertension, Kidney function,
Complications in diabetes, Number of chronic diseases and the latent scores for health costs
of the group-overarching model. These results match the simulation results because again the
group-overarching latent scores are chosen over the group-specific scores when predicting a
group-overarching target.

We evaluate calibration fairness by plotting the predicted risk score against single health
indicators in Figure 5. For three out of six indicators (number of chronic diseases, cholesterol
(LDL), and kidney function), we observe congruent lines indicating no differences between Black
and white individuals with equivalent risk scores. However, Black individuals have higher blood
sugar and higher blood pressure compared to white individuals and white individuals have
higher anemia compared to Black individuals with the same predicted risk. These results indicate
that the group-overarching SEM strategy was able to mitigate most, but not all, miscalibration
in the real data application.

In an additional LASSO regression, we delete the group-overarching predictor which leads to
the group-specific predictor being chosen next to the predictors mentioned above. This model
has a MSE of 0.62 and explains 72.9% of the deviance. The group-specific prediction errors of



Figure 5: Relationship between latent risk score and health indicators in the application study.

both LASSO models differ only slightly. When the group-overarching predictor is offered, MSE
for Black individuals is 1.005. When only the group-specific predictor is offered, the MSE for
Blacks increases slightly to 1.008. In comparison, MSE for white individuals increases from
0.5751 to 0.5755. While the increase is higher for Black compared to white individuals, these
differences are extremely small.

6. Discussion

We demonstrate the use of structural equation modeling (SEM) to construct latent predictors
and targets in prediction modeling contexts. SEM can be used as a pre-processing technique for
indicator variables that represent latent concepts. However, the specific type of measurement
modeling strategy (single vs. multi-group SEM) that is employed can have considerable fairness
implications downstream and thus needs to be chosen carefully.

Our results underscore that predictions can be severely miscalibrated when inadequate
modeling strategies are employed. By applying measurement methodology in a use case of
predicting individual health from past health and healthcare costs [10, 14], we demonstrate



how different types of SEMs can improve calibration fairness and group-specific model error.
Given structural group differences, we observe that using group-overarching measurement
models are a more effective strategy than using group-specific models. That is, when the true
relationship includes group differences, multi-group SEMs with group-specific parameters
negate any such differences during pre-processing and thus the resultant latent variable scores
can lead to misspecified prediction models. Employing SEMs which preserve group differences
while drawing on multiple proxy variables, however, can effectively reduce fairness issues
downstream. This finding is independent of the use of healthcare cost as a target indicator and
supported by the second simulation which showed that the group-overarching predictor led to
prediction models with lower group-specific error.

We highlight that integrating substantive knowledge both about the predictors and the target
during model design is critical. We recommend considering SEM whenever predictor or target
variables are by-proxy indicators and have questionable value with respect to different social
groups. Additionally, however, we advocate for a comprehensive investigation of resulting
latent scores under consideration of group-specific sample sizes. Final choices regarding the
design of the prediction system should be made using a combination of empirical results and
practical as well as substantive considerations in the context of the specific use case. Eventually,
the main goal of utilizing SEM during pre-processing is to incorporate substantive knowledge
about the prediction task into the model implementation.

We note that we explored only a single use case and thus advocate for more research on
the potentials and limitations of different types of SEMs in various ADM contexts. Another
limitation of this study is that we only examined risk scores built on the basis of LASSO
regression. With many plausible alternative SEM designs and ML models which could have
been studied additionally, there is a large space of decisions open for exploration.

In conclusion, we highlight that tackling fairness concerns by utilizing measurement models
of both the predictors and the target can contribute to the fairness of ADM systems. The
integration of techniques like SEM from psychometrics into machine learning workflows
presents a potential avenue for refining the development of fair decision-making algorithms.
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A. Appendix

We conducted simulations with an additional set of target variables. While the commercial
risk score [10] and also the analyses by Boeschoten et al. [14] included health costs as an
indicator for the prediction target, we consider this measurement path problematic. Therefore,
we repeated our analyses without using the cost indicator for constructing the latent target
(Figure 6). The calibration fairness results, however, remained unchanged, highlighting that the
main cause of variation is the use of single- vs. multi-group SEMs when constructing latent
scores (Figure 7).

Figure 6: Data simulation setup for additional set of target variables (without cost as target indicator).



Figure 7: Calibration fairness of risk scores based on prediction models with different types of latent
targets (without cost as target indicator) and predictors.
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