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Abstract
There is arbitrariness in optimum solutions of graph-theoretic problems that can give rise to unfairness.
Incorporating fairness in such problems, however, can be done in multiple ways. For instance, fairness
can be defined on an individual level, for individual vertices or edges of a given graph, or on a group level.
In this work, we analyze in detail two individual-fairness measures that are based on finding a probability
distribution over the set of solutions. One measure guarantees uniform fairness, i.e., entities have equal
chance of being part of the solution when sampling from this probability distribution. The other measure
maximizes the minimum probability for every entity of being selected in a solution. In particular, we
reveal that computing these individual-fairness measures is in fact equivalent to computing the fractional
covering number and the fractional partitioning number of a hypergraph. In addition, we show that for
a general class of problems that we classify as independence systems, these two measures coincide. We
also analyze group fairness and how this can be combined with the individual-fairness measures.
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1. Introduction

Traditionally, when confronted with an instance of an optimization problem, the instance is
considered solved when a provably optimum solution has been found. After all, what more can
be wished for? We should acknowledge that there can be a large amount of arbitrariness in
selecting an optimum solution, and that this can be perceived as a source of unfairness.

Imagine one is a patient with end-stage renal disease, and that there is a donor who is willing
to donate a kidney but who is incompatible with you. Imagine further that you and your
incompatible donor enter a kidney exchange program; we will refer to the pair entering the
program as a node. Entering this program means that at regular moments, runs of software are
made, and the output of such a run consists of a set of exchanges between nodes. A patient
from a node involved in such an exchange receives a kidney, other patients do not. Clearly,
it is quite relevant whether one is included in such an exchange or not. While the software
may find an optimum solution (according to some criterion, say maximizing the number of
exchanges), it can be the case that some node is not selected for an exchange while being part
of some optimum solution. In such cases it can be hard to explain that the software simply
selects an optimum solution which somehow favors some nodes at the expense of others. In this
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contribution, we aim to pursue this matter from a fairness point of view, using kidney exchange
as a running example.

We analyze an approach that has been used by, among others, Farnadi et al. [2] and Flanigan
et al. [3]. Instead of proposing a fixed solution, the idea is to consider a pool of solutions from
which a solution is sampled according to some probability distribution, which we call procedural
or ex-ante fairness. In this way, different entities of the optimization problem (e.g., patients in
the kidney exchange example) are contained in a selected solution with a certain probability.
To model fairness, the probability distribution is required to satisfy some additional criteria.

Although this sampling approach is not new, it has mostly been studied computationally. In
this article, we take a fresh look into this approach. While existing results in the literature mostly
considered the approach by Flanigan et al. [3] for particular problems, we aim to understand
the approach on a structural level. For more details on our results, we refer to [1].

2. A generic framework for modeling fairness in graphs

We formulate a model for finding a probability distribution over the set of feasible solutions of
a graph-theoretical optimization problem. This model resembles fairness models for concrete
problems that exist in the literature [2, 3]. Let 𝐴 be a given ground set, and let 𝑀 be a family of
subsets of the ground set 𝐴. We assume that ∅ ∈ 𝑀 and that every element 𝑎 ∈ 𝐴 is contained
in some set 𝑚 ∈ 𝑀 . We call the tuple (𝐴,𝑀) a set system. In the kidney exchange example,
the ground set 𝐴 coincides with the nodes, whereas 𝑀 coincides with the collection of subsets
of nodes that are covered by matchings in the compatibility graph.

To achieve individual fairness, we construct a probability distribution {𝑥𝑚}𝑚∈𝑀 over 𝑀 ,
such that if we sample according to 𝑥, every element 𝑎 ∈ 𝐴 has equal probability 𝑝 to be in
the sampled subset. Our aim is to maximize this probability, which we call 𝑝𝑈 (for uniform
probability). For any 𝑎 ∈ 𝐴, let 𝑀𝑎 ⊆ 𝑀 denote the collection of subsets from 𝑀 that contain
the 𝑎. We model the problem of maximizing 𝑝𝑈 with the following linear program (LP).

