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Abstract
In this paper, we investigate how causality (causal inference) can be used to detect bias and ensure
fairness in geo-intelligence workflows . We investigate the usefulness of such a causality-based approach
in the context of an early warning system that predicts building damage at municipality levels in The
Philippines. We use directed acyclic graphs to reason about the causal relationships in the model case
study and quantify the relationships using structural equation modelling. Mediation analysis is also used
to validate the causal relationships between variables. We find cases of confounder bias and Simpsons
paradox that could potentially bias the damage predictions. However we note that the objective and
outcome variable in the early warning system needs to be defined in a manner that allows for more
nuanced investigation on fairness (i.e., from damage assessment to impact assessment).
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1. Introduction

Geo-intelligence (Artificial Intelligence (AI) and geodata) workflows are increasingly being
used in disaster early warning early action systems to determine areas and communities at
risk. Geo-intelligence workflows include collection, processing using AI, and dissemination
of geodata such as satellite/drone images and other geo-tagged data (i.e., data with location
references). An example of such an application is in trigger models for anticipatory action.
Trigger models predict the location and impact of natural disasters enabling responders and
communities to prepare resources (e.g., finances and personnel) [1]. Specific examples of use of
AI include building detection in drone images and using historical data of natural hazards to
predict impact of hazards.

As with other applications of AI for social problems, use of geo-intelligence workflows raise
a number of concerns including fairness and transparency [2, 3]. Since, the context involves
vulnerable communities, organizations deploying geo-intelligence workflows are obliged to
be fair and transparent in how they decide to distribute aid resources. However, AI challenges
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fairness and transparency as data biases and technical limitations can affect the reliability and
trustworthiness of geo-intelligence workflows.

In this paper, we investigate how causality (causal inference) can be used to promote fairness
by detecting bias in the data and design of geo-intelligence workflows. As a case/study we
consider an early warning system that predicts building damage by tropical cyclones (TC) at
municipality levels in The Philippines. Fairness is a pertinent issue in disaster response/man-
agement because of the limited resources and the lives and livelihoods at stake. We explore how
causality can be used for algorithmic fairness since non-causal (associational) models have been
shown to replicate, reinforce and propagate biases in observational data. Furthermore, some
biases and statistical anomalies cannot be addressed using association/correlation language
used in non-causal models (e.g., confounder bias [Figure 3] and the Simpson’s paradox) [4].

We follow Friedman and Nissenbaum’s [5] definition of a bias in computer systems. By their
definition, a bias is a systematic, and unfair discrimination of individuals or groups of individuals.
Friedman and Nissenbaum develop a framework of understanding bias in computer systems
as either preexisting bias (e.g., data generated from biased society or institutions), technical
bias (technical limitations of the algorithms) and or emergent bias (i.e., biases changing real
world use such as changing societal values). In the context of our case study, the data does not
contain the quintessential sensitive variables (e.g., gender, race/ethnicity). However, the case
study uses building typologies as predictor variables which are often considered an indicator
of socio-economic well-being. Therefore a biased damage assessment in this context would
consequently cause unfair distribution of aid resources to municipalities with a high number of
building typologies vulnerable to tropical cyclones.

Although there is literature on using causality for quantifying disaster risk (e.g., [6, 7]), to
the best of our knowledge there are none so far on assessing biases and fairness using causality
in this context. Though our case study is on aggregated data and does not contain the typical
problematic sensitive variables (e.g., gender, ethnicity), it is still important to ensure that there
are no biases in the early warning system and that it is fair. In this paper we present preliminary
results on detecting biases through causality.

2. The Case Study and Data

The Philippines is prone to tropical cyclones (characterized by high speed winds and heavy
rainfall) which cause loss of lives and infrastructure damage. While there are accurate models
that predict the characteristics of tropical cyclones (e.g., wind speed and rainfall) it is still
a challenge to predict and quantify the impact it would have on people. Because of socio-
economic inequalities that influence choice of building materials, often this impact is measured
by assessing building damage. Because of these challenges (high frequency of tropical cyclone
events and cascading effects), geo-intelligence workflows are increasingly leveraged to guide
Impact-based Forecasting (IbF) that in turn inform disaster anticipatory actions such as Forecast-
based Financing (FbF) [8]. 510, an initiative of The Netherlands Red Cross developed an early
warning system for The Philippines. Their model and data serves as our case study.

The observation data is from previous 39 tropical cyclone incidents in The Philippines. The
data is aggregated at the municipality level (1486 municipalities), therefore the variables are an



aggregate representation of the hazard effects in each municipality. Hazard variables include
wind speed and amount of rainfall and physical vulnerability variables are captured by house
typology numbers (grouped by roof type and wall type). Geographical variables are also included
(e.g., coastal length). The resulting early warning system under study is a regression model that
predicts the damage percentage in municipalities identifying the most impacted (see Table 1 for
metrics).

