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Abstract

The widespread use of artificial intelligence (AI) systems across various domains is increasingly surfacing
issues related to algorithmic fairness, especially in high-stakes scenarios. Thus, critical considerations of
how fairness in Al systems might be improved—and what measures are available to aid this process—are
overdue. Many researchers and policymakers see explainable AI (XAI) as a promising way to increase
fairness in Al systems. However, there is a wide variety of XAI methods and fairness conceptions
expressing different desiderata, and the precise connections between XAI and fairness remain largely
nebulous. Besides, different measures to increase algorithmic fairness might be applicable at different
points throughout an Al system’s lifecycle. Yet, there currently is no coherent mapping of fairness
desiderata along the Al lifecycle. In this paper, we we distill eight fairness desiderata, map them along
the Al lifecycle, and discuss how XAI could help address each of them. We hope to provide orientation
for practical applications and to inspire XAI research specifically focused on these fairness desiderata.
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1. Introduction

The emergence and widespread use of artificial intelligence (Al) systems across various sectors
and domains is increasingly shifting attention from considerations of mere performance to
considerations about algorithmic fairness. This is particularly relevant for systems employed
in high-stakes scenarios and especially pressing in contexts prone to harmful societal biases
[1, 2]. This has sparked a growing demand for approaches to scrutinize and improve fairness
in Al systems. In the literature, there is a common recognition that fairness in Al systems
demands various perspectives and measures (e.g., [3, 4, 5]). In this paper, we set out to integrate
two strategies that have been suggested: First, a growing community of researchers proposes
explainable AI (XAl) as a versatile and powerful tool to combat unfairness [6]. Second, others
have focused on the Al lifecycle and tried to determine where fairness issues originate (e.g.,
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[7, 8]). They hope that once identified, fairness issues can be mitigated by taking appropriate
steps in the relevant phase within the lifecycle.

While both these strategies seem intuitively promising, neither currently presents a satis-
factory and comprehensive picture. A primary reason why neither approach currently fulfills
their potential is, we take it, that there are various types and kinds of fairness discussed in
the literature, yielding different fairness desiderata. Differentiating between these desiderata
is crucial to gain an overall picture of which measures are most promising to address fairness
in which contexts. Without such differentiation, the utility of XAl is not as straightforward
as commonly claimed. Accordingly, there is a need for more clarity about how, exactly, XAI
contributes to which fairness desideratum [6]. Existing discussions on this matter suffer, by
and large, from both a too narrow conception of XAI and a mostly under-specified notion
of fairness. Similarly, existing attempts to map measures for achieving fairness onto the Al
lifecycle remain crucially incomplete, for they have limited their attention to only a subset of the
relevant fairness desiderata. To overcome these limitations, we distill eight fairness desiderata,
map them along the Al lifecycle, and discuss how XAI can help address each of them.

For the purposes of this paper, we will focus specifically on how XAI can be utilized to
improve Al systems’ fairness throughout their lifecycle. Concerning this question, we aim to
develop a holistic account based on the fairness desiderata we distill. While our proposal is not
intended as a guideline, we believe it will stimulate scientific discussions about and practical
applications of fairness measures and, as such, will be a valuable starting point to explore
fairness opportunities for researchers, developers, and regulators alike.

We begin by introducing preliminaries and diagnosing the problem in Section 2. Importantly,
we do not limit our understanding of algorithmic fairness to computational perspectives. In
Section 3 we propose eight fairness desiderata from interdisciplinary literature: fairness un-
derstanding, data fairness, formal fairness, perceived fairness, fairness with human oversight,
empowering fairness, long-term fairness, and informational fairness (contribution #1). We map
our fairness desiderata along the different stages within the Al lifecycle and suggest that each
fairness desideratum affords a different entry point for taking measures to improve fairness.
This closes the first gap in the current literature as it highlights where in the lifecycle different
fairness desiderata become especially relevant (contribution #2). Utilizing this mapping, we
discuss how XAI can be leveraged to address the different fairness desiderata at the respective
points throughout the Al lifecycle. This closes the second gap in the current literature as it
allows us to systematically examine the potential of XAI to address algorithmic fairness in
different circumstances (contribution #3). To illustrate the utility of our approach, we discuss
its application to the COMPAS case (see [9]) in Section 4. Before closing, we point to some
avenues for future research in Section 5.

2. Background

In this article, we contribute to closing two research gaps: 1) considerations of fairness along
the Al lifecycle are incomplete, and 2) it is unclear how exactly XAI can help foster fairness.
Before closing these gaps, we retrace contributions and debates of prior works.



2.1. Algorithmic Fairness

The debate on algorithmic fairness draws inspiration from various disciplines. Several scandals
surrounding Al systems that disadvantage marginalized groups [9, 10, 11] have shattered
early hopes put into the “neutrality” of Al [1]. In reaction, scholars from computer science,
philosophy, social science, law, and psychology have been engaging in debates on what it means
for algorithmic decision-making to be fair (see [12] for interdisciplinary perspectives).