𝑝𝑈 = maximize 𝑝 (1a)

subject to
∑︁

𝑚∈𝑀𝑎

𝑥𝑚 = 𝑝 ∀𝑎 ∈ 𝐴, (1b)

∑︁
𝑚∈𝑀

𝑥𝑚 = 1, (1c)

𝑥𝑚 ≥ 0 ∀𝑚 ∈ 𝑀, (1d)

𝑝 ∈ R. (1e)

Constraints (1b) ensure that each element 𝑎 ∈ 𝐴 is selected with uniform probability, while
Constraint (1c) and Constraints (1d) ensure that 𝑥 is a probability distribution over 𝑀 .

We also consider a variant of this problem, where our notion of fairness is relaxed to maxi-
mizing the minimum probability 𝑝𝑅 that a ground set element is selected. This is also referred
to as Rawlsian justice, based on fairness principles introduced by Rawls [4], and can be modeled
with an LP that is very similar to (1), where Constraints (1b) are replaced with

∑︀
𝑚∈𝑀𝑎

𝑥𝑚 ≥ 𝑝



for all 𝑎 ∈ 𝐴. For some applications, Rawlsian justice may be more applicable than uniform
fairness as a fairness measure, or vice versa, depending on the objective of the decision maker.

2.1. Relation to fractional hypergraph theory

The fairness measures 𝑝𝑈 and 𝑝𝑅 are related to concepts developed in fractional hypergraph
theory. We refer to Scheinerman and Ullman [5], and Füredi [6] for an overview of fractional
graph and hypergraph theory. The main idea is to see the set system (𝐴,𝑀) as a hypergraph ℋ
with vertex set 𝐴 and hyperedges 𝑀 . The fractional partitioning number 𝑘=𝑓 (ℋ) is the minimum
weight of a fractional partition: an assignment of non-negative weights 𝑤 ∈ R𝑀

+ to the
hyperedges such that for every vertex the sum of weights of the incident hyperedges is exactly 1.
When the weights sum to at least 1 for every vertex, we call the assignment of weights a
fractional cover and consequently the minimum weight of a fractional cover is the fractional
covering number 𝑘≥𝑓 (ℋ) of the hypergraph.

One can show that determining 𝑝𝑈 can then be alternatively formulated as determining the
fractional partitioning number and similarly that measure 𝑝𝑅 can be formulated as determining
the fractional covering number, as summarized in the following result.

Lemma 1. Let ℋ = (𝐴,𝑀) be a hypergraph. Then it holds that 𝑝𝑅 = 1

𝑘≥𝑓 (ℋ)
. Furthermore,

𝑝𝑈 = 1
𝑘=𝑓 (ℋ) if 𝑘=𝑓 (ℋ) is finite, and 𝑝𝑈 = 0 otherwise.

In fact, when we apply this to the kidney exchange example, one can show that this implies
the following, rather high, lower bound on 𝑝𝑈 when it is positive.

Corollary 1. For fair matching for vertices, if 𝑝𝑈 > 0, then 𝑝𝑈 ≥ 2
3 .

2.2. Computational complexity

A fair probability distribution with respect to 𝑝𝑈 and 𝑝𝑅 can be found by solving the LP (1)
for 𝑝𝑈 and 𝑝𝑅, respectively. Linear programs are solved routinely in practice by the simplex
algorithm [7], and algorithms such as the ellipsoid method [8] and interior point methods [9]
have a provable polynomial running time. Note, however, that this does not imply that the
LPs can be solved in 𝒪(poly(|𝐴|)) time, as the running time of the ellipsoid and interior point
methods depend polynomially on the number of variables |𝑀 |, which can depend exponentially
on |𝐴|. We make use of a more advanced technique for solving LPs: column generation. The
idea of column generation is to select a small subset 𝑀 ′ ⊆ 𝑀 of variables and solve the LP
restricted to this subset of variables. Afterward, it is checked whether the solution is optimal
w.r.t. the entire set of variables 𝑀 . If this is the case, the algorithm stops and returns an optimal
solution. Otherwise, it adds a variable from 𝑀 ∖𝑀 ′ to 𝑀 ′ that can improve the objective and
the method starts anew. Using column generation, we can observe that 𝑝𝑈 and 𝑝𝑅 can be found
in polynomial time whenever the corresponding optimization problem over 𝑀 can be solved in
polynomial time, based on the seminal result by Grötschel, Lovász, and Schrijver [10].