3. Methods: Causality

Causal inference is a methodology that aims at quantifying cause and effect from observational
data. Causal inference has found applications in algorithmic fairness [e.g., 9, 10, 11] and in
explainable AI [12]. There are different methods on causal inference such as Bayesian Networks
and Structural Equation Models (SEMs). BNs and SEMs are popular because of the ease of
representing causal relationships using graphs, specifically directed acylic graphs (DAGs) which
do not have feedback loops [4]. In this paper we use SEMs (Equation 1) because they can also
be used in mediation analysis to estimate and validate causal chain graphs (Figure 2).

𝑥𝑖 = 𝑓𝑖(𝑝𝑎𝑖, 𝑢𝑖), 𝑖 = 1, . . . , 𝑛 (1)

Where 𝑓𝑖 is a function model (e.g., linear regression models) with 𝑝𝑎𝑖 as parent nodes of 𝑥𝑖
and 𝑢𝑖 a random error.

Mediation analysis aims to quantify both the direct effects and indirect effects of an exposure
variable to an outcome. This is done in two steps, one regressing on the outcome variable on the
exposure variable (Equation 2) and two regressing the outcome on both exposure and mediator
variable (Equation 3). The difference of the exposure coefficients in the two model gives the
effects of the exposure (E) interfered by mediator variable (M) (Equation 4) [13].

𝑌 = 𝛽0 + 𝛽𝑑𝑖𝑟 × 𝐸 + 𝜖 (2)

𝑌 = 𝛽0 + 𝛽1 × 𝐸 + 𝛽2 ×𝑀 + 𝜖 (3)

𝐵𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝛽𝑑𝑖𝑟 − 𝛽1 (4)

To detect potential biases through causality in the early warning system we first define a DAG
informed by literature (e.g., [14]) of how tropical cyclones cause damage. This is however limited
by the available variables in the data. We use correlation analysis to identify relationships,
mediation analysis to confirm chain relationships (Figure 2), and linear regression models to
identify cases of Simpsons paradox. Importantly, the DAG help identify potential confounder
biases. Secondly, we conduct a path analysis, quantifying the effects of variables on the outcome.
We use SEMs with the functions specified as linear regression models to quantify the direct
effects among the variables. These steps are a precursor to conducting further causal fairness
checks, for example path-specific counterfactual fairness as illustrated by Chiappa [15].



4. Preliminary results

Figure 1 shows our causal representation of the tropical cyclones early warning system. It is
informed by literature of how tropical cyclones cause infrastructure damage [e.g., 14] and this
damage varies because of the building typologies1. With many variables to consider, we focus
on the ones that have a strong correlation with the outcome variable and among each other.
Figure 5 shows the correlation between the variables. Furthermore, departure from the initial
associational ML design to a causal model leads to removing variables that do not have a causal
link (or interpretation) to the other variables. For example, the number of households registered
for social protection can be associated with higher damage levels but there’s no causal link/path
between this variable and the outcome.

The DAG is based on the causal reasoning that natural hazards have a direct causal effect on
damage of buildings. The hazard components - wind speed and total rainfall2 - have a strong
correlation (see Figure 5H) and statistical significance to the outcome (damage). Since every
tropical cyclone event is different and there might be other characteristics not captured in the
data, we consider the event itself as a parent node to wind speed and total rainfall. The event
and municipalities are parent nodes of distance which causes the municipalities to experience
different levels of wind speed and rainfall. For example, Table 6 shows that wind speed is indeed
a significant mediator between distance and damage. Tables 4 and 3 show that the significance
of rainfall as a predictor of damage changes depending on whether or not we account for the
specific tropical cyclone events in the model. This is therefore a case of the Simpsons paradox.
Furthermore, here we consider distance to express other hazard effects on damage and therefore
it becomes a confounder variable. The hazard components may not be entirely representative of
tropical cyclones since it does not also consider storm surges as a side effect of the wind speed.

For simplicity, we do not add paths between hazard nodes and build typologies nodes because
this introduces a time component. That is over time communities adjust to impact tropical
cyclones rebuilding damaged buildings with stronger materials. Mediation analysis however
confirms that build typologies can be mediators of effect of hazard on damage levels in our data
(see Table 5). Furthermore, the relationship between build typologies could be bidirectional but
doing so in our model introduces cycles and structural causal models do not account for cyclic
relationships [4].

