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Abstract
In this paper, we focus on recourse for the setting of dynamic sequential allocations with limited resources,
in which agents are competing against each other. In particular, we assume the decision maker is using a
threshold policy and demonstrate the problem of recourse invalidation under the use case of college
admissions. We then provide a first attempt to generate a valid threshold recourse that takes into account
the feedback effect of recourse implementation.
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1. Introduction

As automated decision-making systems are increasingly embedded in high-risk applications,
it is highly important to maintain human agency. In practice, this need is met by providing
recourse to users who received a negative decision (e.g., are not admitted to university). The
recourse is a recommendation for actions the users should take in order to qualify for a positive
decision in the future. In many cases, the recourse takes the form of an alternative feature
vector that requires minimal changes from the user’s current feature vector (minimal cost).

A key property of a recourse is validity. A recourse is valid if the user is indeed granted the
desired decision following the implementation of the recourse. It has been shown in recent
years that the validity of a recourse might be impacted by different factors such as changes in
the model due to retraining after a distribution shift [1, 2, 3, 4, 5, 6, 7, 8, 9]. Nonetheless, only
recently has the community began to address invalidation due to feedback effects.

When generating a recourse, most methods consider the point of view of the individual.
Yet, for allocation problems in particular, in which resources are limited, it is crucial to take
into account the competition between users and the impact of recourse implementation. For
example, applicants who were not admitted in the current year for a university study program,
might be told which admission threshold was used. In the following year, let us assume that 𝑘
rejected candidates managed to increase their GPA to a value higher than that threshold. If the
number of admission slots 𝑟 is lower (𝑟 < 𝑘), that means that the recourse is not valid, since
some people who implemented the recourse do not receive the beneficial decision.
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This problem was addressed via an empirical simulation study [10], in which the authors
measured the effect of different parameters on recourse validity. The actions taken by individuals
following a recourse were simulated and the validity of the recourse in the next step was
measured. Yet, the provided recourse itself did not take into account the feedback effect of
the recourse implementation. A multi-agent point of view of recourse was presented in an
earlier work [11]. The authors provide two new recourse definitions: 1) Social-Welfare-Efficient
Recourse: a minimal-cost recourse that also increases the sum of predictions, and 2) Pareto-
Efficient Recourse: a minimal-cost recourse in which none of the individuals receiving the
recourse is worse off. Other papers [12, 13] aim to design an optimal policy considering the
users’ best response when acting strategically, but do not generate an explicit recourse.

In this paper, we present a setting of a dynamic allocation problem based on the college
admission use-case. We provide an algorithm for generating all possible valid recourse values.
Finally, we show that the current recourse properties may not be sufficient to select the recourse
which benefits users the most. There is a need to specify the recourse objective.

2. Dynamic college admission setting

Let us consider the use case of college admissions. At each time step 𝑡, a population of candidates
apply for available seats. Each candidate 𝑖 has a 1-dimensional feature 𝑥𝑖 that represents their
value to the decision maker (DM, university in this case) if admitted. The available resource
quantity (number of seats) is 𝑟. The DM uses a threshold allocation policy and sets a threshold
𝜏𝑡 such that at most 𝑟 candidates are admitted. A candidate 𝑖 is admitted if 𝑥𝑖 > 𝜏𝑡. The overall
utility of the allocation to the DM, 𝑈𝐷𝑀 , is the sum of features of all admitted applicants.

The population of candidates is composed of two groups:

• New candidates 𝑋 . A set of 𝑛 candidates who are applying for the first time. We
assume that the features of the new population arriving are the same at each round, e.g.
{𝑥1 = 0.9, 𝑥2 = 0.7, . . . 𝑥𝑛 = 0.5}.1 For simplicity, we assume the candidates are sorted
such that 𝑥1 has the highest value and 𝑥𝑛 has the lowest value.

• Reapplying candidates 𝑋𝑅𝐶 . A set of 𝑙𝑡 candidates who were rejected in the previous
round and attempt to be admitted in the current round. For the first round, this set is
empty. Again, we assume the candidates are sorted such that 𝑥𝑅𝐶

1 has the highest value
and 𝑥𝑅𝐶

𝑙𝑡
has the lowest value. The size of this set 𝑙𝑡 may change from round to round.