The technical debate on algorithmic fairness primarily focuses on formal measures of fair-
ness [13, 14, 15]. After it has proven unhelpful to remove information about membership in
marginalized groups from training data (“fairness through unawareness” [16]), most approaches
from the field of computer science rely on comparing the outcomes for people from different
groups. An important finding is that the different formal measures for fairness can, in most
cases, not be fulfilled simultaneously [17, 18]. Thus, (formally) fair Al systems require crucial
design choices about which formal measures to apply in which context.

To aid such decisions, philosophers have connected formal measures to different philosophical
theories [19, 20, 21]. In general, “fairness” is a normative concept—and debates about fairness
can be understood as a way to discuss what is morally right or wrong in a given case (see
[12]). More specifically, fairness can be understood as an issue of justice, non-discrimination, or
equality [19], which connects it to numerous strands of philosophical discussion.

Beyond that, social scientists have pointed out shortcomings of existing formal methods,
e.g., problems in detecting issues of intersectionality [22] and their reliance on constructed
categories like race and gender [23]. Legal scholars are primarily interested in how legislation on
discrimination can be applied to algorithmic decision-making and whether additional regulation
isrequired [24, 1]. Psychological research is generally interested in whether algorithmic decision-
making is perceived as fair [4, 25]. For example, Colquitt and Rodell [26] distinguish four different
psychological dimensions of fairness: Whether the outcome is fair (viz., distributive justice),
whether the process that leads to the outcome is fair (viz., procedural justice), whether the
information about the decision is communicated truthfully and thoroughly (viz., informational
justice), and whether individuals are treated respectfully (viz., interpersonal fairness).

Overall, algorithmic fairness can be addressed from several different angles—some of which
are complementary, some of which are contradictory [27, 18]. This stresses the need to be clear
about the specific desideratum behind any attempt to improve fairness.

2.2. Considerations of Fairness Along the Al Lifecycle Remain Incomplete

A common strategy to determine potential entry points to address fairness issues involves
examining each step of the Al lifecycle. There have been several proposals of prototypical Al
lifecycles (e.g., [28, 29, 30, 31, 32]), each with slightly different stages or adapted to different
application areas. The Al lifecycle used in this article is a combination of the proposals by
Quemy [31] and Wang et al. [30] involving the following stages: 1) problem formulation, 2)
data collection, 3) data analysis, 4) feature selection, 5) model construction, 6) model evaluation,
7) deployment, and 8) inference and usage (see Figure 1).

First, problem formulation involves abstraction and formulation of the problem, which is to
be solved using Al Afterward, data collection aims to establish a representative data set suitable
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Figure 1: The Al Lifecycle we use, combined from Quemy [31] and Wang et al. [30].

to develop an Al system able to solve the defined problem. Data analysis includes descriptive
statistics to understand the characteristics of the data at hand and data pre-processing to
prepare the data for further operations. Subsequently, in the feature selection stage, features are
excluded, transformed, or aggregated for effective and efficient handling in the training process.
Model construction, then, includes the selection of the training algorithm and the training itself.
Iteratively, performance objectives are tested during model evaluation and optimized through
algorithm adjustments, e.g., parameter tuning. Deployment refers to the integration of the Al
system into a productive environment once the model achieves sufficient performance. Finally,
inference & usage describes concrete output generated by the Al system and its impact on the
surroundings, such as the business context, society, and environment. Note that these stages
are often not entered sequentially, leaving room for iterations and loops between stages [33].

Much research has focused on what types of bias can emerge in or affect different steps of
the Al lifecycle (e.g., [3, 8, 34, 35]). For example, Singh et al. [35] take the CRISP-DM model [28]
and review the types of bias that can occur at different stages of this model. However, these
considerations remain incomplete, as most of these works have a strong technical focus and deal
only with formal notions of fairness, e.g., by providing guidance for choosing fairness metrics
or debating the role of potential fairness-utility tradeoffs (e.g., Castelnovo et al. [36], De-Arteaga
et al. [3]). Against this background, it is important to develop a view that also maps other
conceptions of fairness into the lifecycle.

2.3. Considerations of XAl for Fairness Remain Incomplete

To amend the lack of understanding of Al-based systems, their reasoning processes, and their
outputs, the research field of XAI emerged in recent years [37, 38, 39, 40, 41]. Generally, XAI
aims to provide a stakeholder with information about some aspect of an Al system to facilitate
their understanding of this aspect [39]. Understanding (some aspect of) a system is often just an
intermediary step to other goals, such as fairness or appropriate reliance [42, 43]. For example,
by understanding how a particular system’s output came to be, prior work has argued that
a person should be enabled to assess whether this output was based on valid criteria or not
[38, 44]. If an unfavorable decision was based on (a proxy for) the skin color of a person, this
person should supposedly be able to recognize that they were treated unfairly [45, 46].
However, the goal of XAI is often narrowly construed as the development of methods to
create interpretable surrogate models of black box models [47, 48]. Such a narrow view of
XA artificially restricts the space of options that can be chosen to facilitate stakeholders’
understanding of Al systems. Take, e.g., model cards for model reporting [49] or datasheets
for data sets [50]. Although these approaches provide important information about certain



aspects of an Al model® (e.g., which training data was used) and thus improve stakeholders’
understanding of these aspects, they would rarely be counted as XAl Further, XAl methods alone
do not provide other kinds of highly relevant information, such as the normative motivations
guiding the development of an Al model [52], the analysis of the social context in which it is
deployed [53], or the descriptive outcome statistics of the deployed model [54].