5. Discussion

In this causal re-interpretation of the effect of tropical cyclones on damage levels in munici-
palities, based on our data, we find the problems of confounder bias (distance confounds both
hazard components and the outcome damage levels). In addition, we find a case of Simpsons
paradox with the direct effect of rainfall on damage. Following the correct causal path ways to
establish effect of hazard on damage plays an important role in ensuring fairness. Path analysis
is a precursor to carrying out further fairness tests (e.g., counterfactual analysis). In this case
the weaker build typologies (e.g., light roof, light walls) are sometimes proxies for vulnerable

1Stronger building materials are more resilient to natural hazards
2We exclude rainfall measurements at 6 hours and 24 hours because of high correlation to total rainfall, see Figure 5



Figure 1: A DAG showing the causal pathways (with direct effects coefficients) of damage due to
tropical cyclones. Dotted directed paths indicate event specific causal relationship. This allows to
account for variation among different tropical cyclones events in the data.

socio-economic groups of people and hence can be considered as sensitive variables. Because
of the identified complexities (i.e., confounder bias and Simpsons paradox) further analysis is
required to quantify the effect of these biases on the accuracy of damage prediction and how
they would affect fair distribution of aid resources. It is however apparent that the outcome
variable and the objectives also need to be designed or specified in a fair manner that ensures
fairness. In this context we note that predicting impact instead of damage would allow for a
deeper engagement on fairness.
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A. Basic DAGs

Chain graph conditional independence.

Figure 2: Chain DAG

𝑍⊥𝑋|𝑌 (5)

Figure 3: An example DAG of a confounder (𝑍) which influences both the explanatory variable 𝑋 and
the outcome 𝑌



Figure 4: Example DAGs before (A) and after intervention (B) on variable Y

B. Figures

Figure 5: Correlations among variables in the Tropical Cyclone early warning system.



C. Tables

XGBoost Random Forest Simple Linear Regression
Mean Absolute Error (MAE) 2.37 2.48 3.89
Root Mean Square Error (RMSE) 7.96 7.73 8.39

Table 1
The Philippines Typhoon early warning system metrics as analyzed by Teklesadik et.al.[8]

Variable name Description
Damage Percentage of damage buildings observed in the previous typhoons
Wind Hazard - wind speed (𝑚/𝑠)
Rainfall Hazard - total rainfall (𝑚𝑚) during the tropical cyclone
Distance Geography - Distance from the epicentre of the tropical cyclone
V_STR-STW Percentage of strong roof and strong wall build types
V_STR-SLW Percentage of strong roof and salvage wall build types
V_STR-LW Percentage of strong roof and light wall build types
V_SLR-STW Percentage of salvage roof and strong wall build types
V_SLR-SLW Percentage of salvage roof and salvage wall build types
V_SLR-LW Percentage of salvage roof and light wall build type
V_LR-STW Percentage of light roof and strong wall build type
V_LR-SLW Percentage of light roof and salvage wall build type
V_LR-LW Percentage of light roof and light wall build types

Table 2
Causal graph variable names and their descriptions.

Coefficients Estimate P-value
distance 0.041 <2e-16 ***
wind speed 0.439 <2e-16 ***
rainfall 0.004 0.000120 ***
str_stw 0.069 0.560
str_lw 0.070 0.555
str_slw 1.041 1.05e-05 ***
lr_stw 0.127 0.300
lr_lw 0.069 0.561
lr_slw 0.500 0.246
slr_stw -1.451 0.158
slr_lw 0.693 0.024
slr_slw 0.444 0.149

Table 3
Linear regression model with tropical cyclone events accounted for.



Coefficients Estimate P-value
distance 2.902e-02 <2e-16 ***
wind speed 3.618e-01 <2e-16 ***
rainfall 5.090e-04 0.516
str_stw 1.056e-01 0.402
str_lw 1.265e-01 0.316
str_slw 1.648e+00 3.73e-11 ***
lr_stw 2.097e-01 0.106
lr_lw 1.335e-01 0.289
lr_slw 5.532e-01 0.227
slr_stw -6.973e-01 0.524
slr_lw 6.367e-01 0.051
slr_slw 5.978e-01 0.068

Table 4
Linear regression model with tropical cyclone events un-accounted for.

Estimate P-value
Average Causal Mediation Effects(ACME) 0.005 <2e-16 ***
Average Direct Effects (ADE) 0.235 <2e-16 ***
Total Effect 0.240 <2e-16 ***
Prop. Mediated 0.021 <2e-16 ***

Table 5
Mediation analysis: str_stw as mediator of the effect between wind speed and damage

Estimate P-value
Average Causal Mediation Effects(ACME) -0.058 <2e-16 ***
Average Direct Effects (ADE) 0.030 <2e-16 ***
Total Effect -0.028 <2e-16 ***
Prop. Mediated 2.065 <2e-16 ***

Table 6
Mediation analysis: wind speed as mediator of the effect between distance and damage
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