After setting the admission threshold 𝜏 , the DM provides the rejected candidates 𝑋− = {𝑥 ∈
𝑋|𝑥 ≤ 𝜏} a recourse �̂�. In this setting, all candidates are provided with the same recourse,
which is the feature value they should have in the next round in order to be admitted. The
rejected candidates from group 𝑋𝑅𝐶 cannot reapply (we allow only a second chance).

We consider the decision making process of the users regarding recourse implementation.
All individuals share the same cost function 𝑑 : R× R→ R. We assume the candidates choose
whether to implement the recourse based on their expected utility. For this example, we set
𝐺, the gain or reward given to each individual, to 1 if admitted (𝐺+ = 1) and 0 if rejected
(𝐺− = 0). Given that the recourse is valid (acceptance is guaranteed upon implementation of
1Note that this is a more restrictive assumption than the setting proposed in [10].



the recourse), the candidate will choose to implement the recourse only if 1− 𝑑(𝑥𝑖, �̂�) > 1𝑥𝑖≥�̂�,
i.e., the expected utility from implementing the recourse is higher than that of not implementing
the recourse. The set of reapplying candidates after implementing the recourse is denoted 𝑋𝑅𝐶 .

3. Validity

Our goal is to provide a valid recourse, i.e. �̂�𝑡 > 𝜏𝑡+1. For this condition to hold, the total
number of candidates above the value �̂�𝑡 should be at most 𝑟. We demonstrate the problem
of invalid recourse using the following example. We consider an allocation problem at 𝑡 = 0
with resources 𝑟 = 2, cost function 𝑑(𝑥, �̂�) = 2 · |�̂�− 𝑥|, new candidates 𝑋 = {𝑥1 = 0.8, 𝑥2 =
0.7, 𝑥3 = 0.5, 𝑥4 = 0.4, 𝑥5 = 0.3, 𝑥6 = 0.1} and no current reapplying candidates 𝑋𝑅𝐶 = {}.
The admission threshold is 𝜏0 = 0.6, i.e., the admitted set is 𝑋+

0 = {𝑥1 = 0.8, 𝑥2 = 0.7}.
After setting the threshold, we would like to provide a recourse for the set of rejected

candidates 𝑋− = {𝑥−1 = 0.5, 𝑥−2 = 0.4, 𝑥−3 = 0.3, 𝑥−4 = 0.1}. As mentioned above, we
assume that the set of new candidates 𝑋 is identical at each time step. Let us consider the
possible recourse value 0.75. The costs of implementing this recourse for the rejected candidates
are {𝑑(𝑥−1 , 0.75) = 0.5, 𝑑(𝑥−2 , 0.75) = 0.7, 𝑑(𝑥−3 , 0.75) = 0.9, 𝑑(𝑥−4 , 0.75) = 1.3}. Thus, three
out of the four rejected candidates will choose to implement the recourse, as their cost is lower
then the reward of being admitted (1). Yet, there are only two available slots (𝑟 = 2), so the
recourse will not be valid. The threshold would be at least 0.75 and none of the candidates
implementing the recourse would be admitted.

If we assume the feature space is unbounded, a naive valid recourse always exists - setting
the recourse to a high enough value such that no individual chooses to implement it. In case of
a bounded feature space, there may not be a valid recourse, e.g., when too many individuals
would choose to implement a recourse of the maximal feature value.

4. Multi-agent recourse

In some cases, several values could be used as a valid recourse. Following our example, we can
identify two ranges of recourse values. A recourse in the range [0.9, 1) would result in only one
candidate implementing the recourse, 𝑥−1 . The costs in the range [𝑑(𝑥−1 , 0.9) = 0.8, 𝑑(𝑥−1 , 1) =
1) provide the candidate with a positive gain, while the costs for the other candidates would
result in a non-positive utility, e.g., 𝑑(𝑥−2 , 0.9) = 1. Therefore, the rest of the rejected candidates
will not implement the recourse. Similarly, a recourse in the range (0.8, 0.9) would cause exactly
two candidates to implement the recourse (𝑥−1 , 𝑥

−
2 ). Each option is represented by a range and

not by a single value. Clearly, the minimal value in this range would benefit the individuals
implementing the recourse, as their cost would be minimised. We wish to provide a recourse of
minimal cost, so we can always choose the minimal value as recourse.

