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Abstract5

Current fairness toolkits in machine learning only admit a limited range of fairness definitions and have6

seen little integration with automatic differentiation libraries, despite the central role these libraries7

play in modern machine learning pipelines. We present a framework of fairness regularization terms8

(fairrets) which quantify bias as modular, flexible objectives that are easily integrated in automatic9

differentiation pipelines. By employing a general definition of fairness through linear-fractional statistics,10

many group fairness definitions can be enforced. Experiments show minimal loss of predictive power11

compared to baselines. Our contribution includes a PyTorch implementation of the fairret library.12
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1. Introduction14

The field of AI fairness has been concerned with formalizing ethical concepts of discrimination15

and bias in technical definitions that can be assessed and pursued in AI systems [1]. A popular16

paradigm for this formalization in binary classification is to use group fairness definitions [2],17

which require the model’s predictions to treat people from different sensitive groups similarly.18

Despite ample research on group fairness definitions and methods to achieve them, an19

easy-to-use and flexible implementation has not yet been realized. Popular fairness toolkits20

such as Fairlearn [3] and AIF360 [4] expect the underlying model in the form of scikit-learn21

Estimators [5] that can be retrained at-will in fairness meta-algorithms, but this aligns poorly22

with the paradigm of automatic differentiation libraries like PyTorch [6], which have become23

the bedrock of modern machine learning pipelines. These toolkits only integrate with automatic24

differentiation in their implementations of adversarial fairness [7], but these still require full25

control over the training process and lack generality in the fairness notions they can enforce.26

We formally propose the fairret framework in an effort to resolve these issues. At its27

core, the framework uses fairness regularization terms (fairrets) that can be easily integrated28

into PyTorch-based pipelines (an example is given in Appendix A). They pursue any fairness29

definition expressed as a parity between statistics in a linear-fractional notation, which covers30

all group fairness definitions considered by Verma and Rubin [2]. Thus, all these definitions are31

fully compatible with any fairret in any differentiable model.32
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Figure 1: This diagram shows the modular nature of fairret and provides an overview of the fairness

definitions and methods present in the framework and notes the flexibility to implement novel ones.

In contrast to Fairlearn and AIF360, our proposed fairrets act as a loss term that can simply33

be added within a training step. Two PyTorch-specific projects with similar goals as our paper34

are FairTorch [8] and the Fair Fairness Benchmark (FFB) [9]. However, neither present a formal35

framework and both only support a limited range of fairness definitions.36

This work is an extended abstract of a full paper [10] presented at the International Conference37

on Learning Representations (ICLR) 2024. The implementation of our framework is available at38

https://github.com/aida-ugent/fairret, which we are currently extending into a full library.39

2. How to build your fairret40

A fairret is defined by two elements. First is the fairness definition it aims to satisfy. Second is41

the method used to evaluate the model with regard to that fairness definition. Figure 1 illustrates42

this combination and lists the definitions and methods already integrated into the framework.43

2.1. Fairness definitions44

Let X ∈ R𝑑𝑥 denote the feature vector of an individual, S ∈ R𝑑𝑠 their sensitive feature vector45

and 𝑌 ∈ {0, 1} a binary output label. We want to learn a probabilistic classifier 𝑓 such that46

its predictions 𝑓(X) match 𝑌 while minimizing disparities over different S. Our definition of47

sensitive features S as real-valued, 𝑑𝑠-dimensional vectors allows us to take a mix of multiple48

sensitive traits into account, both discrete and continuous. Categorical sensitive features are49

one-hot encoded, e.g. by encoding ‘white’ or ‘non-white’ as the vectors S = (1, 0)⊤ and50

S = (0, 1)⊤ respectively. The variable 𝑆𝑘 denotes the 𝑘th sensitive feature.51

We use a simplified version of the solution from Celis et al. [11] to translate fairness definitions52

as a parity between linear-fractional statistics 𝛾:53

𝛾(𝑘; 𝑓) =
E[𝑆𝑘(𝛼0(X, 𝑌 ) + 𝑓(X)𝛽0(X, 𝑌 ))]

E[𝑆𝑘(𝛼1(X, 𝑌 ) + 𝑓(X)𝛽1(X, 𝑌 ))]
(1)54

https://github.com/aida-ugent/fairret


Table 1

Fairness definitions and their 𝛼 and 𝛽 functions. Conditional Demographic Parity encompasses many

notions with an arbitrary function 𝜁 conditioned on the input X.