In a similar vein, the high hopes placed in XAl to mitigate issues of fairness often remain vague
or unfulfilled [6]. Prior works have criticized the explanatory value [47, 55], susceptibility to
manipulations [56, 57], and unsatisfactory interpretations [58, 6] of XAI methods. For example,
popular feature-based explanations like LIME [59] or SHAP [60] highlighting the use of sensitive
features (e.g., gender and race) provide little information about fairness. This is because these
features are often correlated with proxy variables and embedded in use case-specific normative
contexts [16, 61, 62].

Instead, broadening the conception of XAI enables a more holistic and meaningful mapping
of how information about an Al system can contribute to various fairness desiderata. Against
this background, we propose to distinguish the narrow conception of XAlI, solely pertaining to
the inner workings of an Al system, from a broad conception of XAl that provides information
beyond these inner workings and includes explanations of the broader socio-technical system
[63]. Specifically, we suggest that the broad conception of XAl includes all types of information
that increases stakeholders’ understanding of (aspects of) an Al system. For the remainder of
this paper, if not indicated otherwise, we refer to the broad conception when we mention XAI.

3. How XAl Can Be Leveraged for Fairness Along the Al Lifecycle

Grounded in a broad interdisciplinary literature review (summarized in Table 1), we distill eight
categories of what previous work on fairness has called for. We call these categories fairness
desiderata, and each desideratum can be instantiated with specific fairness objectives. For the
purposes of this paper, we focus specifically on fairness desiderata connected to XAIL While
various stakeholders are involved in utilizing XAI for fairness, an extensive discussion of their
various roles is beyond the scope of this paper. When we mention stakeholders, we rely on the
taxonomy provided by Langer et al. [40].

In what follows, we introduce our eight fairness desiderata, describe the underlying core
ideas for each, discuss how they relate to similar concepts, map them onto the Al lifecycle, and
elaborate on how we think XAI could contribute to their satisfaction (see Figure 2). Note that
our proposal does not necessarily present a comprehensive list (see Section 5).

3.1. Fairness Understanding

“Accounting for bias not only requires an understanding of the different sources, that is, data,
knowledge bases, and algorithms, but more importantly, it demands the interpretation and
description of the meaning, potential side effects, provenance, and context of bias.” [2, p. 8]

"Throughout this paper, we use the term “Al models” synonymously for “machine learning model” or “ML model”.
While we acknowledge the technical distinction between Al and Machine Learning (ML) as discussed in [51], we
adopt the use of the broader “Al” term as the prevalent terminology established in the scientific community. This
choice reflects the contemporary linguistic trend rather than a lack of distinction between the two phenomena.



Table 1

Fairness desiderata and their related concepts in existing interdisciplinary literature.

Fairness desiderata

Related concepts

Fairness understanding

Gaining higher-level insights on fairness and the socio-
technical challenges surrounding the development and de-
ployment of an Al application to specify concrete fairness
objectives.

Understanding bias [2]

Interdisciplinary fairness conceptualization [12]
Lessons from political philosophy [19]
Socio-technical perspective [64]

Data fairness

Identifying and addressing flaws in the data set that might
be unfair themselves or potentially lead to downstream viola-
tions of fairness objectives.

Sampling bias [65, 3]
Data errors and bias [66]
Data-centric factors in algorithmic fairness [67]

Formal fairness
Identifying and addressing model properties leading to viola-
tions of formal fairness objectives.

Algorithmic bias [3]

Formal fairness definitions [68]

Fairness metrics [15]

Statistical fairness criteria [13]

Disparate impact & disparate treatment [1]

Perceived fairness
Providing affected parties with explanations and justifications
to improve or “calibrate” fairness perceptions.

Fairness perceptions [4, 69]
Perceptions of justice [70, 71]
Fairness judgment [72]
Society-in-the loop [73]

Fairness with human oversight

Supporting human decision-makers interacting with an Al
system to effectively align human discretion with fairness
objectives.

Human-ML augmentation for fairness [74]
Appropriate reliance [75]
Human-in-the-loop [72]

Domain expertise [76]

Empowering fairness
Providing affected parties with practical information to foster
contestability and recourse.

Self-informed advocacy [77]
Procedural fairness [78]
Counterfactual explanations [79]
Fair and adequate explanations [80]
The explanation game [81]

Long-term fairness

Monitoring and analyzing the socio-technical long-term im-
pacts of algorithmic decision-making to adjust unfair reper-
cussions over time.

Long-term effects of algorithmic fairness [3]
Fairness drift [82]

Fairness through time [83]

Fairness monitoring [84, 85]

Informational fairness
Providing truthful, understandable, and relevant information
about all fairness desiderata across the Al lifecycle.

Informational fairness [70]
Design publicity [52]
Model cards [49]

Outward transparency [86]

Before mitigating algorithmic unfairness, developers should reflect upon the multidimensional
and conflicting nature of fairness, define concrete fairness objectives, and understand how
these might be achieved. In light of this, fairness understanding relates to the specification of
concrete fairness objectives and knowledge about the socio-technical challenges surrounding

the development and deployment of an Al application.

