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Introduction, motivation, and contributions. With the increasing usage of AI models in
our daily lives, concerns have been raised on the negative impact of AI models on individuals
and society due to their embedded biases [2]. There is a deep academic and social discussion
around the alleged neutrality of these algorithmic systems as more examples confirm that
such algorithmic systems are “value-laden in that they create moral consequences, reinforce or
undercut ethical principles, or enable or diminish stakeholder rights and dignity” [3]. Included
in that discussion is the interdisciplinary and growing field of fair-AI. In Álvarez et al. [1], we
survey the fair-AI state-of-the-art of methods and resources as well as the latest policies on
bias in AI, in turn, providing the much needed bird’s-eye view for all stakeholders. Further, by
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leveraging from the results of the NoBIAS research project, we contribute to the ongoing policy
advice and best practices discussion, focusing on the European context.

Fair-AI aims at designing methods for detecting, mitigating, and controlling biases in AI-
supported decision-making [4, 5]. Given its focus on bias and fairness, fair-AI has coalesced
multiple fields concerned with, among other research lines, the fairness of decision-making (e.g.,
[6, 7, 8]); bias as a cognitive, technical, and socio-technical phenomenon (e.g., [9, 10, 11, 12]);
and designing ML systems for social good (e.g., [13, 14, 15]). The state-of-the-art has been
developing mainly on the technical side, sometimes reducing fair-AI problems to a numeric
optimization problem under some fairness metric [16, 17, 18]. This hegemonic view on fair-AI
problems has been increasingly criticized within the own field (e.g., [19, 20, 21]), which, in
turn, has expanded the state-of-the-art. Additionally, it is important to include as part of the
state-of-the-art the regulatory frameworks being developed, in particular within the European
Union (EU) – such as the GDPR [22] and the AI Act [23] – to enforce fair-AI goals.

It is challenging, especially for the novel researcher and practitioner interested in fair-AI
within the EU, to have a comprehensive view of the state-of-the-art. Therefore, the objectives
and, in turn, contributions of Álvarez et al. [1] are twofold:

• First, we provide an up-to-date entry-point to the state-of-the-art of the multidisciplinary
research on bias and fairness in AI. We take a bird’s-eye view of the methods and resources,
with links to specialized surveys, and of the issues and challenges related to policies on
bias and fairness in AI. Such an overview provides guidance for both new researchers
and AI practitioners.

• Second, we contribute toward the objective of providing policy advice and best practices for
dealing with bias and fairness in AI by leveraging from the results of the NoBIAS research
project. We present and discuss topics that emerged during the execution of the research
project, whose focus was on legal challenges in the context of the EU legislation, and on
understanding, mitigating, and accounting for bias from a multidisciplinary perspective.

The NoBIAS project. The NoBIAS project (January 2020 - June 2024) was a Marie Skłodowska-
Curie Innovative Training Network funded by the European Union’s Horizon 2020 research
and innovation program. The core objective of NoBIAS was to research and develop novel
interdisciplinary methods for AI-based decision-making without bias. 1

Figure 1 shows the project’s architecture. The Bias Management Layer is made up of the vari-
ous components contributed by the research projects of the 15 NoBIAS Early-Stage Researchers
(ESRs). Together, these components aim to achieve three research objectives: understanding
bias, mitigating bias, and accounting for bias in data and AI-systems. An orthogonal Legal
Layer provides the necessary EU legal grounds. The purpose is not to produce one single bias
management framework but rather to combine technologies and techniques for generating
bias-aware AI-systems in different application domains and contexts.

Paper structure. Following the objectives, the paper is divided into two main sections.
In the Landscape of policies on bias and fairness in AI section, we provide a concise

overview of the state-of-the-art for fair-AI methods and policy topics. In this section, we point

1For more information, visit: https://nobias-project.eu/
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Figure 1: The NoBIAS architecture Each Early-Stage Researcher (ESR) focused on one aspect of the
project’s architecture, totaling 15 ESRs. Visit: https://nobias-project.eu/ for more information.

to the main contributions and resources in the area, providing guidance for both researchers
and practitioners. First, we cover Fair-AI methods and resources, in which we explore
the fairness metrics (group-level, individual-level, and causality-based) [24, 25, 26, 27, 28, 29],
tracing back their origins to fields like Philosophy and Economics [30, 6, 31, 32]. We also
discuss common applications (e.g., computer vision [33] and recommender systems [34]) and
popular standardization initiatives (e.g., the IEEE P7003™ Standard2). Second, we cover Policies
on bias and fairness in AI, in which we discuss policy and guidelines inventories (e.g., the
OECD.AI Policy Observatory3); the option not to use AI (e.g., the Stop LAPD Spying Coalition4);
documentation practices for bias (e.g., [35, 36, 37, 38]); and EU legal regimes and discussions
around them (e.g., [23, 22, 39, 40, 41]); among other topics.