Fairness Definition 𝛼0 𝛽0 𝛼1 𝛽1

Demographic Parity [12] 0 1 1 0

Conditional Demographic Parity [13] 0 𝜁(X) 𝜁(X) 0

Equal Opportunity [14] 0 Y Y 0

False Positive Parity [14] 0 1 - Y 1 - Y 0

Predictive Parity [15] 0 Y 0 1

False Omission Parity Y -Y 1 -1

Accuracy Equality [16] 1 - Y 2Y - 1 1 0

Treatment Equality [16] Y -Y 0 1 - Y

with 𝛼0, 𝛼1, 𝛽0, and 𝛽1 functions that do not depend on S or 𝑓 . Table 1 shows the statistic 𝛾55

for a range of fairness definitions, defined through their 𝛼 and 𝛽 functions.56

The set ℱ𝛾 of probabilistic classifiers 𝑓 that adhere to the fairness definition is expressed as57

ℱ𝛾 ≜ {𝑓 : R𝑑𝑥 → {0, 1} | ∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓) = 𝛾(𝑓)}. (2)58

In other words, the statistic 𝛾(𝑘; 𝑓) for each sensitive attribute 𝑆𝑘 should equal the overall59

statistic 𝛾(𝑓) ≜ E[𝛼0(X,𝑌 )+𝑓(X)𝛽0(X,𝑌 )]
E[𝛼1(X,𝑌 )+𝑓(X)𝛽1(X,𝑌 )] computed independently of the sensitive attributes. By60

fixing 𝛾 to a constant 𝑐 ∈ R, any fairness definition can be enforced with a linear constraint:61

𝛾(𝑘; 𝑓) = 𝑐 ⇐⇒ E[𝑆𝑘(𝛼0(X, 𝑌 )− 𝑐𝛼1(X, 𝑌 ) + 𝑓(X)(𝛽0(X, 𝑌 )− 𝑐𝛽1(X, 𝑌 )))] = 0 (3)62

2.2. Regularization terms63

The bias of a parameterized, probabilistic classifier ℎ is quantified as a fairret that can be64

minimized through automatic differentiation, in addition to any existing loss function ℒ𝑌 :65

min
ℎ

ℒ𝑌 (ℎ) + 𝜆𝑅𝛾(ℎ) (4)66

where 𝑅𝛾(ℎ) is the fairret for the fairness definition with statistic 𝛾 and strength 𝜆 ∈ R>0.67

The fairret framework admits many kinds of regularizers, due to the practical form of the68

statistics 𝛾. Two types are currently integrated, namely violation and projection fairrets.69

We first discuss the Norm fairret, a type of violation fairret:70

𝑅𝛾(ℎ) ≜

⃦⃦⃦⃦
𝛾(𝑘;ℎ)

𝛾(ℎ)
− 1

⃦⃦⃦⃦
(5)71

with ‖·‖ a norm overR𝑑𝑠 . Such a regularization term has been proposed several times [17, 18, 19],72

though without the same degree of modularity with respect to 𝛾.73

Second, an example of a projection fairret is the 𝐷𝐾𝐿-projection:74

𝑅𝛾(ℎ) ≜ min
𝑓∈ℱ𝛾(𝛾(ℎ))

E[𝐷𝐾𝐿(𝑓(X)||ℎ(X))] (6)75

with 𝐷𝐾𝐿 the Kullback-Leibler divergence. The fairret maps ℎ onto the closest fair model76

𝑓 ∈ ℱ𝛾(𝛾(ℎ)). Projection fairrets generalize some prior work [20, 21, 22] to all definitions with77

linear-fractional statistics, as they are enforced with linear constraints using Eq. (3).78
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Figure 2: Mean test set results with confidence ellipse for the standard error (see Appendix B). Each

marker is a separate combination of dataset, fairret, fairret strength, and statistic. Results in the top

left are optimal. Failed runs (with an AUROC far worse than the rest) are omitted.