Among others, this may include a sound understanding of fairness schools of thought [12],
existing social inequalities [53], stakeholder-centered fairness requirements [40], or relevant
legal frameworks [87]. As the following fairness desiderata will show, there is no one-size-fits-all
way in which a system can be fair, both across (e.g., a system can be perceived as fair despite
not being formally fair) as well as within fairness desiderata (e.g., formal fairness criteria pose

inherent tradeoffs [27]).
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insights from all fairness endeavors across the lifecycle.
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Figure 2: Fairness desiderata along the Al lifecycle depicting how XAl may directly contribute to these
desiderata and how it may contribute to informational fairness across all desiderata (symbolized by
speakerphones).

Stage of the Lifecycle. In the Al lifecycle, we map fairness understanding to the initial
problem formulation step because all subsequent steps are guided by the fairness objectives
discussed and defined in the early stages. We note, however, that fairness understanding is
developed iteratively, based on trials and errors, interdisciplinary exchange, and stakeholder
feedback from various development stages—similarly to how a traditional business problem can
be better understood and adjusted over the entire course of an Al project.

The Role of XAI XAI can contribute to a better understanding of fairness across all fairness
desiderata which, e.g., may lead to a re-evaluation of earlier fairness objectives. Data-centric
explanations [88] might reveal pre-existing group disparities (e.g., in the form of differing
base rates such as the gender pay gap), which are crucial factors in determining the fairness
objectives and how to achieve them. Further, simulating and testing various formal fairness
metrics promotes an understanding of conflicting objectives that may lead to adjustments
or re-weightings of fairness objectives [3]. Similarly, XAI may change stakeholders’ view of
proactively using sensitive features in a specific decision-making context [62]. Concerning
“substantive” fairness [53, 21], XAI may also be applied to normatively gauge the legitimacy of
certain features depending on the societal context.

3.2. Data Fairness

“Explanations [...] are crucial for helping system developers and ML practitioners to debug
ML algorithms by identifying data errors and bias in training data, such as measurement
errors and misclassifications, data imbalance, missing data and selection bias, covariate shift,
technical biases introduced during data preparation, and poisonous data points injected through
adversarial attacks.” [66, p. 248]



Undesirable model behavior often stems from flawed data that contains misrepresentations
of the world (e.g., erroneous, mislabeled, or imbalanced data) or accurate representations that
are societally undesirable (e.g., historical inequalities). The goal of data fairness is to identify
and address such flaws in the data set used to train an Al model.

Prior studies have pointed out data issues as drivers of unfairness [89, 65, 67] or highlighted
data as a starting point for unfairness mitigation [90, 91, 92]. Mehrabi et al. [65] provide a
comprehensive list of data biases that may introduce unfairness early on in Al development.
Awareness and understanding of these biases are crucial to derive strategies to handle them.

Stage of the Lifecycle. Data fairness relates to data collection (e.g., in the form of labeling
errors, sampling bias, imbalances, etc.) and data analysis, which aims to identify and potentially
mitigate unfair data characteristics early on. However, data fairness also reaches into feature
selection which is usually part of an iterative loop together with model construction. For
example, features might be dropped if they are not justifiably task-relevant. Importantly, in the
context of sensitive attributes, developers should always be aware of the flaws of the idea of
“fairness through unawareness” [16, 62].

The Role of XAI. As data is a main source of unfairness [65], XAl is suited to identify
potential disparities, imbalances, or abnormalities manifested in the available data early on.
Descriptive statistics are a natural first step to explore pre-existing disparities [67]. Anik and
Bunt [88] and Mitchell et al. [49] provide two examples of how to present simple descriptions
and visualizations about the collection, feature distributions, and patterns of a dataset. XAI
techniques have further been claimed to reveal instances and features in the data that have
undesirable effects on the model output [93, 94, 66] which, however, are often subject to
questionable causal and normative assumptions [95, 96]. These approaches indicate a strong
connection between data fairness and formal fairness.

3.3. Formal Fairness

“To counteract biases, it is, therefore, crucial to enable their detection. Explainability approaches
may aid in this regard by providing means to track down factors that may have contributed
to unfair and unethical decision-making processes and either to eliminate such factors, to
mitigate them, or at least to be aware of them.” [40, p. 6]

The most common fairness desideratum is concerned with formal model properties. By formal
fairness, we refer to the vast array of formal criteria that have been proposed as mathematical
and statistical measures of fairness [13, 15].

Consistent with Verma and Rubin [14], this includes all fairness definitions based on statistical
measures (e.g., demographic parity), similarity measures (e.g., fairness through awareness),
or based on causal reasoning (e.g., counterfactual fairness). Formal fairness notions are often
distinguished into group and individual fairness. Group fairness criteria typically require a form
of parity between demographic groups, e.g., along sensitive attributes like gender or race [54].
Individual fairness criteria typically demand to treat similar people alike [16].

Stage of the Lifecycle. Formal fairness is particularly relevant for the iterative loop of
model construction and model evaluation. As soon as the first model prototype is ready, fairness
metrics can be evaluated. Based on the evaluation, unfairness mitigation techniques can be
implemented and validated iteratively [97].