5. Multi-agent recourse algorithm

Algorithm 1 generates all minimal valid recourse values. First, for each individual 𝑖 of the top
𝑟 + 1 rejected candidates, we find 𝜇𝑖, the minimal recourse value for which the candidate will



Algorithm 1 Find all minimal valid recourse values (bounded features)
Require: new candidates 𝑋 (of the next round, sorted in descending order), rejected candidates
𝑋− (sorted in descending order) with |𝑋−| = 𝑙, cost function 𝑑, resource amount 𝑟, 𝜖 > 0,
feature upper bound 𝐵, gain to the individual if accepted 𝐺+

◁ Find the minimal recourse value for which the individual will choose not to implement the
recourse.
for 𝑖 from 1 to 𝑚𝑖𝑛(𝑟 + 1, 𝑙) do

find 𝜇𝑖 such that 𝑑(𝑥−𝑖 , 𝜇𝑖) = 𝐺+

end for
𝜏 ← {}

◁ A possible recourse value to allow the top 𝑗 candidates to reapply. This
value guarantees that the rest of the reapplying candidates will choose not to implement the
recourse (too costly), and that all individuals implementing the recourse will be admitted.
for 𝑗 from 1 to 𝑚𝑖𝑛(𝑟, 𝑙 − 1) do

�̂�𝑗 ← 𝑚𝑎𝑥(𝜇𝑗+1, 𝑥𝑟−𝑗+1 + 𝜖)
◁ The recourse is added only if it is not too costly for the individual with the lowest feature
among the top 𝑗 reapplying candidates (hence not too costly for all top 𝑗), and the recourse
does not exceed the feature upper bound.

if �̂�𝑗 < 𝜇𝑗 and �̂�𝑗 ≤ 𝐵 then
Add �̂�𝑗 to 𝜏

end if
end for

◁ The case of providing a recourse that allows all rejected candidates to reapply (if the
number of available seats is at least the number of rejected candidates).
if 𝑙 ≤ 𝑟 then

�̂�𝑙 ← 𝑥𝑟−𝑙+1 + 𝜖
◁ There is no need to check whether the recourse is too costly for the rest of the rejected

candidates.
if �̂�𝑙 < 𝜇𝑙 and �̂�𝑙 ≤ 𝐵 then

Add �̂�𝑙 to 𝜏
end if

end if
return 𝜏

choose to not implement the recourse. Second, for each number 𝑗 of reapplying candidates from
1 to 𝑟, we set the minimal recourse value �̂�𝑗 to 𝑚𝑎𝑥(𝜇𝑗+1, 𝑥𝑟−𝑗+1 + 𝜖]), 𝜖 > 0. This recourse
is guaranteed to admit at most 𝑗 reapplying candidates, because this recourse is too costly for
the rest of the rejected candidates. In addition, all reapplying candidates implementing this
recourse are guaranteed to be allocated with the resource (their new feature value is larger than
that of the 𝑟-th new candidate). We then check two conditions: 1) The recourse is not too costly
for all top 𝑗 rejected individuals. That is, the recourse value �̂�𝑗 must be lower than 𝜇𝑗 .2 2) In

2Note that as the feature increases, the cost decreases. Therefore, it is sufficient to verify this condition for the
candidate with the lowest feature in the top 𝑗 rejected candidates.



Table 1
Recourse utilities for the DM and the reapplying candidates.

Recourse value 𝑈𝐷𝑀 𝑈𝑅𝐶

0.9 0.9+0.8=1.7 1-0.8=0.2
0.81 0.81+0.81=1.62 (1-0.62)+(1-0.82)=0.56

case of bounded features, the recourse must not exceed the maximal feature value.

Utility-maximising recourse Given several values of a minimal valid recourse, there is
a need to determine which value is preferred. Following our example, we are left with two
options for a recourse: �̂�1 = 0.9, �̂�2 = 0.8 + 𝜖 for some 𝜖 > 0 (here, 𝜖 = 0.01). The decision of
which specific value to choose depends on the objective. We consider two viewpoints:

1. The DM’s objective. Maximising the sum of features of admitted individuals (𝑈𝐷𝑀 ).
2. The objective of the reapplying population. Maximising the sum of individual rewards (to

the individuals) for the set of the reapplying population (𝑈𝑅𝐶 ).