3. Experiments79

Experiments were conducted on the LawSchool1, and ACSIncome [23] datasets. Each dataset80

has multiple sensitive features, including some continuous. Figure 2 shows the results for the81

experiments. Each point represents a specific fairret optimized for that statistic with a certain82

strength 𝜆. An Naive baseline with 𝜆 = 0 is also included. In the full paper, the evaluation is83

done on two additional datasets and the fairrets are compared to existing methods [10].84

The results in Figure 2 show that the performance of a fairret is dependent on the dataset85

itself and the fairness definition it aims to satisfy. The non-linear (yet still linear-fractional)86

fairness statistics like predictive parity and treatment equality seem more difficult to minimize.87

This leads us to conclude that not one fairret can be chosen as the optimal solution, but rather88

that the best fairret is dependent on the fairness definition and the dataset.89

4. Conclusion90

The fairret framework allows for a wide range of fairness definitions by comparing linear-91

fractional statistics for each sensitive feature. We implement several fairrets and show how92

they are easily integrated in existing machine learning pipelines utilizing automatic differentia-93

tion. More details can be found in the full paper [10].94

1Curated and published by the SEAPHE project
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A. Code Use Examples179

1 import torch180

2 import torch.nn.functional as F181

3 from fairret.statistic import TruePositiveRate182

4 from fairret.loss.violation import NormLoss183

5184

6 # The TruePositiveRate class is a subclass of LinearFractionalStatistic.185

7 statistic = TruePositiveRate()186

8187

9 # The fairret modules accept any LinearFractionalStatistic instance.188

10 fairret = NormLoss(statistic)189

11 fairret_strength = 1.0190

12191

13 def train_epoch(train_loader, model, optimizer):192

14 for feat, sens, target in train_loader:193

15 optimizer.zero_grad()194

16195

17 logit = model(feat)196

18 bce_loss = F.binary_cross_entropy_with_logits(logit, target)197

19 fairret_loss = fairret(logit, feat, sens, target)198

20 loss = bce_loss + fairret_strength * fairret_loss199

21 loss.backward()200

22201

23 optimizer.step()202

Listing 1: Example use of the fairret library in a simple PyTorch setup.

Listing 1 displays a code example of how the fairret can easily be deployed in a typical203

PyTorch [6] setup. It suffices to simply load a subclass of LinearFractionalStatistic and204

pass it on to a fairret implementation instance such as NormLoss (as defined in Def. 7). The205

fairret is then used to compute the quantification of unfairness as a loss like any other in206

PyTorch. In this case, we use the true positive rate statistic to pursue the fairness notion of207

equalized opportunity (EO).208

B. Confidence Ellipses209

The confidence ellipses we use in Fig. 2 are uncommon in machine learning literature. Yet,210

they work well for our purpose of comparing trade-offs between metrics that may be noisy211

depending on randomness during training and dataset split selection.212

Recall that 1-dimensional confidence intervals typically assume a mean estimator to be213

normally distributed. The confidence interval then denotes the uncertainty of the sample214

mean using the standard error. Similarly, confidence ellipses assume a 2-dimensional point,215

i.e. the 2-dimensional mean estimator, to have a multivariate normal distribution that can be216

characterized through the sample mean and standard error statistics.217

Our implementation of the confidence ellipses follows a featured implementation on matplotlib2.218

However, a crucial difference is that this implementation computes a confidence interval for a219

2-dimensional random variable based on the covariance matrix for the standard deviation of220

2https://matplotlib.org/3.7.0/gallery/statistics/confidence_ellipse.html.

https://matplotlib.org/3.7.0/gallery/statistics/confidence_ellipse.html


samples of that variable. Following observations by Schubert and Kirchner [24], we instead221

want to show the uncertainty of the mean estimator, which should use the standard deviation222

of that estimator, i.e. the covariance for the standard error. This is accomplished by dividing the223

covariance matrix in the matplotlib implementation by the number of seeds (5) we use in224

our experiments.225


	1 Introduction
	2 How to build your fairret
	2.1 Fairness definitions
	2.2 Regularization terms

	3 Experiments
	4 Conclusion
	A Code Use Examples
	B Confidence Ellipses