The Role of XAI. Regarding formal fairness, XAl could be of exploratory value, offering a
plethora of tools and a novel perspective from which to explore formal fairness from multiple
angles. Again, descriptive statistics present a natural first step to identify potential disparities,
imbalances, or abnormalities outputted by the model [54, 98]. This is especially useful if formal
fairness objectives are already specified, e.g., when testing whether formal group fairness
metrics are sufficiently satisfied [97]. XAI might also point towards specific features driving
the violation of group fairness metrics [99] or shed light on more subtle forms of formal
fairness such as fairness of recourse [100]. XAI has further been claimed to elucidate the
complex interplay between “task-relevant” and correlated “protected” features (e.g., [101])
which, again, relies on causal and normative assumptions [95, 96]. Technical possibilities
of XAI to explore formal fairness are manifold but require utmost caution when applied for
unfairness mitigation in specific application contexts and should not be misinterpreted as fairness
“proofs” or “guarantees” [6]. Particularly, when interpreting the legitimacy of using sensitive
information, it is paramount to account for the “fairness through unawareness” fallacy [16, 61]
and for differential subgroup validity [102, 103].

3.4. Perceived Fairness

“We argue that only fair systems that are also perceived to be fair by their users should be
accepted and employed in practice.” [104, p. 5]

Another common fairness desideratum refers to positive perceptions of stakeholders, which is
often related to trust and acceptance [104, 105]. In this sense, perceived fairness captures how
stakeholders, particularly those affected by a decision, perceive the fairness of the Al system.

Measures of perceived fairness can be derived from the justice constructs of Colquitt [70],
which decompose fairness perceptions into a procedural, distributive, and informational dimen-
sion (see also [71, 72, 69]). Accounting for fairness perceptions promotes a valuable means to
design Al systems based on human needs and ideals while giving voice to societal values, which
Rahwan [73] coined as “society-in-the-loop”. Notably, the desirable aspect of perceived fairness
does not necessarily or solely lie in positive fairness perceptions but in “appropriate” fairness
perceptions [106].

Stage of the Lifecycle. Although fairness perceptions can be relevant at any stage of the
lifecycle (e.g., to evaluate data fairness [88]), we map fairness perceptions to the model evaluation,
deployment, and inference & usage stage. Most prior works have measured fairness perceptions
after a (mock-up) model has been developed to ask stakeholders about certain outcomes or the
Al system itself [4]. Beyond that, there are approaches trying to embed stakeholders’ values
throughout the conception and development of Al systems (e.g., [107, 108, 109, 110]).

The Role of XAI Explanations may serve stakeholders as a cue to confirm whether their
ideas of fairness are implemented in a system. This idea has also been commonly expressed in
prior literature [111, 104, 112, 105]. For example, Lee et al. [113] indicate that explanations can
decrease fairness perceptions when they reveal information that stands in conflict with peoples’
fairness beliefs. However, the effect of XAl on fairness perceptions is highly context-dependent
and moderated by human factors like political ideology and self-interest [114]. This indicates
that stakeholders require tailored information addressing their case-specific concerns. Affected



parties, e.g., seem to appreciate information beyond a model’s inner workings, such as system
context, usage, and data [115]. We note that optimizing XAI to stimulate positive fairness
perceptions isolated from complementary desiderata (e.g., trustworthiness or formal fairness)
can lead to undesirable effects such as placebic explanations [116], fairwashing [56] or deception
[117, 118].

3.5. Fairness With Human Oversight

“Research suggests that neither humans nor ML models are likely to achieve fairness working
alone. Instead, human—ML augmentation, where humans and technology work together to
perform organizational tasks jointly, is the most promising path to achieving fairness.” [74, p.
2]

Beyond the (formal) fairness of a model itself, fairness can also refer to the decision-making
process in which the model is embedded. Fairness with human oversight aims at installing and
supporting a human decision-maker to realize case and context-sensitive fairness objectives
through human oversight or human discretion.

The human-AI setting can take various forms but usually involves overseeing and overruling
unfair outputs or fostering effective reliance behavior [74]. Although legal and ethical guidelines
often demand human oversight [78, 119], the effect of human oversight on fairness is not
necessarily beneficial and not well understood yet [86, 120, 74, 43]. Accordingly, this desideratum
does not necessarily capture fairness through human oversight, but potentially also fairness
despite human oversight.

Stage of the Lifecycle. Fairness with human oversight becomes relevant after the model
has been deployed, i.e., during inference & usage.

The Role of XAI Where formal implementation of fairness during model development is
difficult or human oversight is required, XAl is crucial to inform human discretion so that fairness
objectives can still be realized. In this sense, XAl is commonly proposed to support human
decision-makers and domain experts in fostering fairer decisions (e.g., [109, 121, 122]). Beyond
simple recommendations, such information may include a comparison to similar instances
[76], disclosure of uncertainty [123], or conditional heatmaps in computer vision tasks [124].
To tackle automation bias, Miller [125]’s concept of “evaluative AI” also highlights providing
not only explanations for a certain recommendation but rather balanced evidence for multiple
possible outcomes. However, both designing XAI and training human decision-makers to
interact with the explanations is challenging [126]. As feature importance explanations may
even hinder fairness of human decisions [43], we are in need of more conceptual and empirical
research on how to design XAl towards fairness objectives in human-in-the-loop settings (e.g.,
how to effectively override certain types of Al recommendations that violate fairness objectives).