Theorem 2. Let 𝐴 be a finite set and let 𝑀 be a collection of subsets of 𝐴 such that ∅ ∈ 𝑀 . If,
for every 𝑐 ∈ Q𝐴, a set 𝑚 ∈ 𝑀 that minimizes

∑︀
𝑎∈𝑚 𝑐𝑎 can be found in time polynomial in |𝐴|,

then 𝑝𝑈 and 𝑝𝑅 can be found in 𝒪(poly(|𝐴|)) time.



Examples where minimizing
∑︀

𝑎∈𝑚 𝑐𝑎 can be done in polynomial time are matching, shortest
paths, spanning trees, and many other combinatorial problems.

3. Independence systems

The framework that determines 𝑝𝑈 and 𝑝𝑅 (Section 2) can be applied to arbitrary set sys-
tems (𝐴,𝑀). The system (𝐴,𝑀) is an independence system when ∅ ∈ 𝑀 and for every 𝑚 ∈ 𝑀 ,
we have 𝑚′ ∈ 𝑀 for all 𝑚′ ⊆ 𝑚. Independence systems are also known as simplicial complexes
or downward-closed set systems. Many independence systems are known; we mention here: edge
sets that form matchings, edge sets that form forests, vertex sets that are independent sets, and
matroids. While in general there is no relation between 𝑝𝑈 and 𝑝𝑅 other than 𝑝𝑈 ≤ 𝑝𝑅, one of
our main contributions is that for independence systems that these two measures coincide.

Theorem 3. For any independence system (𝐴,𝑀), 𝑝𝑈 = 𝑝𝑅.

4. Group fairness

Other than arbitrariness in selecting a solution, unfairness can also be introduced through
systemic bias in the definition of the model or the description of the problem. For the kidney
exchange example, patients with certain blood types are more likely to be matched, simply
because they are compatible with a larger group of donors. To achieve this so-called group
fairness among different types of patients, one can ensure representation of protected groups in
the solution. Not much existing work combines individual and group fairness, while we show
that both approaches can be combined in a single framework.

Our problem input now not only consists of a set system (𝐴,𝑀), but also of a collection of
groups 𝒢 = {𝐺1, . . . , 𝐺𝑘}, with 𝐺𝑖 ⊆ 𝐴 subsets of the ground set 𝐴, for all 𝑖 ∈ [𝑘]. We assume
that the groups are pairwise disjoint; when considering groups that arise from a single sensitive
attribute, this is in many cases a natural assumption. We impose group fairness constraints on
the possible solutions, i.e., we require ex-post group fairness. We thus restrict the set 𝑀 to only
solutions that satisfy the group fairness constraints, 𝑀gf ⊆ 𝑀 . Although it is possible to also
handle group fairness in an ex-ante setting as opposed to ex-post, group fairness constraints are
often hard conditions imposed on solutions, and in some cases required by regulations or law.

We consider two types of group fairness constraints. Absolute constraints enforce that the
number of individuals from a group is between a given lower and upper bound. Relative
constraints bound the ratio between the number of individuals for a pair of groups, e.g., to
impose that a solution must contain the same number of individuals from each group. For the
fair matching for vertices problem in the kidney exchange example, we obtain the following.

Theorem 4. Let 𝐺 = (𝑉,𝐸) be a graph with a constant number of pairwise disjoint groups of
vertices. Let 𝑀gf denote the collection of vertex-subsets covered by matchings in 𝐺, restricted to
absolute and/or relative group fairness constraints. Then determining 𝑝𝑈 and 𝑝𝑅 for 𝑀gf can be
done in polynomial time.
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