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Abstract
The surge in research and development of clinical natural language processing (NLP) has prompted
inquiries into the algorithmic fairness of the proposed and deployed technical solutions. In spite of
the proliferation of research, limited work has synthesized reflected on the state of algorithmic fairness
in clinical NLP. In this short paper, we summarize the findings of our scoping review of literature and
present challenges and opportunities in the domain. We identify challenges and opportunities related to
studying and measuring protected groups, selecting appropriate methodology, data sharing and privacy,
as well as generalizability. The goal of this article is to start a discussion and raise awareness about the
gaps encountered within algorithmic fairness in clinical NLP and pave the way for future research.
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1. Introduction

Clinical text, i.e. clinician-generated writing about patients, such as that found in electronic
health records and clinical notes, is a rich source of unstructured patient data. NLP pipelines
can leverage latent signals in clinical text to extract information for decision support tools
used in patient care and clinical research. Recent advancements in large language models have
paved the way for novel clinical applications of natural language generation [1, 2, 3, 4]. Many
studies have demonstrated the effectiveness of NLP on tasks such as pathology detection and
risk prediction [5, 6, 7, 8], extraction of social determinants of health from electronic health
records [9, 10, 11, 12], and generation of patient discharge summaries [2, 13, 14].

NLP algorithms recognize and leverage various patterns that are encoded within clinical text.
While their ability to discover correlations in the data structure enables statistical modeling
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of natural language, when learned associations are spurious or their normative implications
are considered illegitimate within the current context, this same ability also limits the validity
of derived prediction and inference. In addition to the valuable medical signal, data capture
noise which reflects discrepancies due to past and current social realities that had influenced
the data generation process [15]. This noise can encompass various data biases including
socio-economic health inequities and social determinants of health [16, 17, 18], differential care
seeking behavior [16, 19], differences in language physicians use to describe patients [20, 21, 22],
differences in treatment physicians prescribe to different population segments [23, 24, 25], as
well as variability in clinical presentation of diseases [26], and adverse drug reactions [27]. A
clinical NLP pipeline can be considered fair if it neither automates nor perpetuates social stigma
and stereotyping of patient groups, constituting representational harms, nor systematically
denies patient groups access to opportunities and resources, causing allocative harms [28].

Clinical NLP pipelines need to be developed responsibly with robust safety, validity, and
fairness checks in order to ensure that the NLP solution does not automate nor amplify existing
inequities leading to harm. Fortunately, just as clinical NLP pipelines can propagate existing
healthcare inequities encoded in the data [29, 30], in some cases the same pipelines can be
tinkered with to produce outcomes more equitable than those of the existing healthcare systems
which had generated the training data 1 [31]. To this end, previous studies on algorithmic fairness
in clinical NLP have proposed a variety of fairness auditing and bias mitigation frameworks [29,
30, 31, 32, 33, 34, 35, 36, 37].

In spite of the growing interest in fairness of clinical NLP tools and pipelines, there is a
scarcity of evidence synthesis in this domain. To the best of our knowledge, only one review [38]
focusing on fairness in clinical NLP has been published to date, largely centering on ethical
considerations surrounding pipeline development. The present work aims to identify gaps in
fair clinical NLP research. We conducted a systematic literature search spanning six scholarly
databases (PubMed, Embase, Web of Science, Scopus, ACM Digital Library, and IEEE Xplore)
and three search engines (Google Scholar, Semantic Scholar, and Scholar AI). Our query terms
were related to the concepts of NLP, fairness, and healthcare. The search took place between 18
and 25 October 2023, and it resulted in 355 unique papers - 24 of which were deemed to be core
inclusions, i.e. applied studies using NLP for a clinical task involving patient data and assessing
the fairness of the NLP pipeline. The search had also identified a number of theoretical papers
that have proven relevant for the identification of challenges and opportunities in the domain.

2. Challenges and opportunities

In this section, we discuss the gaps of fair clinical NLP research as identified in our review of
the literature. Each gap reflect a challenge, as well as an opportunity for future research.
Protected groups. As establishing fairness of algorithmic representations and outcomes

across all demographic groups might not be feasible [39], the choice of which groups the
1The NLP community efforts primarily focus on harm detection and mitigation at the level of data and models -
usually targeting model representations of protected groups and the distribution of model-assigned outcomes. In
practice, harm can also appear elsewhere in the development cycle, for instance as a result of an incorrect solution
deployment [15]. A broader socio-technical lens can help explain how NLP interventions depend on upstream
activities, and shape downstream activities and outcomes.



clinical NLP pipeline should be demonstrated to treat equitably is of increasing importance.
We find that the groups examined in the literature are narrow in scope, with the majority of
studies focusing on gender, race/ethnicity, and to a lesser extent, age. In particular, research
primarily concerned US-centric protected groups. Vulnerable groups such as individuals with
mental illness diagnoses [40, 41, 42], various forms of disability [43], or traditionally overlooked
groups, such as individuals admitted during the weekend as opposed to on a weekday [44]
remain underrepresented in the clinical fairness literature. Furthermore, the difference in the
geographical and cultural context on which local demographics should be considered protected
remains under-examined. The variability in how groups are conceptualized and treated is
significant both within and between societies, and groups marginalized in some contexts
may not be recognized as such in others. The studies have focused on the more numerous
disadvantaged groups, which is in line with the utilitarian goal of maximizing the well-being
of the greatest number of individuals 2 [45, 46]. However, this leaves a gap when it comes to
protecting smaller-sized groups such as those at the intersection of multiple disenfranchised
identities [47]. Future research should encompass groups broader than those defined by sex,
race/ethnicity, and age, and explore intersectional, understudied, and biases affecting smaller-
sized groups. Importantly, the choice of whom to protect should always be motivated by the
local clinical and broader societal context surrounding the NLP pipeline development.