3.6. Empowering Fairness

“From the perspective of individuals affected by automated decision-making, we propose three
aims for explanations: (1) to inform and help the individual understand why a particular
decision was reached, (2) to provide grounds to contest the decision if the outcome is undesired,
and (3) to understand what could be changed to receive a desired result in the future, based on
the current decision-making model.” [79, p. 2]



Fairness considerations do not end after an Al model has been designed and decisions have
been made. Empowering fairness refers to the ability of affected parties to take effective actions
regarding the outcome of a particular decision, e.g., by contesting decisions or seeking recourse.

In her article on the right to explanation, Vredenburgh [77] proposes two types of self-
informed advocacy: retrospectively, affected parties should be able to identify the accountable
entity to demand remedy for unfair treatment (viz., responsibility); prospectively, contesting
and recourse options should enable affected parties to actively improve upon their possibly
unfair outcome (viz., agency). Our conception of empowering fairness strongly relates to
Vredenburgh’s forward-looking self-informed advocacy. It more generally relates to attempts
to conceptualize what makes a fair explanation in the context of the right to explanation [87].

Stage of the Lifecycle. Recourse and contesting is only possible after a decision has been
made. Accordingly, we map empowering fairness to inference & usage.

The Role of XAI. XAI could be useful for empowering fairness because it may help acquire
the information to be communicated. Contrastive explanations (answering the question “Why
P rather than Q?”) are commonly proposed to provide intuitive entry points to engage with
affected parties [79, 127]. For instance, counterfactual explanations have been claimed to provide
a promising solution to inform and empower affected parties by clarifying what combination of
feature values would lead to a different outcome. [79, 80]. Therefore, they can provide valuable
information required for algorithmic recourse, e.g., by providing actionable recommendations
to aloan applicant on what to do to be granted a loan in the future [128, 129]. While research on
counterfactual explanations is growing rapidly, they do not come without limitations regarding
their actionability [128], validity [130], underlying assumptions [131], or susceptibility to
manipulations [132]. Extending the scope beyond model-centered explanations, XAI might
also involve practical information about responsible contact persons, guidance on how to seek
redress, or collaborative platforms for affected parties to share experienced outcomes [117].

3.7. Long-Term Fairness

“Accuracy, discrimination, and security characteristics of a system can change over time as
well. Simply testing for these problems at training time [...] is not adequate for high-stakes,
human-centered, or regulated ML systems. Accuracy, discrimination, and security should be
monitored in real-time and over time, as long as a model is deployed.” [133, p. 18]

Fairness remains relevant over the entire Al lifecycle, even after deployment. Hence, long-
term fairness captures the dynamic interplay of an Al system with the socio-technical system it
is deployed in over time.

The long-term impact of an Al model can be analyzed from several perspectives. Arif Khan
et al. [134] contrast “formal” and “substantive” equality of opportunity where a forward-facing
view of fair life chances also accounts for affected parties’ future prospects of success (as opposed
to ensuring fair contests at a discrete point in time). Since such conceptions make assumptions
about structural disadvantages and future prospects of affected parties, they require much
broader and longitudinal evaluation. Further, due to concept drift [135], a model’s formal
fairness properties can change over time and should be monitored.

Stage of the Lifecycle. We map long-term fairness primarily onto inference & usage, noting
that it may encompass all future iterations of the Al lifecycle until the Al system is shut down.



The Role of XAI Monitoring tools may help to track changes in fairness metrics and identify
situations where interventions are necessary [83, 85, 82]. Another long-term fairness impact
is strategic gaming behavior that arises from transparent models [136]. For example, loan
applicants who receive counterfactual explanations exactly describing how to reach the decision
threshold are prone to create a game-theoretic situation where information itself can be unfairly
distributed among clients. We suspect several other forms of long-term fairness issues will
emerge that are currently under-explored in the literature. For example, Liu et al. [137] model
the impact of formal fairness on the underlying population over time, which Hardt et al. [138]
coined as “performative power”. Novel forms of XAI may help to anticipate and evaluate such
dynamics.

3.8. Informational Fairness

“Transparency [...] is valuable because and in so far as it enables the individuals, who are
subjected to algorithmic decision-making, to assess whether these decisions are morally and
politically justifiable.” [52, p. 254]

All of the listed fairness desiderata can be augmented with a meta desideratum targeted at
transparency about fairness, which we label as informational fairness.

Informational fairness was originally introduced as a psychological construct in the context
of organizational justice [70] to test whether the communication accompanying a decision is
candid, truthful, reasonable, timely, and specific. Our conception of informational fairness is
inspired by this construct and corresponds to a great extent to Loi et al. [52]’s concept of design
publicity. In line with our idea of broad XAl Loi et al. [52] demand a form of transparency
that explains not only a model and its underlying functioning but also the goals and values
that went into its design and how these are embedded in the model. A similar distinction is
made by Walmsley [86], who differentiates between functional transparency concerned with
the inner workings of an Al model and outward transparency related to communication with
stakeholders.