From the utilities for the DM and the reapplying candidates in table 1, we can observe that
the DM would prefer to provide the recourse �̂�1 = 0.9 while the reapplying candidates would
prefer the recourse �̂�2 = 0.81. Hence, for recourse generation for dynamic allocation problems,
it is not sufficient to specify that the recourse should be valid and minimal, there should also be
a recourse objective in order to select one value from a set of possible recourse values.

6. Discussion and future work

The problem of recourse invalidation due to recourse implementation was only recently dis-
cussed in the literature. To the best of our knowledge, this is the first attempt to provide a valid
feedback-aware recourse in dynamic settings. Using an example, we show that this problem
could have several solutions, or not at all. In order to select one solution, new recourse desiderata
should be in place, to prevent misuse of recourse by the decision makers.

The setting described in this paper has several limitations that can be relaxed in future
work. For example, a more realistic setting could include applicants sampled from a population
distribution. In addition, we only consider a threshold recourse, but the DM could also provide
a different recourse to each individual. Moreover, we consider validity in a binary way, but in
practice, most methods provide a recourse that is valid with high probability. When the recourse
is not guaranteed to be valid, the estimation of expected utility for the users would change, and
consequently the recourse should take that into consideration. Lastly, we do not consider the
utility for new candidates, and the impact of intentionally providing a costly recourse to some
individuals. Hence, some additional fairness notions for recourse may be required.

Acknowledgments

This work was supported by the Research Council of Norway under project number 302203.



References

[1] T.-D. H. Nguyen, N. Bui, D. Nguyen, M.-C. Yue, V. A. Nguyen, Robust bayesian recourse,
in: Uncertainty in Artificial Intelligence, PMLR, 2022, pp. 1498–1508.

[2] D. Nguyen, N. Bui, V. A. Nguyen, Distributionally robust recourse action, arXiv preprint
arXiv:2302.11211 (2023).

[3] H. Guo, F. Jia, J. Chen, A. Squicciarini, A. Yadav, Rocoursenet: Distributionally robust
training of a prediction aware recourse model, arXiv preprint arXiv:2206.00700 (2022).

[4] K. Rawal, E. Kamar, H. Lakkaraju, Algorithmic recourse in the wild: Understanding the
impact of data and model shifts, arXiv preprint arXiv:2012.11788 (2020).

[5] G. König, T. Freiesleben, M. Grosse-Wentrup, A causal perspective on meaningful and
robust algorithmic recourse, arXiv preprint arXiv:2107.07853 (2021).

[6] N. Bui, D. Nguyen, V. A. Nguyen, Counterfactual plans under distributional ambiguity,
arXiv preprint arXiv:2201.12487 (2022).

[7] E. Black, Z. Wang, M. Fredrikson, A. Datta, Consistent counterfactuals for deep models,
arXiv preprint arXiv:2110.03109 (2021).

[8] S. Upadhyay, S. Joshi, H. Lakkaraju, Towards robust and reliable algorithmic recourse,
Advances in Neural Information Processing Systems 34 (2021) 16926–16937.

[9] S. Dutta, J. Long, S. Mishra, C. Tilli, D. Magazzeni, Robust counterfactual explanations for
tree-based ensembles, in: International Conference on Machine Learning, PMLR, 2022, pp.
5742–5756.

[10] J. Fonseca, A. Bell, C. Abrate, F. Bonchi, J. Stoyanovich, Setting the right expectations:
Algorithmic recourse over time, in: Proceedings of the 3rd ACM Conference on Equity
and Access in Algorithms, Mechanisms, and Optimization, 2023, pp. 1–11.

[11] A. O’Brien, E. Kim, Toward multi-agent algorithmic recourse: Challenges from a game-
theoretic perspective, in: The International FLAIRS Conference Proceedings, volume 35,
2022.

[12] S. Tsirtsis, B. Tabibian, M. Khajehnejad, A. Singla, B. Schölkopf, M. Gomez-Rodriguez,
Optimal decision making under strategic behavior, Management Science (2024).

[13] Y. Chen, J. Wang, Y. Liu, Strategic recourse in linear classification, arXiv preprint
arXiv:2011.00355 236 (2020).


	1 Introduction
	2 Dynamic college admission setting
	3 Validity
	4 Multi-agent recourse
	5 Multi-agent recourse algorithm
	6 Discussion and future work