In the Lessons from the NoBIAS project section, we discuss policy advice and best practices
resulting from the execution of the NoBIAS research project. Here, we take a critical view
on the literature, focusing on findings from the NoBIAS project (e.g., [42, 43, 44, 45, 33, 46,
47, 48, 49]). We argue that the issues discussed are relevant, but not sufficiently developed or
acknowledged in the fair-AI literature. Thus, this section further enriches the state-of-the-art.
This section is organized according to the NoBIAS architecture in Figure 1. We cover the
NoBIAS Bias Management Layer through the subsections Understanding bias, Mitigating
bias, and Accounting for bias as well as the NoBIAS Legal Layer through the subsection Legal
challenges of bias in AI. Each subsection is further divided into relevant topics/themes. For

2https://standards.ieee.org/project/7003.html
3https://oecd.ai/en/dashboards/overview
4https://stoplapdspying.org/wp-content/uploads/2018/05/Before-the-Bullet-Hits-the-Body-May-8-2018.pdf
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Legal Layer

• AI models often lack the auxiliary causal knowledge required to prove anti-discrimination
cases as these require to show that the decision is because of the protected attribute.

• AI models’ complexity and opaqueness make it difficult to identify individuals and groups
that are treated unfairly.

• The design of AI models requires to agree on and to operationalise legal and ethical principles.

• Transparency and accountability of AI systems are a way to overcome the hegemonic theory
of fairness, which reduces fairness problems to quantitative metric optimization.

• There are synergies and frictions in the EU legal framework between data protection law and
non-discrimination law, which demand for an integrated and interdisciplinary techno-legal
framework of bias management.

Figure 2: Legal Layer: challenges, policy advice, and best practices.

Bias Management Layer - Understanding Bias

• We should acknowledge that there are many forms of bias, with different roots and effects.

• The “ground-truth" is a myth. It does not exist in a structurally unjust and unequal society.

• Data curation in AI should import source criticism and archival practices from historical and
humanistic disciplines.

• There is an hyper-fixation on data as the primary source of bias, but the whole AI pipeline
needs to be addressed, including the data annotation process and data labourers’ exploitation.

• Different data types require specific regulatory guidelines and standards.

Figure 3: Bias Management Layer – Understanding Bias: challenges, policy advice, and best practices.

instance, in Understanding bias we discuss the subjectivity of bias; argue that the notion
of ground-truth can be itself biased; provide source criticism and archival practices on bias
documentation; discuss data annotation; and present data types as a source of bias.

Each of these NoBIAS subsections is summarized in the form of a set of challenges, policy
advice, and best practices aimed at all stakeholders. We present two of these below – Figures 2
and 3 – as representative examples. Each item listed in Figure 2 corresponds to a fair-AI topic
discussed within the subsection Legal challenges of bias in AI. Similarly, each item in Figure 3
corresponds to a topic discussed within the subsection Understanding bias. All items are
substantiated using the relevant fair-AI literature. Naturally, the choice of topic (i.e., item) was
conditioned by the works of the NoBIAS ESRs.

Conclusion. In this work we provide a comprehensive introduction to the multidisciplinary and
growing fair-AI literature. Using the NoBIAS research project as a guide, we extend the current
discussion around the state-of-the-art by focusing on themes studied throughout the project.
Leveraging on the NoBIAS architecture (Figure 1), we dwell into ongoing fair-AI research topics,



position these topics within the EU regulatory framework, and provide best practices and policy
advice to the general practitioner (e.g., Figure 2). While we do not claim for their completeness,
we hope that the policy advice and best practices provided in this paper will contribute to the
conventional wisdom in research of and the ongoing discussion on managing bias and fairness
in AI. Please refer to Álvarez et al. [1] for a complete discussion.
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