Stage of the Lifecycle. We conceive informational fairness as a meta desideratum that
applies to all other fairness desiderata (see Figure 2). Accordingly, informational fairness can be
considered across all stages of the Al lifecycle from problem formulation to inference & usage.

The Role of XAI In the case of informational fairness, XAl is not an aid to but the desidera-
tum itself. Following this idea, we provide examples of what could be made transparent and
communicated to affected parties for each fairness desideratum. Regarding fairness understand-
ing, developers and deployers could justify their fairness objectives, delineate potential tradeofTs,
and elucidate the mechanisms through which Al aims to achieve them [52]. For data fairness,
they could explain how the training data is composed, highlighting potential sources of bias
[88]. Explaining the training objectives and outlining potential uncertainties or goal conflicts
might be appropriate to address formal fairness [49]. Regarding perceived fairness, explaining
the functions and limitations of XAl-generated information could enhance understanding to
approach “appropriate fairness perceptions” [106]. Transparency about the role of AI and
the responsibilities of a human decision-maker within the decision-making context might be
desirable for fairness with human oversight [139]. The idea of empowering fairness relies on
truthful, understandable, and actionable information [81]. Lastly, regarding long-term fairness,



unexpected downstream impacts and the factors driving potentially unfair dynamics can be
communicated to stakeholders [121].

4. The COMPAS Case

To illustrate the utility of our mapping, we describe how XAI could help address fairness
throughout the lifecycle of a high-stakes Al system. As an example, we consider the recidi-
vism prediction software COMPAS developed by Northpointe (today rebranded to equivant
Supervision). COMPAS has been installed in many US-American jurisdictions in order to pre-
dict whether a defendant will likely commit another crime in the near future. Judges use this
information, e.g., for decisions about who they release on bail. However, COMPAS has been
criticized by investigative journalists at ProPublica for disadvantaging Black people [9]. This is
especially problematic given the history of systematic discrimination and marginalization of
Black people in the US [140]. In this section, we illustrate both how Northpointe could have
addressed different fairness desiderata during system development and how they could still,
given COMPAS’ continued use, address some of them. Notably, our illustration also presupposes
an inherent motivation to actually address fairness desiderata, and XAl is not the only means
to this end.

First, Northpointe could have used XAI to ensure that the development is based on an
appropriate fairness understanding. ProPublica’s analysis of COMPAS shows that although it
was tested for some fairness objective (viz., predictive parity), it falls short on other fairness
objectives (viz., equalized odds) in problematic ways [54]. Thus, predictive parity may have
been an inadequate fairness objective. Northpointe could also have based its development on
insights about the predictive value and correlations of certain features. It has been shown that
defendants’ age and number of previous crimes are most predictive for recidivism [141, 47] but
also highly correlated to race.

To address data fairness, Northpointe would have needed to ensure that the data set adequately
represents demographic groups targeted by the system and to be aware of existing structural
relationships such as statistically higher crime rates in predominantly Black neighborhoods
[19]. Descriptive statistics could have already pointed them towards biases introduced in
the data collection process—a reason to reiterate the data collection stage to apply new data
collection strategies [67]. Statistical analysis could also have helped unveil traces of systematic
discrimination in the data (e.g. that Black people are more likely to be arrested for minor
offenses due to increased police presence in Black neighborhoods). Northpointe could have
used such insights either to change their data collection strategies (e.g., collecting features that
are less correlated to race), or they could have used them during the feature selection phase
(e.g., to mitigate systematic discrimination at the data-level [66]).

Regarding formal fairness, Northpointe tested COMPAS for equality of error rates (viz.,
predictive parity). By contrast, journalists at ProPublica tested for the balance of true and false
positives (viz., equalized odds) [54]. Notably, many formal fairness metrics cannot be satisfied
simultaneously [27], and selecting appropriate formal fairness metrics is an intricate endeavor
[3]. However, had Northpointe tested COMPAS for equalized odds, too, they might have
anticipated the social backlash and prevented some of the harmful impact. Today, developers



can draw on an extensive suite of fairness testing tools for a comprehensive formal fairness
assessment [142, 97, 6].

Northpointe could have also detected flaws by engaging with stakeholders and gathering
feedback on perceived fairness. Outcome statistics, fairness metrics, or model explanations
(e.g., in the form of counterfactuals) could have been presented to a focus group of diverse
stakeholders to assess and discuss fairness perceptions (see [109]). Potential concerns could be
handled by reconciling the different perspectives, and even today (after deployment) Northpointe
could continue to monitor fairness perceptions by establishing feedback channels.

Our discussion thus far has primarily focused on measures that COMPAS’ developers could
have taken early in the Al lifecycle. But even now, during COMPAS’ continued usage, North-
pointe could still address several fairness issues via XAI First, they could seek fairness with
human oversight. This is a particularly relevant desideratum because COMPAS does not make
autonomous decisions but informs the decisions of judges. So, Northpointe could (if not already
happening) familiarize judges with the basic functioning, strengths, limitations, and uncer-
tainties of the system as well as the factors driving the risk score to ensure judges will use it
appropriately.

