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Introduction The increasing adoption of AI systems at high stake areas of public life along
with extensive studies on the discriminatory potential of AI [1] have prompted a proliferation
of algorithmic methods that study and pursue fairness in AI systems (Fair-AI) ([2, 3, 4]. These
methods are centered on the detection, mitigation and evaluation of bias across legally protected
groups, and almost invariably require access to sensitive attributes, like demographics, that
determine group membership. However, this often implies the processing of personal sensitive
data, which is in principle prohibited or extensively protected according to the EU data protection
law, posing challenges to the feasibility of Fair-AI approaches. In response to this challenge, a
growing line of AI research [5, 6, 7, 8, 9, 10, 11] has studied computational methods that enable
fairness operationalization in the absence of demographic data, notably through the use of
proxy variables and inferential techniques (Proxy Fairness).

However, scant attention has been given thus far to the interaction of these methods with
existing data protection regulations, posing significant legal uncertainty regarding their legiti-
macy. This uncertainty intensifies in the face of ongoing regulatory developments. Particularly,
the upcoming AI Act has also addressed the challenge of data scarcity in the context of Fairness,
by enabling, on grounds of public interest, the processing of personal sensitive data for the
purposes of bias detection and correction in high-risk AI systems. Precisely, according to the
Article 10 (5) AI Act, the processing of personal sensitive data is permitted only "to the extent
that it is strictly necessary for the purposes of ensuring bias detection and correction in relation
to the high-risk AI systems..[emphasis added]". While the enabling provision appears to be
method-agnostic, meaning that it’s not restricted to a particular fairness approach, the stipulated
necessity requirement significantly influences the choice of fairness methods, and to a greater
extent, the scope of Proxy Fairness.

By utilizing the legal notions of data- Sensitivity and processing- Necessity, the paper examines
the legal implications of Proxy Fairness under the General Data Protection Regulation and the
AI Act, providing a normative foundation to this line of Fair-AI approaches. Precisely, the paper
scrutinizes the nature of data involved in Proxy Fairness approaches- including proxy variables
and data inferences- demonstrating that inferential methods are in principle not exempt from
the reach of the GDPR and its extensive regime for sensitive data. Subsequently, the paper
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examines the lawfulness of processing sensitive data for Proxy Fairness under article 10 (5)
of the AI Act through a comparative assessment of proxy fairness approaches versus default
alternatives along the necessity axes of intrusiveness, effectiveness, and reasonableness.

Proxy Fairness under the GDPR: a sensitivity perspective In order to assess Proxy
fairness under article 10 (5) of the AI Act, it is necessary to first investigate the extent to which
it involves the processing of sensitive data under the meaning of the GDPR. For this purpose, the
paper distinguishes between two main data-pillars involved in Proxy Fairness, namely Proxy
and Inferred data, and assesses them under the legal notion of sensitivity. Particularly, through
on a grammatical and systematic interpretation of article 9 (1) GDPR, which defines sensitive
personal data, and by consulting the jurisprudence of the European Court of Justice [12, 13],
guidelines from the Article 29 Working Party [14, 15, 16, 17] and a substantial corpus of legal
scholarship [18, 19, 20, 19, 18, 21, 22, 23, 24, 25], the paper supports that both proxy and inferred
data used in the context of Proxy Fairness may be considered sensitive within the meaning of
the GDPR.

Proxy Fairness under the AI Act: a necessity perspective As mentioned above, according
to article 10 (5) AI Act, the processing of sensitive data is permitted only ”to the extent that it is
strictly necessary for the purposes of ensuring negative bias detection and correction in relation
to the high-risk AI systems [emphasis added]”, i.e. only under the requirement of legal necessity.
The necessity principle, which has been a recurrent condition to the processing of personal
data, essentially dictates that data processing is permissible only to the extent that there is
not a less intrusive but similarly effective alternative available, which can reasonably achieve
the objective at hand [26, 27]. AI providers seeking to rely on the exception of the AI Act and
process sensitive personal data for bias detection and correction must thus conduct a necessity
test, which involves comparing available alternatives based on their levels of a) intrusiveness, b)
effectiveness and c) reasonableness. The paper examines proxy fairness approaches under the
necessity requirement, particularly by comparing them with default approaches that directly
collect and use real sensitive attributes, along the necessity axes.

a. intrusiveness Core criteria for assessing the intrusiveness of a data processing operation
— i.e. the severity of the interference with the right to data protection— include the volume and
type of data processed and the associated risks of data misuse [27]. Examining these criteria,
the paper argues that Proxy Fairness not only de facto involves a larger volume of personal data
compared to default approaches, but also a larger volume of de jure sensitive data, thereby being
more intrusive under the first two criteria. Subsequently, the paper discusses the lack of data
subjects’ control over their personal data and the risk of discrimination as relevant instances of
data misuse in the cases of Proxy and Default Fairness respectively, highlighting the complexity
of comparing different methods in terms of data misuse risks.

b. effectiveness Compliance with the requirement of necessity does not require prioritiz-
ing any kind of milder alternative, but only those milder alternatives that can attain the pursued
objective in a comparably effective manner. In a second step, AI providers must thus compare



the identified alternatives with respect to their effectiveness in detecting and correcting bias,
by relying on theoretical and/or empirical evidence regarding the utility and limitations of the
fairness methods under consideration. This includes qualitative and quantitative arguments
about the way relevant demographic groups would be better served by the planned interven-
tion, such as performance and fairness metrics, accuracy of fairness and associated trade-offs.
Accordingly, the paper conducted a high-level effectiveness- comparison between Default and
Proxy Fairness approaches based on evidence discussed in the Fairness literature.

c. reasonableness According to the last element of the necessity, AI providers are required
to prioritize milder effective alternatives only if those are reasonable in terms of financial, legal,
and operational feasibility. Particularly, nothing prohibitively costly, practically impossible
or illegal shall be demanded. The paper argues that this step provides space not only for a
utility-based calculus but also for ethical considerations, demonstrating how current research
on critical ethics can gain normative relevance in the context of the GDPR and the AI Act.

Conclusion In the face of the increasing popularity of proxy fairness approaches and the lack
of a thorough corresponding legal framework, this paper explored aspects of Proxy Fairness
under the General Data Protection Regulation and the AI Act. By shedding light on the regulatory
nuances involved in Proxy Fairness and providing interpretational tools for a lawful processing
of sensitive data in this context, the paper aims to assist AI providers in regulatory compliance
and safeguard the data protection rights of data subjects, while laying the groundwork for
further research at the intersection of data protection law, ethics, and Fair-AI.
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