An additional challenge arises from the imperfect measurement of group membership, which
ranges from being fully absent to the use of various proxies [48]. Previous studies have examined
the construction of common group labels, such as race [49] and gender [50] and the associated
noise. In healthcare, NLP has also been used to construct missing labels [12, 51, 52, 53]. We find
that the majority of inclusions did not report how the attribute labels had been constructed
in the data generation process, except for those where authors created their own labels using
regular expressions or string searches. Ideally, clinical datasets would include information
on social determinants of health as their inclusion has been shown to improve fairness for
vulnerable groups [54]. Some clinical NLP studies rely on self-reported labels which might limit
their validity in certain situations [49]. In cases where protected attribute information is fully
absent, data imputation methods, such as Bayesian Improved Surname Geocoding [55, 56] can
estimate group membership based on relevant correlates. Similar tools are needed for countries
beyond the US. The development of robust indirect estimation methods is necessary to achieve
attribute data completeness, a prerequisite for conducting fairness audits and harm mitigations.
Method selection. Fairness auditing and harm mitigation carry many researcher degrees

of freedom. While inclusions take on operational definitions of bias and fairness, and in some
cases propose debiasing methods, we find that the motivations behind these choices are seldom
reported in the literature. Furthermore, not every computationally feasible approach might
have clinical legitimacy. For instance, Minot et al. [34] performed a naive removal of the most-
gendered tokens [34]. While the approach removed terms such as "he", "his", "she", and "her", it
had also erased medically valuable terms such as "urinal", "prostate", "hysterectomy", "vaginal",
and "osteoporosis". Such approaches might lead to a loss of valuable clinical information. At
the present time, there is a lack of clarity as to under what conditions could a certain method

2An important limitation is that, in many pipelines, the most frequently studied demographic groups might be the
only ones with available information for conducting a fairness audit.



be considered appropriate. While we observe a plethora of fairness metrics and bias mitigation
methodologies within the clinical NLP literature [29, 30, 31, 32, 33, 34, 35, 36, 37], we also note
that the majority of inclusions do not motivate their methodological choices. The presence of
algorithmic bias should be corroborated with an understanding of its source as this can help
inform the appropriate mitigation approach [57]. There is a need for openness and transparency.
Data sharing and privacy. A key challenge for clinical NLP developers is the acquisition

of diverse real world datasets, especially those containing protected attribute information.
Data sharing is frequently predicated on a degree of de-identification of confidential patient
records [58]. Ironically, even patient de-identification using NLP has been shown to not be
equally effective across patient demographics [59]. Algorithmic fairness research requires access
to the very same sensitive information which healthcare institutions might prefer anonymized
prior to data sharing. We call for a great inclusion of sensitive attributes in clinical datasets as
this can help develop accurate and safe clinical decision support systems.

Another challenge lies in the construction of accurate outcome labels for supervised learning
tasks, especially in large datasets where expert annotation becomes increasingly expensive.
Privacy restrictions limit the public availability of real world datasets. The sharing of more
text-rich clinical datasets would enhance the development of fair clinical NLP, but this needs to
be balanced with patient privacy concerns. Synthetic data is one potential solution to address
this challenge [60, 61]. Also, methodological solutions such as transfer learning and weak
supervision approaches might help alleviate the problem of the missing gold standard.
Generalizability. The lack of diversity in clinical NLP datasets poses a major limitation to

the literature. MIMIC [62] and MIMIC-derived datasets [63, 64, 65, 66, 67, 68] represented the
majority of publicly available free text data. Our search has revealed few publicly-available
English language datasets not based on MIMIC notes [37, 69, 70]. While some of the inclusions
had access to non-public hospital data, in all the studies the hospitals were based in the US. This
speaks to the gap in research on languages other than English, and countries other than the
US. Our additional search of PhysioBank [71] has revealed that the only languages with public
medical databases other than English were Spanish [72] and Brazilian Portuguese [73], each
with a single clinical database. This lack of research beyond English can create a major problem
for the generalizability of the developed tools and methodologies that might underperform in
languages different from English. We call for more research on languages other than English,
societies other than the US, and patient demographics beyond the US protected groups.

3. Conclusion

This short paper summarizes the findings of our scoping review investigating challenges and
opportunities for algorithmic fairness in clinical NLP. We have identified gaps related to studying
and measuring protected groups, selecting appropriate methodology, data sharing and privacy, as
well as generalizability. While algorithmic fairness in clinical NLP comes with many challenges,
most of these also carry inherent opportunities for future research. We hope to start a discussion
within the algorithmic fairness community and direct future work towards closing the gaps.
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