Northpointe could also foster empowering fairness by providing defendants with two kinds of
explanations: First, global explanations [72] about the general functioning of COMPAS could be
communicated. Where relevant factors are under a person’s control (as, e.g., with defendants’
history of misdemeanor or substance abuse), insights about their impact can allow people to
make life choices decreasing their risk scores. Second, local explanations [72] could provide
information about an individual’s risk score granting the opportunity to (justifiably) contest
the score, e.g., by denouncing discriminatory treatment [118], or to (effectively) seek recourse,
e.g., by signaling plans to go into rehab [79].

Moreover, Northpointe could monitor long-term fairness by tracking the specified formal
fairness objective(s) over time and accordingly adjust the model over several iterations of the
Al lifecycle [83]. Further, changes in defendants’ behavior due to specified fairness objectives
or increased transparency could be examined. For example, precise global or counterfactual
explanations might allow defendants to game the system in unexpected ways strategically [136],
which might—similar to unfair recourse [100]—be easier for some than for others.

Finally, Northpointe could have aimed and still could aim, to ensure informational fairness. To
this end, they would have needed to document and communicate fairness-related information
accordingly. For example, Northpointe could have used model (fairness) cards similar to [49],
which would have clarified many of the issues that were only revealed due to the investigative
work of Angwin et al. [9]. Most importantly, perhaps, Northpointe could have been candid
about the underlying business and fairness objectives from the start, ideally making transparent
decisions about tradeoffs (e.g., when looking at predictive parity rather than equalized odds)
and justifying why an Al system was an appropriate tool for criminal risk prediction in the first
place. In communication with affected parties, COMPAS could be complemented with truthful,
understandable, and relevant information [80] explaining the underlying logic. Overall, the
strategic use of XAl along the Al lifecycle could benefit all fairness desiderata regarding a model
like COMPAS—given sincere intentions to actually pursue these desiderata.



5. Conclusion and Outlook

We distilled eight fairness desiderata from interdisciplinary literature, mapped them onto the Al
lifecycle, and discussed how XAI might be leveraged to contribute to fulfilling them. Finally, we
illustrated the utility of our approach by applying it to the COMPAS case. The overall picture
we paint (see Figure 2) highlights that to design and utilize XAI for fairness effectively, it is
paramount to reflect on which fairness desideratum one seeks to fulfill. Before closing, we shall
briefly comment on some limitations of our proposal and point to avenues for future work.

Conceptualization and Validation. We do not claim our proposed fairness desiderata to
be mutually exclusive or collectively exhaustive. As our discussion in Section 3 has shown,
different terms elicit different associations in different communities and conceptual overlap
between different fairness desiderata seems difficult to avoid altogether (e.g., long-term fairness
to some extent includes formal fairness, etc.). Yet, we are confident that our application to the
COMPAS case highlights the general usefulness of our work. Thus, we firmly believe that our
eight fairness desiderata provide a valuable starting point for refinement in follow-up work. We
expect that future interdisciplinary research can—through both conceptual work and validation
by application to real-world cases—provide more sharply distinguished categories, capture
more fine-grained distinctions, and incorporate an even broader spectrum of perspectives on
fairness. Specific open issues include, e.g., where to locate procedural fairness in our account.
For now, we deliberately excluded that notion as it has inherently differing meanings across
(and sometimes even within) disciplines. Another open question concerns the status of privacy.
Legal scholars might consider data privacy a form of fairness; conceived this way, privacy might
qualify as a form data fairness.

Generalizability. Our discussion has focused primarily on high-risk applications and more
traditional decision-support systems. To what extent does our proposal generalize to low-risk
applications? And what about generative AI? Consider Google’s multi-modal Al-chatbot Gemini,
which has recently received bad publicity for its inaccurate historical depictions—which were
driven by misdirected fairness interventions [143]. We suspect that the usage of (seemingly
low-risk) Al systems at scale will accumulate to significant societal impacts bearing more subtle
threats to fairness such as, e.g., representational harms [89] in the Gemini case. Thus, although
contemporary regulation (like the European Al Act) focuses predominantly on high-risk systems,
fairness is an important concern for low-risk applications, too. Beyond that, the Gemini case
illustrates that fairness considerations affect generative Al just as much as more traditional Al
systems for decision-making. Given the rapid advancement and broad adoption of generative
Al we believe that fairness considerations will be indispensable in this context, though they
only start to gain traction [144, 145].

Actionability. We acknowledge that our proposal does not present an actionable process
model for fair software engineering; nor does it provide regulatory guidelines to be enforced
by legal institutions. Still, it may serve as a useful roadmap for researchers, developers, and
regulators. For researchers, it provides a starting point for a truly interdisciplinary discourse
going beyond discussions of algorithmic fairness focusing on technical aspects of Al systems.
For developers, our mapping provides urgently needed guidance as to what fairness challenges
should be addressed when developing specific guidelines and requirements (see Hacker [146]).
More specifically, it may help determine under which circumstances human oversight is benefi-



cial [74, 43] or how responsibilities can be attributed along the Al lifecycle [147]. Naturally, the
implications of our approach will vary with the precise settings; so fine-tuning may be needed
for different business, societal, and legal contexts.
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